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Abstract: Given a stable polynomial or matrix, we consider a class of umdirectional perturbations. In this note, we provide a closed 
form for the maximal perturbation bounds under which stability is preserved. The results are then used to derive a closed form for 
the maximal stability box around the coefficients of a nominally stable polynomial. 
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1. Introduction 

The motivation for this note is derived from 'stability robustness' considerations. Given a stable 
characteristic polynomial or state matrix associated with a linear system, it is of interest to determine the 
'maximal'  perturbation bounds under which stability is preserved. Such bounds are frequently called 
measures of robustness. To this end, Barmish [1] uses Khadtonov's Theorem [2] to obtain maximal bounds 
for so-called interval polynomials. In Soh and et al. [3], the L2-norm is used to measure coefficient 
perturbations and once again, maximal bounds are obtained for both continuous-time and discrete-time 
systems. In the matrix case, an L2-norm stability bound is obtained using a Lyapunov matrix associated 
with the 'nominal '  system; e.g., see Patel and Toda [4]. This result is later improved by Yedavalli [5], Lee 
[6] and Zhou and Khargonekar [7] for handling both structured and unstructured perturbations. 

For the case when complex variations in the entries of a matrix are allowed, a maximal L2-norm 
stability bound is given in Qiu and Davison [8], Hinrichsen and Pitchard [9] and Martin and Hewer [10]. 
For the case of real variations in the entries of a matrix, however, maximal perturbation bounds are known 
only for rather special cases. For example, if the matrix remains symmetric under perturbation, then a 
maximal L 2 bound is given in Siljak [11] and a maximal Loo bound can be found using the results in Shi 
and Gao [12]. 

In this note, we consider another class of matrix perturbations for which a maximal bound can be given 
- the class of unidirectional perturbations. Indeed, given an n × n Hurwitz matrix A 0 (a 'nominal '  system) 
and an n x n matrix perturbation direction A 1, we consider the problem of finding the largest interval 

(r~n, rma x) such that 

A r f  Ao + rA 1 (1)  

is strictly stable for all r ~ (rmi .,  rma~). A special case of the problem above arises in the generation of a 
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Root Locus diagram when one seeks to find the maximal range of a gain k, around its nominal value k0, 
such that a unity feedback system with open loop trar.sfer function 

= kg(s) 
/ ( s )  

remains stable. In this case, letting r = k - k 0, po(s) = f ( s )  + kog(s ) and p~(s) = g(s), the associated 
polynomial problem is to find maximal bounds on a scalar r such that 

po( ) + (2) 

remains stable. 
Fc, r the class of unidirectional perturbations as in (1) or (2), results on stability are given in Bialas [13] 

and Marden [14]. In [13], necessary and sufficient conditions are given for the stability of all convex 
combinations of two stable polynomials or matrices. The difference between the convex combination 
problem in [13] and the unidirectional perturbation problem associated with (1) or (2) is that the 
perturbation bounds are not specified in the latter case. To obtain r~i . and rma ~ using the results in [13], 
one must execute an iterative process which involves successively increasing the bound of r. Here, 
however, we provide closed forms for rmi n and rma ~. A special case of the unidirectional perturbation 
problem for polynomials is discussed in [14]: A formula is given for the maximal symmetric perturbation; 
i.e., with the added constraint that rmi . + rma x = 0. 

The objectives of this note are two-fold: First we provide closed forms for rm~, and rma x for the matrix 
case. Second, for the polynomial case, we also give forms for rmi n and rma x without assuming symmetric 
perturbations. The formulae for the polynomial case are then used to provide a closed form description of 
the maximal stability box around the coefficients of a nominally stable polynomial. This result amounts to 
an improvement over the result in Barmish [1] where the maximal stability box is found by an iterative 
process. After introducing definitions and nctation in Section 2, we present the main results in Section 3. 
The proof of the main results are given in Section 4 and the conclusion is provided in Section 5. 

2. Definitions, notation and a basic lemma 

All polynomials and matrices are assumed real and the Hurwitz matrix of an n-th order polynomial 

p ( s )  =ao sn + als n-! + . . .  +a n 

has dimension n × n and is denoted by 

I a~o t~ 3 a5  " " " 
a2  a 4 • . . 

a l  a 3 a 5 z ( p ) -  
do  a 2 a 4 

J 

Q 

an 

h+max(M) will denote the maximum positive (real eigenvalue of a square matrix M. In case M has no 
positive eigenvalues, we adopt the convention h+ma~(M)= 0 ÷. Similarly, ?~mi,(M) will denote the mini- 
mum negative (real) eigenvalue of a square matrix M and if M has no negative eigenvalues, we take 
~mi,(M) = 0-. A set of polynomials ya (or a set of matrices .A') is said to be strictly stable if every 
member of ~ (or ~ ' )  is strictly stable. Similarly, a set of polynomials ~ (or a set of matrices . ~ )  is said to 
be nonsingular if every member of 9 a (or ~ ' )  is nonsingular. For notational convenience, we take the zero 
polynomial (i.e., the polynomial with all zero coefficients) to be unstable. A linear mapping T(.) : R n ×" 
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R m×m is said to transform the stability problem into a nonsingularity problem if, for every M ~ R n×n, T(M) 
has at least one real eigenvalue and 

and 

max { Re(X ): ?~ is an eigenvalue of M } 

max { u: u is a real eigenvalue of T(M)  } 

have the same sign, or both of them are equal to zero. 
The basic lemma to follow makes it clear why a mapping T(.) having the stated properties above 

transforms the stability problem into a nonsingularity problem. 

Lemma 2.1. Given two n × n matrices M o and MI with Mo strictly stable, consider the family of matrices 

J/#~ { M r - M o + rMl: r ~  (r  1, r2) } 

where r I < 0 and r 2 > 0 are specified. Then given any linear mapping T( . )  which transforms the stability 
problem into a nonsingularity problem, it follows that J/t is strictly stable i f  and only if 

"-- { T ( M ) :  

is nonsingular. 

Proof. The necessity is obvious since stability of M, implies that every eigenvalue of T(Mr) must have 
negative real part. Similarly, the sufficiency is immediate from the properties of T(.). That is, sufficiency 
follows from the nonsingularity of every T(M,)  and the continuity of eigenvalues of Mr with respect to r. 
More specifically, the nonsingularity of every T(Mr) implies that the real part of every eigenvalue of 
M r ~ Jr# must be non-zero. Notice that the real part of every eigenvalue of M0 is negative (by stability of 
M 0) and that the eigenvalues of M r continuously depend on r. Therefore, every eigenvalue of Mr must 
have negative real part, i.e., M, is strictly stable for all Mr ~.~'. [3 

We conclude this section by providing some examples of mappings which transform the stability 
problem into a nonsingularity problem. The first example is obtained by mapping a matrix M into the 
Kronecker sum of M with itself. Indeed, with m = n 2, let 

T ( M ) -  diag(M, M,_ . . ,  M }  + [ m o l  I . 

n 

To verify that T(.) has the required property, notice that if h i, i = 1, 2 , . . . ,  n, are the eigenvalues of an 
n × n matr ix  M ,  then the eigenvalues of T ( M )  are given by h i + by, i, j = 1, 2, . . . ,  n; see [16]. The second 
example is the linear mapping T(.) provided in [13] which has m-- ½n(n + 1). To illustrate, for a 3 x 3 
matrix M, 

m n m12 0 m13 0 0 

m21 roll -I- m22 m12 m23 m13 0 

0 m21 m22 0 m23 0 

m31 m32 0 roll -~- m33 m12 m13 

0 m31 m32 m21 m22 + m33 m23 

0 0 0 m31 m32 m33 

T ( M )  - 

is a 6 × 6 matrix. Again, it can be shown that the requirements on T ( M )  are satisfied; see [13]. Finally, for 
the case when M is symmetric, notice that the identity mapping T ( M )  - M satisfies the requirements on 
T(.) since the eigenvalues of a symmetric matrix are all real. 
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3. Main results 

In tl~s section, we provide a solution to the unidirectional perturbation problem posed in Section 1. 
Theorem 3.1 below provides formulae for rmi n and rm~ ~ for the matrix case. Theorem 3.2 is the analogue of 
Theorem 3.1 for the polynomial case. The proofs of the results are given in Section 4. 

Theorem 3.1. Let T(.)  : R nxn - ~  R mxm be any linear mapping which transforms the stability problem intO a 
nonsingularity problem. Then, given two n × n matrices M o and M 1 with M o strictly stable, consider the 

family of matrices 

~ "-" { Mr- -  M o + rM 1 • r ~  (rmi n, rmax) } • (3 )  

Then, the maximal range (rmi n, rma x) for ~¢ to be strictly stable is given by 

1 1 

rmin X m i n ( T ( M o ) - ' T ( M , ) )  rmax-- . (4) 
= _ , ' X + m , ~ ( _ T ( M o ) - ' T ( M , ) )  

Theorem 3.2. Given an n-th order po&nomial Po( S ) and an m-th order polynomial Pl( S ) with m ~ n and po( s ) 
strictly stable, consider the family of n-th order polynomials 

~ -  { p r ( s ) = p o ( s ) + r p l ( s ) "  r E  (rmin, rmax), deg p r ( s ) = n } .  (5) 

Then, the maximal range (rmi n, rmax) for ~ tO be strictly stable is given by 

( I I 1 I rm,o=max rm*i ,X=in(_mpo)_,mV,)) , , (6) 

where 

ao(Po) 

r*  n - ao(Pl  ) 

- -00  

if m = n and ao( p o ) a o ( p , )  > O, 

otherwise, 

(7) 

ao(Po) 

rm*~ - a o ( P l )  

+o0 

if m = n and ao( p o ) a o ( P , )  < O, 

otherwise, 

(8) 

and (for the purpose of conformability of matrix multiplication), H( pl )  is obtained by treating p l (s  ) as an 
n-th order polynomial. 

Corollary 3.3. Consider a strictly stable polynomial Po(S ) given by 

p o ( s )  = s n + als n-1 + a2s n-2 + . . .  +an_is + a n (9) 

and a set of nonnegative weights w~, w U, i - 1, 2 , . . . ,  n. For any r > O, we define an interval polynomial 

( I ~ . -  s"+ ~'~'/,s n - ' '  a i - w ~ r < T i < a , + w U i r ,  i = l , 2 ,  . . . .  n (10) 
i----| 

Then, the maximal r, call it rma ~, such that all polynomials in ~r are strictly Hurwitz for a!! r <_ rma x is given 
by 

f 1 
rmax =min{  " i = 1 , 2 , 3 ~ 4 }  (11) 

+( rap,)) ~max - H ( P o )  - l  ] 



M. Fu, B.R. Barmish / Maximai perturbation bounds for stability 

where H(p i )  , i = 1, 2, 3, 4, are the Hurwitz matrices o f t  he following four Kharitonov-like polynomials: 

= + _ _ + + + . . . ,  

p 2 ( $ )  ~--" ~oU$ n - I  -- ~ L s n - I  --  ~ L s n - 3  "l = ~ U s n - 4  4- ~oUs n - 5  -- ¢oLs n-6 . 4 = . . . ,  

p : ( : )  = _ , , , t : , , - ,  _ , , , , . : , , -  + , , q : , , -  3 + , , , , '- 's"-'  - , , , t : " - :  - + . . . ,  

p 4 ( s )  ~-- --631L$ n -1  q - ~ U s n - 2 q - 6 o U s n - 3 - - ~ L s n - 4 _ _ : L s n - 5 4 . 6 3 U $  n - 6 +  . . . ,  

respectively. 

177 

4. Proofs of the main results 

The following lemma is instrumental in the proofs of Theorems 3.1 and 3.2. 

Lemma 4.1. Suppose M o and M 1 are two n X n matrices with M o nm,~f:;gular. Let ~// be the family of 
perturbed matrices given by (3). Then, the maximal range ( rm,,, rma ~) for J/' to be nonsingular is given by 

1 1 
rmm ffi 2kmin(M~lM1) rm.~= • (12) 

_ ' ~+a, ,  ( _ M o  1M1) 

Proof. Notice that for r @ 0 and 8, = l / r ,  

M r - rM o ( 1 1  ÷ M o 1M 1 ) = rM o (8,1 - ( - M o 1M 1 )) 
r ] 

Therefore, M, is nonsingular for all r ~ (rmi ~, rm~) if and only if 8, is not an eigenvalue of -Mo1M1 for 
all 8, < 1 / r ~  and 8, > 1/rm~. Hence, the maximal range (rmi n, rma ~) for every Mr, ¢ ~"  to be nonsingular 
is given in (12). [] 

Proof of Theorem 3.1. From I,emma 2.1, we know that ~/¢ is strictly stable if and only if T(Jgf) is 
nonsingular. Then, we obtain (4) by observing that 

T ( ~ ) f { T ( M o ) + r T ( M 1 ) :  r E  (rmin,  rmax)} 

and applying Lemma 4.1. [] 

Proof of Theorem 3.2. By definition, it follows that rm~ . > r*  n and rma x ~ rm*ax in order to guarantee that 
every p,(s)  ~ @ is n-th order. Without loss of generality, we assume rmi n >_ r*  n and rmax -< rm*ax in the rest 
of the proof. Similar to the proof of Theorem 3.1, we first show that @ is strictly stable if and only if 
H(p , )  is nonsingular for all p , ( s ) ~ @ .  Indeed, the necessity is immediate from the Routh-Hurwitz  
criteria. To establish sufficiency; we proceed by contradiction. Suppose there exists some a ~ (rmin, rmax) 
such that p , ( s )  is not strictly stable; we need to show that there exists some fl ~ (r~n, rm~x) such that 
H(pp) is singular. Since the zeros of po(s) all have negative real parts and the zeros of p,(s)  continuously 
depend on r, we conclude that there must exist some fl between 0 and a (implying that fl ~ (rmi n, rma ~)) 
such that either a , (pp )  = 0 or p#(s) has a pair of purely imaginary zeros ___jo~, o~ > 0. In either case, we 
claim that H(po)  is singular. To establish this claim we apply the Orlando Formula (see, for example, pp. 
190-197 of [18]) and obtain 

detH(p~)=(-1)~t~-l'/2a~-l(P~)a~(Pp) I-I (Z,+Zk) 
l <i<k~n 

where zj are the zeros of pp(s), j = 1, 2 , . . . ,  n. From the formula above, it is clear that det H(p#)  must 
vanish. Now, we simply apply Lemma 4.1 to H(po)  and H ( p l )  to obtain (6). [] 
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P r o o f  o f  Corollary 3.3. For i = 1, 2, 3, 4, let 

rm~ , - rain{ r i >_0: po(S) + ripi(s) is not strictly stable}, i=  1, 2, 3, 4. 

Using the results in Barmish [1], we have 

rma x rain{ i • , 4} = rm~ ~. i = l  2,  3, . 

Now, Theorem 3.2 can be used to determine r~a x. Since a 0 ( p ~ ) = 0  for i =  1, 2, 3, 4, r~*~= + ~ .  
Therefore, 

1 
rt~ax 

~+m.~x(-H(Po)-lH(pi))  

and we obtain (11). [] 

5. Conc lus ion  

In this note, formulae were given for the maximal unidirectional perturbation bounds for a strictly 
stable polynomial or matrix. It should be noted that the results for the polynomial case (Theorem 3.2) can 
be easily extended to handle discrete-time systems via a bilinear transformation. That  is, the linear 
coefficient structure is preserved under such a transformation. However, the results for the matrix case do 
not readily extend to discrete-time systems. Another limitation of the results is that they only handle 
unidirectional perturbations; see [I9] for a discussion of problems encountered in the multidimensional 
case. Note, however, that even for multidimensional perturbations, it is still possible to transform the 
stability problem into a nonsingularity problem. If it turns out that the nonsingularity problem is more 
tractable than the stability problem, then more general results will be attainable in the future. There is a 
tradeoff, however, because transformation of the stability problem into a nonsingularity problem usually 
increases the dimen~,on of the matrices; see the examples in Section 2. 

Acknowledgement 

The authors would like to thank Dr. Kehui Wei for discussion of the proof of Theorem 3.2. 

R e f e r e n c e s  

[1] B.R. Barmish, Invariance of the strict Hurwitz property for polynomials with perturbations, IEEE Trans. Automat. Control 29 
(10) (1984) 935-936. 

[2] V.L. Kharitonov, Asymptotic stability of an equilibrium position of a family of systems of linear differential equations, 
Differenciai'nye Uraunenija 14 (11) (1978) 2086-2088. 

[3] C.B. Soh, C.S. Berger, and K.P. Dabke, On the s~ability properties of polynomials with perturbed coefficients, IEEE Trans. 
Automat. Control 30 (10) (1985) 1033-1036. 

[4] R.V. Patel and M. Toda, Quantitative measures of robustness for a multivariable system, Proceedings of Joint Automatic Control 
Conference, San Francisco, CA (1980). 

[5] R.K. Yedavalli, Perturbation bounds for robust s~ability in linear state space models, lnternat. J. Control 42 (6) (1985) 
1507-1517. 

[6] W.H. Lee, Robustness analysis for state space models, Alphatech Inc. Report TP-151 (1982). 
[7] K.M. Zhou .and P.P. Khaxgonekar, Stability robustness bounds for linear state space models with structured uncertainty, IEEE 

Trans. Automat. Control 32 (7) (1987) 621-623. 
[8] L. Qiu and E.J. Davison, New perturbation bounds for the robustness stability of linear space models, Proceedings of 25th 

Conference on Decision and Control, Athens, Greece (1986) 751-755. 
[9] D. Hinrichsen and A.J. Pritchard, Stability radii of linear systems, Systems Control Lett. 7 (1) (1986) 1-10. 



M. Fu, B.R. Barmish / Maximal perturbation bounds for stability 179 

[lO] 

[11] 
[121 

[13] 

[14] 
[151 

1161 

!171 

1181 
[19] 

J.M. Martin and G.A. Hewer, Smallest destabilizing perturbations for linear systems, lnternat..L Control 45 (5) (1987) 
1495-1504. 
D. Siljak, Large Scale Dynamic Systems (Elsevier/North-Holland, New York, 1978). 
Z.C. Sift and W.B. Gao, Necessary and sufficient conditions for positive definiteness of interval symmetric matrices, internat. J. 
Control 45 (1) (1986) 325-328. 
S. Bialas, A necessary and sufficient condition for the stability of convex combinations of stable polynomials and matrices, Bull. 
Polish Acad. Sci. Tech. Sci. 33 (9-10) (1985) 473-480. 
M. Marden, Geometry of Polynomials (American Mathematical Society, Providence, RI, 1966). 
M. Fu and B.R. Barmish, Stability of convex and linear combinations of polynomials and matrices arising in robustness 
problems, Proceedings of Conference on Information Science and Systems, Johns Hopkins University, Baltimore, MD (1987). 
J.W. Brewer, Kronecker products and matrix calculus in system theory, IEEE Trans. Circuits and Systems 25 (9) (1978) 
772-781. 
A.G.J. MacFarlane, The calculation of functions of the time and frequency response of a linear constant-coefficient dynamical 
system, Quart. J. Mech. Appl. Math. 16 (1963) 259-271. 
F.R. Gantmacher, Theory of Matrices, Vol. 2 (Chelsea, New York, 1959). 
B.R. Barmish, M. Fu and S. Saleh, Stability of a polytope of matrices: Counterexamples, IEEE Trans. Automat. Control, to 
appear. 


