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Abstract— This paper addresses the quantized stabiliza-
tion problem for single-input Markov jump systems. Mode-
dependent and mode-independent quadratic control Lyapunov
functions based on the availability of mode information at
controller/quantizer are considered for the quantized feedback.
Similar to the linear time-invariant case, it is shown that a
mode-dependent (respectively, mode-independent) logarithmic
quantizer is optimal (coarsest) in the mean square quadratic
stability (respectively, strongly mean square quadratic stability)
sense for Markov jump systems. Moreover, the sector bound
approach is shown to be nonconservative in investigating
the corresponding quantized state feedback problem. Under
an appropriate definition of quantization coarseness, we also
present a method of optimal quantizer design in terms of linear
matrix inequalities. Several examples including applications in
networked control systems are given to demonstrate the results.

I. INTRODUCTION

Starting from Kalman [1], quantization has been known

to have an undesirable effect on system performance or

even stability, and thereby many works have been done

in mitigating the effect. In modern networked systems,

quantization is an indispensable step which aims at saving

limited bandwidth and energy consumption. Elia and Mitter

[2] first pointed out that quantization is “useful, if not

essential, instead of undesirable”, and also indicated that the

coarsest quantizer is logarithmic in the sense of quadratic

stability for single-input linear time-invariant (LTI) systems.

A relationship between the optimal quantization density

and unstable eigenvalues of the plant under consideration

has been established. Fu and Xie [3] showed that under

quadratic stability, quantized stabilization is equivalent to

the robust stabilization of an associated system with sector-

bound uncertainty and extended the results to multiple-input-

multiple-output (MIMO) systems and output feedback. Based

on the result in [3], quantized stabilization is considered in

[4] where a quantization error dependent Lyapunov function

is adopted which offers a less conservative design.

The packet-drop behavior of an unreliable communication

channel is another important issue in networked control sys-

tems (NCSs) as it induces information loss and consequently

affects the performance or even stability of the closed-loop
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system. There have been many interesting studies on the

packet-loss issue; see, e.g. [5], [6], [7], [8] for networked

control, [9], [10], [11] for networked estimation, and [12]

for a review of recent results. In [5], the stability robustness

of NCSs is addressed, where the packet losses are modeled

according to an i.i.d. Bernoulli distribution and the control

input becomes zero when the data are lost (so-called zero-

control strategy). The Markov jump systems (MJSs) theory

is applied to the H∞ control of NCSs with binary stochastic

packet losses in [6]. In [7], bounded consecutive switching

or Markovian packet losses are assumed. [8] considered

the mean square stabilization over fading channel in the

framework of robust control for deterministic systems with

stochastic structured model uncertainties. One of the inter-

esting discoveries in [8] is that the supremum of allowable

packet-loss rate (probability of erasure) can be given in

terms of the unstable poles of the single-input plant under

investigation.

As quantization and packet losses co-exist in a NCS, it is

natural and reasonable to take them into consideration simul-

taneously. The stabilization problem over channel containing

both quantization and packet losses was first addressed in

[13], where the packet-loss process is driven by a binary

i.i.d. process. It was shown in [13] that the upper bound of

the coarseness can be given by the packet-loss rate and the

unstable eigenvalues of the plant.

Note that the results of [13] for the binary i.i.d. packet

dropouts are no longer applicable for binary Markovian

losses. In this case, the networked systems can be modeled as

a general MJS. Therefore, this paper is to answer the follow-

ing fundamental questions arising from quantized networked

control: a) Is the logarithmic quantizer still optimal (coars-

est) for MJSs? b) Is the sector bound approach still non-

conservative in dealing with quantized stabilization of MJSs?

c) How to design the optimal quantizer? This paper reveals

that for MJSs with a given quadratic control Lyapunov

function (QCLF), the optimal quantizer can be approached

by adopting a logarithmic law operating on a linear state

feedback, similar to that of the LTI systems [2], [3]. Again,

the sector bound approach is shown to be nonconservative

in investigating the quantized feedback control problem. A

linear matrix inequality (LMI) approach is then presented to

derive the optimal quantizer under some proper coarseness

definition.

II. SYSTEM DESCRIPTION

As we can see from Fig. 1, a quantized feedback control

system comprises three parts: a system to be controlled (G),
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a controller (K) and a quantizer (Q).

Fig. 1. Typical Quantized Feedback Control System.

In this paper, we consider a single-input MJS as follows:

G : xt+1 = Aθt
xt + Bθt

ut, (1)

where xt ∈ Rn is the state, ut ∈ R is the control input and

θt ∈ Θ ≡ {0, 1, · · · , N} is the system mode governed by a

time-homogeneous Markov chain with transition probability

matrix

Π = (πij)i,j∈Θ ≡ (Pr(θt+1 = j|θt = i))i,j∈Θ. (2)

The quantized state feedback can be denoted by

K : vt = g(xt, γt), (3)

Q : ut = f(vt, γt), (4)

where γt ∈ Γ is a mode-related input signal at the con-

troller/quantizer side at time step t, which would further

determine the desired form of stochastic Lyapunov function

and the underlying quantization strategy. Note that f(·, ·) is

assumed to be symmetric with respect to v(t) for any given

mode i, i.e., f(−vt, i) = −f(vt, i). In the following, we deal

with two cases indicated in the definition below.

Definition 2.1: The state feedback law (K) and quantizer

(Q) defined in (3)(4) is said to be mode-dependent, if γt =
θt; it is mode-independent, if there is no mode-related input

signal available at K/Q side, i.e., vt = g(xt), ut = f(vt).

III. MODE-DEPENDENT QUANTIZER

A. Preliminaries

Let Ft = σ{x0, θ0, · · · , xt, θt} for ∀t ≥ 0, be the σ-

algebra generated by {(xk, θk), 0 ≤ k ≤ t}.

Definition 3.1: For system

xt+1 = h(xt, θt) (5)

with possibly nonlinear mapping h(·, ·), if for every initial

condition x0, θ0, E[‖xt‖2|x0, θ0] is well-defined for any t,
then the equilibrium point at the origin is mean square (MS)

stable when limt→+∞ E[‖xt‖2|x0, θ0] = 0.

To avoid the trivialness, we assume that system (1) with

ut ≡ 0 is not MS stable. In fact, the MS stability of the open-

loop system would require only the existence of a uniform

quantizer with zero quantization density since zero control

input could be adopted all along; also see Corollary 2.1 in

[2] for LTI systems.

Definition 3.2: The equilibrium point at the origin of

system (5) is mean square quadratically (MSQ) stable, if

there exist a positive-definite function

V1(xt, θt) ≡ x′

tPθt
xt (6)

and positive-definite matrices Qθt
such that

∇V1(xt, θt)≡ E[V1(xt+1, θt+1) − V1(xt, θt)|Ft]

= E[V1(xt+1, θt+1)|xt, θt] − V1(xt, θt)

<−x′

tQθt
xt, ∀xt ∈ Rn, θt ∈ Θ, xt 6= 0. (7)

Remark 3.1: In order to clearly reveal the connection

between MSQ stability and coarsest quantization, we use

” < ” in (7), without loss of generality, instead of ” ≤ ” as

in Definition 2.2 of [13].

Following a similar proof of Theorem 1 in [14], we can

get the lemma below.

Lemma 1: The MSQ stability of the equilibrium point

at the origin of system (5) implies the corresponding MS

stability.

The controller (3) and the quantizer (4) can be further

described as

K : vt = g(xt, θt), Q : ut = f(vt, θt). (8)

Definition 3.3 (QCLF): A positive-definite quadratic

function V1(xt, θt) of the form (6) is called a quadratic

control Lyapunov function (QCLF) for system (1), if a

memoryless quantized state feedback (8) exists such that

the closed-loop system

xt+1 = Aθt
xt + Bθt

f(g(xt, θt), θt) (9)

admits V1(xt, θt) as a parameterized Lyapunov function, i.e.,

the condition (7) holds for some Pi, Qi, ∀i ∈ Θ.

It is also worthy mentioning that system (9) is generally

nonlinear, since the control signal ut is a nonlinear function

of xt.

Next, we introduce an assumption on G and generalize

the definition of quantization density introduced in [2] to the

MJS case.

Assumption 3.1: The unquantized system (G) is assumed

to be MS stabilizable via linear mode-dependent state-

feedback law:

vt = Kθt
xt. (10)

Definition 3.4: The mode density of the quantizer f(·, ·)
with respect to mode i, i ∈ Θ is defined as ηf (i) ≡
lim supǫ→0

#l[ǫ,i]
− ln ǫ

, where #l[ǫ, i] is the number of quanti-

zation levels in the interval [ǫ, 1/ǫ] with f(·, i).

B. Solution

The main purpose of this paper is to solve the following

problem.

Problem 3.1: For system (1) with a given QCLF

V (xt, θt), find f(·, ·) and g(·, ·) such that the resultant

quantizer is coarsest for the given V (xt, θt), i.e., there is

no other set of η̄f (i), such that η̄f (i) ≤ ηf (i), ∀i ∈ Θ with

at least one strict inequality and the condition (7) is satisfied

for the predefined Pi, Qi, ∀i ∈ Θ.
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A mode-dependent quantizer is said to be logarithmic, if

for any i ∈ Θ, the corresponding set of quantized level Ui

has the following form:

Ui = {±ul(i) : ul(i) = ρl(i)u0, u0 > 0,
for l ∈ ±1,±2, · · · } ∪ {±u0} ∪ {0}, (11)

where

ρ(i) =
1 − δ(i)

1 + δ(i)
. (12)

Note that there is no loss of generality by choosing the

same u0 for every i ∈ Θ; see Lemma 2.1 in [2].

Further define

δm(i)≡
{

+∞, for Bi = 0,
1√

KmiM
−1

i
K′

mi

, for Bi 6= 0, (13)

where

Kmi =−
∑N

j=0 πijB
′

iPjAi
∑N

j=0 πijB′

iPjBi

,

Mi =

∑N
j=0 πijA

′

iPjBiB
′

iPjAi

(
∑N

j=0 πijB′

iPjBi)2

−
∑N

j=0 πijA
′

iPjAi − Pi + Qi
∑N

j=0 πijB′

iPjBi

.

Then the next theorem gives a solution to Problem 3.1.

Theorem 3.1: If the system (1) with quantized state feed-

back (8) admits (6) as a QCLF, i.e., the condition (7) holds

for some Pi, Qi, ∀i ∈ Θ, then the coarsest quantizer can be

approached by a linear unquantized feedback law vt = Kθt
xt

and the following mode dependent logarithmic form:

• for the given θt, if δm(θt) < 1, then

f(vt, θt) =















ul(θt), if

1
1+δ(θt)

ul(θt) < vt

≤ 1
1−δ(θt)

ul(θt),

0, if vt = 0,
−f(−vt, θt), if vt < 0,

(14)

with

δ(θt) = δm(θt), Kθt
= Kmθt

;

• if δm(θt) = 1, then

f(vt, θt) =







u0, if vt > 1
2u0,

0, if 0 ≤ vt ≤ 1
2u0,

−f(−vt, θt), if vt < 0;
(15)

with

δ(θt) = δm(θt), Kθt
= Kmθt

;

• if δm(θt) > 1, then

f(vt, θt) = 0, with δ(θt) = 1, Kθt
= 0. (16)

Proof: Can be found in [15].

The quantization error is mode-dependent:

et ≡ ut − vt = f(vt, θt) − vt = ∆(vt, θt)vt,

where ∆(vt, θt) ∈ [−δ(θt), δ(θt)] and δ(θt) is defined

in Theorem 3.1. Then, the closed-loop quantized feedback

system with vt = Kθt
xt becomes the following uncertain

MJS:

xt+1 = Aθt
xt + Bθt

(1 + ∆(Kθt
xt, θt))Kθt

xt. (17)

The theorem below tells us that the sector bound approach

is still valid.

Theorem 3.2: Given a mode dependent logarithmic quan-

tizer (14)-(16) with a set of fixed 0 ≤ ρ(i) < 1, i ∈ Θ,

system (1) with quantized linear state feedback (8) has a

QCLF (6) if and only if the following uncertain system:

xt+1 = Aθt
xt + Bθt

(1 + ∆(θt))vt, (18)

is robust MSQ stabilizable for uncertainty ∆(θt) ∈
[−δ(θt), δ(θt)] via linear state-feedback law (10), where ρ(i)
and δ(i) are related by (12).

Proof: Can be found in [15].

Next, we formulate the robust MSQ stability of (18) into

LMIs.

Proposition 3.1: The robust MSQ stability of the system

(18) with a set of 0 < δ(i) ≤ 1, i ∈ Θ and vt = Kθt
xt is

equivalent to








−Si Si Y ′

i Φi

∗ −Wi 0 0
∗ ∗ −τ(i) 0
∗ ∗ ∗ Ξi









< 0, (19)

for some variables Si > 0, Wi > 0, Yi and τ(i) > 0 for

∀i ∈ Θ, where Φi, Ξi are shown on the bottom of the next

page.

Proof: Can be found in [15].

Note that (19) is convex in Si > 0, Wi > 0, Yi and

τ(i) > 0 for any fixed set of δ(i). It is thus possible to

search desirable 0 < δ(i) ≤ 1 over constraints (19) based

on some measures of data-rate, e.g., δ̄ in (20) defined next.

However, such kind of searching may be time-consuming

especially when the number of system modes N is large.

C. Examples

In order to facilitate the quantization optimization, the

measurement on sector bound could be chosen as

δ̄ ≡ min
i∈Θ

{δ(i)}, (20)

which captures the worst-case quantizer among all system

modes. In the following two examples, we try to characterize

the quantizer with the largest sector bound δ̄ over all possible

QCLFs.

Example 3.1: Consider a MJS (1) modified from [13]:

A0 = A1 =

[

0 1
1.8−0.3

]

, B0 =

[

1
1

]

, B1 =

[

0
1

]

. (21)

The system matrices A0, A1 contain two unstable poles

{1.2, −1.5}. Suppose the transition probability matrix is

given by

Π1 =

[

0.1 0.9
0.3 0.7

]

, (22)
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then the plant is MS stabilizable via (10), we can compute

δ̄ = 0.4783 with state feedback (10) and gain matrices: K0 =
[−0.8846 − 0.3611], K1 = [−1.8 1.1507].

Next, we assume the transition probability matrix is

changed to

Π2 =

[

0.2 0.8
0.2 0.8

]

, (23)

then we can get δ̄ = 0.4698 with gain matrices: K0 =
[−0.6728 − 0.5141], K1 = [−1.8 1.0453].

Example 3.2: Consider a MJS (1) with the same system

matrices A0, A1, B1, Π2 given in Example 3.1 except setting

B0 = [0 0]′. Then, we have δ̄ = 0.3685 with gain matrices:

K0 = [0 0], K1 = [−1.8 0.675].

IV. MODE-INDEPENDENT QUANTIZER

A. Preliminaries

Assumption 4.1: In this section, the unquantized system

(G) is assumed to be MS stabilizable via linear mode-

independent state-feedback law:

vt = Kxt, (24)

which is also said to be strongly MS stable in literature; see

e.g. [16].

The controller and the quantizer now can be expressed as

K : vt = g(xt), Q : ut = f(vt). (25)

In contrast to (6), for the mode-independent scheme the

Lyapunov function is chosen as

V2(xt) ≡ x′

tPxt. (26)

Definition 4.1: The equilibrium point at the origin of

system (5) is strongly MSQ stable, if there exist a positive-

definite function V2(xt) in (26) and positive-definite matrix

Q such that

∇V2(xt) = E[V1(xt+1)|xt] − V1(xt)

< −x′

tQxt, ∀xt ∈ Rn, θt ∈ Θ, xt 6= 0. (27)

Assumption 4.2: The transition probability matrix (2) sat-

isfies πij = πj for ∀i, j ∈ Θ.

The above assumption implies that the system mode

process is governed by an i.i.d. process (a special case of

Markov chain), which would facilitate our further deduction.

For autonomous jump linear system driven by a finite-state

homogenous Markov chain, the Lypunov functions V1(xt, θt)
is equivalent to V2(xt) when the Markov chain degenerates

to the i.i.d. process [17].

B. Solution

Based on (26) we can easily get

∇V2(x) =

N
∑

j=0

πjx
′(A′

jPAj − P )x + 2x′

N
∑

j=0

πjA
′

jPBju

+u′

N
∑

j=0

πjB
′

jPBju. (28)

A mode-independent quantizer is called logarithmic if the

set of quantized level U has the following form:

U = {±ul : ul = ρlu0, u0 > 0, for l ∈ ±1,±2, · · · }
∪{±u0} ∪ {0}. (29)

The corresponding quantizer is given by

f(vt) =







ul, if 1
1+δ

ul < vt ≤ 1
1−δ

ul,

0, if vk = 0,
−f(−vt), if vt < 0,

(30)

where

ρ =
1 − δ

1 + δ
. (31)

Define δm ≡ 1√
KmM−1K′

m

, where

Km ≡ −
∑N

j=0 πjB
′

jPAj
∑N

j=0 πjB′

jPBj

,

M ≡
∑N

j=0 πjA
′

jPBjB
′

jPAj

(
∑N

j=0 πjB′

jPBj)2
−

∑N
j=0 πjA

′

jPAj − P + Q
∑N

j=0 πjB′

jPBj

.

The following theorem can be proved similarly to Theo-

rem 3.1 and 3.2.

Theorem 4.1: (a). If the system (1) under Assumption 4.2

with quantized state feedback (25) admits (26) as a QCLF,

i.e., the condition (27) holds for some P, Q, then the coarsest

quantizer can be approached by a linear unquantized feed-

back law vt = Kxt and the mode-independent logarithmic

form (30) with K = Km and δ = δm.

(b). Given a mode-independent logarithmic quantizer (30)

with a fixed ρ ∈ [0, 1), system (1) with quantized linear state

feedback (25) has a QCLF (26) if and only if the following

uncertain system:

xt+1 = Aθt
xt + Bθt

(1 + ∆)vt, (32)

is robust strongly MSQ stabilizable for uncertainty ∆ ∈
[−δ, δ] via linear state-feedback law (24), where ρ and δ
are related by (31).

Φi = [
√

πi0(SiA
′

i + Y ′

i B′

i)
√

πi1(SiA
′

i + Y ′

i B′

i) · · · √
πiN (SiA

′

i + Y ′

i B′

i)] ,

Ξi =











−S0 + τ(i)δ(i)2πi0BiB
′

i τ(i)δ(i)2
√

πi0πi1BiB
′

i · · · τ(i)δ(i)2
√

πi0πiNBiB
′

i

∗ −S1 + τ(i)δ(i)2πi1BiB
′

i · · · τ(i)δ(i)2
√

πi1πiNBiB
′

i
...

...
. . .

...

∗ ∗ · · · −SN + τ(i)δ(i)2πiNBiB
′

i











.
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Obviously, the density for quantizer (30) is ηf = − 2
ln(ρ)

with ρ defined in Theorem 4.1.

Theorem 4.2: The least density η
f

= − 2
ln(ρ) can be

obtained through the optimization δ̄2 ≡ maxS,W,Y {δ2} over

the constraint








−S S Y ′ Φ
∗ −W 0 0
∗ ∗ −1 0
∗ ∗ ∗ Ξ









< 0, (33)

with variables S > 0, W > 0, Y and δ2, where Φ, Ξ are

shown on the bottom of the next page. Note that ρ and δ̄ are

related by (31) and K = Y S−1.

Proof: It is easy to get the result by taking S = P−1/τ, W =
Q−1/τ and Y = KS, where τ is the scaling variable.

In contrast to (19) in the form of N+1 coupled constrains,

Theorem 4.2 only contains one single constraint without

linear searching, and thus the computational burden would

be eased.

Example 4.1: Suppose A0, A1, B0, B1, Π2 are given in

Example 3.1. By Theorem 4.2, δ̄ = 0.3873 with state

feedback (24) and gain matrix K = [−1.682 0.8854].
Remark 4.1: By comparing Example 3.1 with 4.1, we can

see that mode-dependent pattern presents a less conservative

but more computationally demanding result with larger δ̄.

It is understandable, as the quantizer (14)-(16) takes into

account the system mode information.

C. Application to NCS with UDP-Like Channel

UDP-like here means that there is no acknowledgment

signal with respect to data transmission through unreliable

networks, which falls into the mode-independent pattern.

Two NCS structures are considered as follows.

1) Discrete Plant with Zero-Control Strategy and Binary

Dropouts: A quantized feedback NCS with UDP-like chan-

nel is shown in Fig. 2, where the network (N) is an analog

multiplicative memoryless channel associated to θ:

N : wt = θtut, (34)

and θt ∈ Θ = {0, 1} is an i.i.d. random variable: Pr(θt =
0) = α, Pr(θt = 1) = 1 − α. As a result, the system

adopted an unreliable network with packet-dropout rate α
and a zero-control strategy.

Fig. 2. Quantized Networked Control System with Binary Packet Losses.

The LTI plant (P) is described as

P : xt+1 = Axt + Bwt, (35)

and the jump system (G) is a combination of network and

LTI plant with the following system matrices:

A0 = A1 = A, B0 = 0, B1 = B. (36)

From Theorem 4.1, we have

Km = −B′PA

B′PB
, (37)

M =
(1 − α)A′PBB′PA

((1 − α)B′PB)2
− A′PA − P + Q

(1 − α)B′PB
. (38)

Under this situation, the inequality (33) or the condition

∇V2(x) < −x′Qx, ∀x 6= 0 for system (32) with control

law (24) can be rewritten in the following modified Riccati

inequality:

A′PA−P +Q−(1−α)(1−δ2)A′PB(B′PB)−1B′PA < 0.
(39)

Based on Lemma 5.4 [12] for modified algebraic Riccati

equation, α and δ should satisfy the following condition in

order to ensure the existence of P > 0 to (39):

(1 − α)(1 − δ2) > 1 − 1

Πi|λu
i (A)|2 , (40)

where λu
i (A) denote the unstable poles of A. It is easy to

check the above result is consistent with Theorem 2.1 of

[13], which can be seen as a special case of Theorem 4.2 in

this paper.

Example 4.2: Consider a LTI system (35) with

A =

[

0 1
1.8−0.3

]

, B =

[

0
1

]

. (41)

Then the system matrices A0, A1, B0, B1 are the same as

in Example 3.2. Assume α = 0.2, which is consistent with

Π2 in (23). The plant is strongly MS stabilizable, and based

on Theorem 4.2 or (40), it follows that δ̄ = 0.3685 with

K = [−1.8 0.675].
Remark 4.2: For system (35) with i.i.d. packet losses and

zero-control strategy, it is redundant to know any system

mode information. Furthermore, although Theorem 3.1 ex-

hibits theoretical importance in quantization of MJSs, it is

unsuitable for solving the quantization problem over unreli-

able channel, since it is unrealistic for the quantizer to know

whether the current packet will be lost or not before the

packet is sent over the network, which is also true for the

following bounded packet loss case.

2) Continuous Plant with ZOH and Bounded Dropouts: In

Fig. 3, the sampler is clock-driven, while the zero-order hold

(ZOH) is event-driven. The continuous-time plant together

with the ZOH and the sampler can be expressed in the

general discrete-time form (35).

Let {ik, k ≥ 0} be a strictly monotonically increasing

subset of {0, 1, · · · }, representing the sequence of time

instants at which the data packets are successfully transmitted

through the network (N). Without loss of generality, set

i0 = 0. The packet-loss process is defined as

η(ik) ≡ ik+1 − ik − 1, k ≥ 0. (42)
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Fig. 3. Quantized Networked Control System with Bounded Packet Losses.

Here, η(ik) is driven by an i.i.d. process with finite-state

range set Θ = {0, 1, · · · , N}, where η(ik) = 0 indicates that

there is no packet dropout during the time interval (ik, ik+1]
and N represents the maximal length of consecutive packet

losses. The transition probability matrix is the same as in

Assumption 4.2. Then, from Theorem 9 of [7] the system G

in Fig. 3 can be modeled as a MJS (1) with

Ai = Ai+1, Bi =

i
∑

r=0

ArB. (43)

Thus, Theorems 4.1 and 4.2 can be applied as shown in the

numerical example borrowed from [7].

Example 4.3: The discretized system in Fig. 3 is (35) with

A =





0.6065 0 −0.2258
0.3445 0.7788−0.0536

0 0 1.2840



 , B =





−0.0582
−0.0093
0.5681



 .

Suppose the maximum consecutive packet dropouts of the

underlying network is N = 4 and the transition probability

matrix (2) under Assumption 4.2 is given by:

π0 = 0.5, π1 = 0.2, π2 = 0.1, π3 = 0.1, π4 = 0.1.

By using Theorem 4.2 with system matrices (43), it follows

that δ̄ = 0.4085 with K = [0 0 − 0.8452].

V. CONCLUSIONS

This paper has shown that for linear systems with

Markovian jump parameters, mode-dependent (or mode-

independent) logarithmic quantizer is still optimal in MSQ

(or strongly MSQ) stability sense, and the sector bound

approach again provides a nonconservative way for studying

the corresponding design problems. It is also worthy noting

that the mode-dependent or mode-independent QCLF in

this paper can be modified into other complicated forms,

e.g. quantization-error-dependent form or polytopic form, in

order to achieve less conservative results (smaller η
f

or larger

δ̄) at the expenses of additional computational complexity.

Possible future work includes output feedback stabilization

problem, H∞ and quadratic performance analysis, and gen-

eralization to the MIMO system case.
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Φ = [
√

π0(SA′

0 + Y ′B′

0)
√

π1(SA′

1 + Y ′B′

1) · · · √
πN (SA′

N + Y ′B′

N )] ,

Ξ =











−S + δ2π0B0B
′

0 δ2√π0π1B0B
′

1 · · · δ2√π0πNB0B
′

N

∗ −S + δ2π1B1B
′

1 · · · δ2√π1πNB1B
′

N
...

...
. . .

...

∗ ∗ · · · −S + δ2πNBNB′

N










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