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Abstract— This paper presents a unified framework for
analysis of the stability of the expected error covariance (EEC)
of Kalman filters subject to intermittent observations. A brief
literature review summarizing some of the most important
results in the area is provided. We state a method in the
most general form, making no assumptions on the network
model and only minor assumptions on the system. Then, as we
adopt particular network models and assume some particular
system structures, we recover most of the known results in the
literature, which can be seen as a special case of our approach.
Tight necessary and sufficient conditions for the EEC to be
bounded are given for most cases, except for general degenerate
systems, where only sufficient conditions are given in a closed
form.

I. INTRODUCTION

State estimators with missing measurements have attracted
great attention in the last few years. This is partly motivated
by the recent advances on network systems, allowing its use
in data acquisition and control. Whilst the basic Kalman filter
with constant parameters is well understood and has been
used since the 1960s, its counterpart with missing measure-
ments is still an active research topic. In [1], the authors
pointed out some basic properties of the Kalman filter with
intermittent measurements. Since then, many authors have
studied similar problems, aiming for a better understanding
of the effects of missing data on the estimation performance.

It was shown in [1] that the Kalman filter is still the
optimal state estimator for linear systems with missing
measurements. In [2], the author showed that if the sensor
is allowed to run a local Kalman filter, and send its estimate
instead of the raw measurements, the overall performance is
improved. Similarly, the authors in [3] propose sending sev-
eral measurements in each packet, allowing the centralized
Kalman filter to obtain a bounded state estimation covariance
whenever a packet is received.

In this paper we restrict our analysis to systems with
limited resources, where only one (possibly vector) measure-
ment is sent in each packet. We will further assume that there
is no delay in the communication, and that each vector of
measurements is either completely received or completely
lost. Two network models have dominated the analysis of
Kalman filtering with intermittent observations. In [1], the
authors consider an independent and identically distributed
(i.i.d.) erasure communication channel, i.e., the probability to
receive a measurement is independent of the availability of
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previous measurements. As an attempt to model some chan-
nel phenomenon, like fading and interferences, the authors
of [4] consider the Gilbert-Elliot [5] model, in which the
transmission of a measurement is described by a Markov
chain. More recently, some authors have considered more
general network models [6], [7].

The covariance of the estimation error is the most com-
monly studied property of a Kalman filter with intermittent
observations. Bounds for the expected value of the error
covariance (EEC) were studied in [1], [8], while higher order
statistics were studied in [7]. In [9], [10], the authors develop
bounds on the cumulative distribution function of some norm
of the error covariance. The question of whether the EEC
is bounded is the subject of current research. In [1], the
authors showed that for any unstable system, and for an
i.i.d. channel model, there exists a minimum measurement
arrival rate that results in a bounded EEC. Since then, several
authors have provided necessary and sufficient conditions for
different classes of systems and channels. However, stating
the necessary and sufficient condition for the boundedness
of the EEC, under general assumptions on the channel and
system models, remains an open problem.

In this paper we summarize some results concerning
necessary and/or sufficient conditions for the boundedness
of the EEC. These conditions are derived under simplifying
assumptions on the system and network models. We then
provide a unified framework for these conditions. In this
framework, we start by stating a necessary and a sufficient
condition for a very general classes of systems, and for any
network model. We then show how these conditions are
equivalent to known results, for each particular assumption
on the network and the system model.

II. PROBLEM STATEMENT

Consider the discrete-time linear system:{
xt+1 = Axt + wt

yt = Cxt + vt
(1)

where the state vector xt ∈ Rn has initial condition x0 ∼
N(0, P0), yt ∈ Rp is the measurement, wt ∼ N(0, Q) is the
process noise and vt ∼ N(0, R) is the measurement noise.
We assume that the measurements are sent to the Kalman
estimator through a network subject to random packet losses.
The binary random variable γt describes the arrival of a
measurement at time t, i.e., γt = 1 when yt was received at
the estimator and γt = 0 otherwise.

It was shown in [1] that even when the measurements
are subject to random losses, the Kalman filter still obtains
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the best estimate x̂t of the state xt. In this case, however,
the covariance matrix Pt of the estimation error becomes a
random variable.

The update equation of the error covariance matrix de-
pends on the availability of the measurements. When a mea-
surement is available, both measurement and time updates
are performed. When a measurement is not available, only
the time update can be computed. The update equation of Pt

can then be written as follows:

Pt+1 =

{
Φ1(Pt), γt = 1
Φ0(Pt), γt = 0

(2)

with

Φ1(Pt) = APtA
′ +Q+

−APtC
′(CPtC

′ +R)−1CPtA
′ (3)

Φ0(Pt) = APtA
′ +Q. (4)

When all the measurements are available, and the Kalman
filter reaches its steady state, the EC is given by the solution
of the following algebraic Riccati equation

P = APA′ +Q−APC ′(CPC ′ +R)−1CPA′. (5)

We are interested in finding necessary and sufficient con-
ditions for the stability of the Kalman filter with missing
measurements. To this end, different criteria have been used
to define stability. In general, these conditions can be written
as either,

lim
t→∞

E{Mt} < ∞ (6)

or
sup
t

E{Mt} < ∞, (7)

where Mt is defined as either Mt = ∥Pt∥ or Mt =
trace(Pt). Nevertheless, it is straightforward to verify that
all these convergence criteria are equivalent.

III. REVIEW OF AVAILABLE RESULTS

In this section we summarize the available results concern-
ing necessary and sufficient conditions for the boundedness
of the EEC. We organize them in subsections according to
the network model adopted.

A. i.i.d. network model

In this section we summarize the results assuming an i.i.d.
network model, i.e., γt and γk are uncorrelated for t ̸= k.
Let the probability that a measurement is available be given
by

λ = Pr(γt = 1). (8)

Also, let α⋆ = maxi |αi|, where αi, i = 1, · · · , n are the
eigenvalues of A.

In [1], the following conditions were obtained:
a) Necessity: If

λ < 1− α−2
⋆ , (9)

then, limt→∞ E{Pt} = +∞.
b) Sufficiency: If

λ > λ, (10)

then, limt→∞ E{Pt} ≤ M , where λ is obtained from
a quasi-convex optimization problem.

For the special cases where C is invertible or A has
only one unstable eigenvalue, the conditions above become
equivalent, and therefore necessary and sufficient.

In [11], the condition λ > 1 − α−2
⋆ is shown to be also

sufficient for systems in which the part of the matrix C
corresponding to the observable subspace is invertible.

B. Gilbert-Elliot network model

The i.i.d. packet loss model is not accurate for modeling
situations in which measurements can be lost or received
in blocks. For example, when a network is subject to an
external interference that persists for a significant time, the
assumption that γt and γk are uncorrelated for t ̸= k is
no longer valid. Motivated by this, some authors use a
two-state Markov chain to model the packet losses. The
general assumption is that the packet loss process is a time-
homogeneous Markov chain, with the range set S = {0, 1}.
The transition probability matrix of γt is then assumed to be

P(γt+1 = j|γt = i)i,j∈S =

[
1− q q
p 1− p

]
(11)

where p and q are the failure and recovery rates, respectively.
Notice that the i.i.d. model is a special case of the Gilbert-
Elliot network model, in which q = 1− p = λ.

In [4], the authors use the fact that the sojourn times are
i.i.d. random variables, and give a sufficient condition for the
EEC to be bounded. For first order systems, the following
condition was shown to be necessary and sufficient:

q > 1− α−2
⋆ . (12)

The sufficient condition for higher-order systems is techni-
cally involved, and we omit it here because it is superseded
by a condition derived later in [7], [12].

The authors in [7] introduce the concept of degenerate
systems, and provided a necessary and sufficient condition
for the EEC to be finite in systems whose unstable part
is non-degenerate. The definition of degeneracy applies to
systems whose matrix A is diagonalizable. After putting A
in diagonal form, a quasi-equiblock is defined as a subsystem
containing all the eigenvalues with the same magnitude. A
system is said to be degenerate if there exists at least one
quasi-equiblock whose associated sub-matrix C does not
have full column rank (FCR). It is non-degenerate otherwise.
For systems whose unstable part is non-degenerate, the
condition in (12) was shown to be necessary and sufficient
for the EEC to be bounded. Using a different approach, the
authors in [12] showed the same result for non-degenerate
systems, and they further obtained the following necessary
and sufficient condition for second order degenerate systems:(

1 +
pq

(1− q)2

)(
α2
⋆(1− q)

)d
< 1, (13)

where d is the smallest nonzero integer such that (C,Ad) is
not observable.
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C. General network model

The present authors considered degenerate systems with a
single equiblock in [6]. Under no simplifying assumption on
the packet drop model, the following necessary and sufficient
condition was given:

α2
⋆ lim sup

T→∞
Pr(MT )

1/T < 1 (14)

where Pr(MT ) = 1 − Pr(MT ) and Pr(MT ) denotes
the probability of receiving a sequence of measurements
guarantying observability, up to time T . The computation
of the limit in (14) is explained in [6]. The condition above
requires A to satisfy the following:

Condition W: The matrix A is diagonalizable, and the
phases of the its complex eigenvalues are rational multiples
of 2π.

Notice that condition W is weak in the sense that the set
of matrices satisfying it is dense.

IV. A UNIFIED FRAMEWORK FOR NECESSARY AND
SUFFICIENT CONDITIONS

In this section we provide a unified framework for nec-
essary and sufficient conditions for the boundedness of the
EEC. We start by providing general necessary and sufficient
conditions which are valid for any network model, and
for systems whose matrix A satisfy condition W, i.e., for
“almost any” system. Since no assumption is made on the
network model, these conditions are expressed in terms of
the probability of arrival sequences having certain properties,
as in (14). We then show how these conditions become
equivalent (i.e., simultaneously necessary and sufficient), for
non-degenerate systems and systems with only one quasi-
equiblock, with Gilbert-Elliot and i.i.d. network models.

In the rest of the paper, we assume that all quasi-
equiblocks of the system under analysis are unstable. This
is without loss of generality, since the estimation error
covariance is bounded on the stable states. As pointed out
in [7], the bounded error covariance of the stable part can
be interpreted as measurement noise in the unstable part.

A. The general case

Consider the system described in (1), and let A satisfy
condition W. Following the argument in [7], we can assume,
without loss of generality, that A is diagonal. Also, as pointed
out in [7], the stable eigenvalues of A can be ignored. Then,
the stability analysis can be restricted to that of the subsystem
formed by the unstable eigenvalues of A, and the associated
sub-matrix of C. Hence, to simplify the presentation, in the
rest of this section we assume that A is diagonal and all its
eigenvalues have magnitude strictly greater than one.

We decompose the system as follows:

xt =
[
x
′(1)
t x

′(2)
t . . . x

′(J)
t

]′
, (15)

A = diag(A1, A2, . . . , AJ), (16)
C =

[
C1 C2 . . . CJ

]
, (17)

where each subsystem (Aj , Cj) is a quasi-equiblock, i.e.,

Aj = αj


1 0 . . . 0
0 exp(2πiθj,2) . . . 0
...

...
. . .

...
0 0 . . . exp(2πiθj,nj )

 , (18)

with αj ∈ C.
We introduce the following notation.
Notation 4.1: For given T ∈ N and 1 ≤ m ≤ 2T , let ST

m

denote the binary sequence of length T formed by the binary
representation of m − 1. We also use ST

m(i), i = 1, · · · , T
to denote the i-th entry of the sequence, i.e.,

ST
m = {ST

m(1), ST
m(2), . . . , ST

m(T )}. (19)

For a given sequence ST
m, and a matrix P ∈ Rn×n, we define

the map

ϕ(P, ST
m) = ΦST

m(T ) ◦ ΦST
m(k−1) ◦ . . .ΦST

m(1)(P ) (20)

where ◦ denotes function composition (i.e. f ◦ g(x) =
f(g(x))).

For given T ∈ N, let ΓT
t be the binary sequence describing

the arrival of measurements between time t − T and t − 1,
i.e.,

ΓT
t = {γt−1, γt−2, . . . , γt−T }. (21)

Notice that if m is chosen so that ST
m = ΓT

t , then
ϕ(Pt−T , S

T
m) updates Pt−T according to the measurement

arrivals in the last T sampling times, i.e.,

Pt = ϕ(Pt−T , S
T
m) = Φγt−1 ◦ Φγt−1 ◦ . . .Φγt−T (Pt−T ).

(22)
Let ti, i = 1, 2, . . . , I be such that the measurements are

available at the instants t− ti. Then, the vector of received
measurements up to time t is

Y T
t = Yt(Γ

T
t ) =


yt−t1

yt−t2
...

yt−tI

 (23)

= O(ΓT
t )xt + V T

t , (24)

where the associated observability matrix O(ΓT
t ) is given by

O(ΓT
t ) =


CA−t1

CA−t2

...
CA−tI

 . (25)

The vector V T
t is a function of the process and measure-

ment noises and of the sequence of available measurements
(see [10] for more details). Decomposing the matrix O(ΓT

t )
according to the decomposition (15)-(18), we obtain

O(ΓT
t ) =

[
O(1) O(2) . . . O(J)

]
. (26)

Hence, we can write

Y T
t =

[
O(1) O(2) . . . O(J)

]
xt + V T

t . (27)
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For a fixed T ∈ N, let ST = {ST
m : m = 1, . . . , 2T }

denote the set of all possible sequences of length T . Let the
subsets M(j)

T ⊂ MT ⊂ ST be defined as

MT = {ST
m : O(ST

m) has FCR} (28)

M(j)
T = {ST

m : O(j)(ST
m) has FCR}. (29)

We use the shorthand notation Pr(M(j)
T ) to describe the

probability to observe a sequence ΓT
t ∈ M(j)

T . Also, for
an arbitrary set N , we use N to denote its complement.

The main result of the section is given in Theorem 4.1.
Its derivation requires the following lemma.

Lemma 4.1: Let A satisfy condition W. Then,
1) If the sequence ΓT

t /∈ M(j)
T , then

∥Pt∥ ≥ |αj |2TKj , (30)

for each j, where Kj is a constant independent of T .
2) If the sequence ΓT ∈ MT , then

∥Pt∥ ≤ α2T
⋆ K, (31)

where K is a constant independent of T .
Proof:

1) Fix j, and suppose we know the exact value of all the
states x(i)

t , for all i ̸= j. Suppose that we run a Kalman filter
to estimate the state x

(j)
t , based on this assumption, and let

P̃
(j)
t be the estimation error covariance obtained. Doing so

would lead to a better estimation than the one obtained from
the Kalman filter under study. Hence

Pt ≥ diag
(
P̃

(1)
t , · · · , P̃

(J)
t

)
. (32)

Then, the result follows from Lemma 4.1[b] in [6].
2) When O has FCR, from (24), one can obtain the

unbiased estimate
x̂t = O−1Y T

t , (33)

with error covariance

E{(xt − x̂t)(xt − x̂t)
′} = O−1ΣV O

′−1, (34)

where
ΣV = E{V T

t V ′T
t }. (35)

Notice that this estimator produce a greater error covariance
than the Kalman filter.

Pt ≤ Pt = O−1ΣV O
′−1 (36)

We have

Pt = AT (OAT )−1ΣV (OAT )′−1AT . (37)

We will now show that there exists an upper bound K for
∥(OAT )−1ΣV (OAT )′−1∥. From (24) and (35), we have that
the i, j-th entry of ΣV is

[ΣV ]i,j =

min{ti,tj}∑
k=1

CAk−ti−1QA′k−tj−1C ′ +Rδ(i, j)

(38)
with δ(i, j) = 1 if i = j and δ(i, j) = 0 if i ̸= j. Notice
that since all eigenvalues of A have magnitude greater that

one, there exist an upper bound vI ≥ ΣV ≥ ΣV for all
sequences, where v = ∥ΣV ∥. It follows that

∥(OAT )−1ΣV (OAT )′−1∥ ≤ v∥(OAT )−1(OAT )′−1∥ (39)

Condition W requires that the phases of the eigenvalues of
A are rational numbers. Let dj be the least common multiple
of the denominators of the phases of the quasi-equiblock Aj .
Let D be the least common multiple of dj , j = 1, . . . , J .
Notice that

AD = diag(αD
1 In1 , α

D
2 In2 , . . . , α

D
J InJ ). (40)

Also, for any sequence, we have

O(j)AT
j =


CjA

T−t1
j

CjA
T−t2
j
...

CjA
T−tI
j

 = ΨjÕ
(j) (41)

with
Ψj = diag(αk1D

j , αk2D
j , . . . , αkID

j ) (42)

Õ(j) =


CjA

t̃1
j

CjA
t̃2
j

...
CjA

t̃I
j

 (43)

where t̃n and kn, for n = 1, . . . , I are such that{
T − tn = knD + t̃n
t̃n < D.

(44)

We have OAT = ΨÕ, where

Ψ =
[
Ψ1 Ψ2 . . . ΨJ

]
(45)

and
Õ = diag(Õ(1), Õ(2), . . . , Õ(J)). (46)

Notice that there exist a finite set of natural numbers t̃n < D
and hence a finite set of possible matrices Õ. Let δ =
min ∥Õ−1∥−1 and notice that we have δ > 0 from the
assumption that O has FCR. Notice that

OAT (ATO)′ = ΨÕÕ′Ψ′ (47)
≥ δ2ΨΨ′ (48)

= δ2
J∑

j=1

Ψ2
j (49)

≥ δ2In. (50)

Hence,
∥(OAT )−1(ATO)′−1∥ ≤ δ−2. (51)

With (39), we have

∥(OAT )−1ΣV (A
TO)′−1∥ ≤ vδ−2 (52)

and the result follows making K ≥ vδ−2 and noting that

∥Pt∥ ≤ ∥Pt∥ ≤ ∥A2T ∥K ≤ α2T
⋆ K. (53)
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From Lemma 4.1, it follows that

Pr(∥Pt∥ ≤ Kjα
2T
j ) ≤ Pr(M(j)

T ) (54)

for all j, and

Pr(∥Pt∥ ≤ Kα2T
⋆ ) ≥ Pr(MT ). (55)

Then, following the steps in [6], we have that

lim
t→∞

E{∥Pt∥} ≥ max
j

{
K̃j

∞∑
T=0

α2T
j Pr

(
M(j)

T

)}
(56)

lim
t→∞

E{∥Pt∥} ≤ K̃
∞∑

T=0

α2T
⋆ Pr

(
MT

)
, (57)

where K̃j = Kj(α
2
j − 1) and K̃ = K(α2

⋆ − 1).
The following theorem states a necessary and a sufficient

condition for the EEC to be bounded.
Theorem 4.1: If, for some 1 ≤ j ≤ J

α2
j lim sup

T→∞
Pr

(
M(j)

T

)1/T

> 1, (58)

then
lim
t→∞

E{∥Pt∥} = +∞. (59)

Also, if
α2
⋆ lim sup

T→∞
Pr

(
MT

)1/T
< 1, (60)

then
lim
t→∞

E{∥Pt∥} ≤ M. (61)
Proof: From the root convergence test [13], we have

that (58) implies that K̃j

∑∞
T=0 α

2T
j Pr

(
M(j)

T

)
= ∞.

Hence, (59) follows from (57). Using the same argu-
ment, (61) follows from (60) and (56).

B. Systems whose unstable part is non-degenerate
In this section we study the necessary and sufficient

conditions given in Theorem 4.1, for systems whose unstable
part is non-degenerate. Since nothing further than what is
stated in Theorem 4.1 can be said about this kind of systems,
we further assume that the network model is Gilbert-Elliot.
In this case, we show that both conditions are equivalent, and
equal to the condition (12) stated in [7], [12]. To this end,
we need to derive expressions for lim supT→∞ Pr

(
MT

)1/T
and lim supT→∞ Pr

(
M(j)

T

)1/T

.
Using the results on generalized Vandermonde determi-

nants [14], it is straightforward to show that for systems
with scalar measurements, all the sequences with J or more
measurements are contained in the set MT . This property
can be extended to systems with vector measurements, but
the argument is omitted here due to space limitations. Let
|ΓT

t | denote the number of arrivals in the sequence ΓT
t .

Define

Wt =



Pr(|ΓT
t | = 0)

Pr(|ΓT
t | = 1,ΓT

t (1) = 1)
Pr(|ΓT

t | = 1,ΓT
t (1) = 0)

Pr(|ΓT
t | = 2,ΓT

t (1) = 1)
...

Pr(|ΓT
t | = J − 1,ΓT

t (1) = 0)


, (62)

where Pr(|ΓT
t | = x,ΓT

t (1) = y) is the probability that the
sequence ΓT

t has x measurement arrivals and γt−1 is y ∈
{0, 1}. Now we define the probability transition matrix M
such that Wt+1 = MWt. We have

M =



1− q 0 0 0 . . . 0
q 0 0 0 . . . 0
0 p 1− q 0 . . . 0
0 1− p q 0 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 1− q


. (63)

Since no measurement is available when the Kalman iter-
ations start, we have that Pr(MT ) = uMT z with u =
[1 1 1 . . . 1] and z = [1 0 0 . . . 0]′. Now, since M is
a lower triangular matrix, its eigenvalues are 1 − q and 0.
Hence, uMT z = f(1− q)T , for some polynomial f . Hence,

lim sup
T→∞

Pr(MT )
1/T = lim sup

T→∞
(uMT z)1/T (64)

= 1− q. (65)

Also, for all 1 ≤ j ≤ J , M(j)
T contains all sequences with

one or more measurement arrivals. Hence, using an argument
similar to the one above, we have

lim sup
T→∞

Pr(M(j)
T )1/T = 1− q, 1 ≤ j ≤ J. (66)

Then, from (65), (66) and Theorem 4.1, it follows that

(1− q)α2
⋆ < 1 (67)

is a necessary and sufficient condition for the boundedness
of the EEC, for a Gilbert-Elliot network model. For i.i.d.
models, the same condition is valid making q = λ.

C. Degenerate Systems with one quasi-equiblock

For degenerate systems formed by only one quasi-
equiblock, and a general network model, it follows
immediately that both conditions in Theorem 4.1 are
simultaneously necessary and sufficient. In this case,
lim supT→∞ Pr(MT )

1/T can be evaluated for any arbitrary
stochastic network model, following the approach in [6]. For
the particular case of a Gilbert-Elliot network model, and a
second order system, this becomes

lim sup
T→∞

Pr(MT )
1/T = (1− q)

(
1 +

pq

(1− q)2

)1/d

. (68)

Hence, condition (13), derived in [12], is necessary and suf-
ficient. See the example for details on how to compute (68).

V. EXAMPLE

Consider the system (1), whose measurements are trans-
mitted through a network described by the two-state Markov
chain in (11). Let

A =

[
α 0
0 α exp(2πin/d)

]
(69)

C =
[
1 1

]
, (70)
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where α ∈ R and n, d are integers and the fraction n/d
is irreducible. Notice that AT = αT I2, where I2 denotes
the 2 × 2 identity matrix. Since the system has only one
quasi-equiblock, we have Pr

(
MT

)
= Pr

(
M(j)

T

)
. Hence,

the necessary and sufficient conditions (58) and (60) are
equivalent. Following the method described in [6], we can
express the probability to observe a sequence ΓT such that
O(ΓT ) does not have FCR, as

Pr(MT ) = uMT z (71)

where

M =


0 0 0 0 0 0
p 1− q 0 0 0 0

1− p q 0 0 0 q
0 0 0 0 0 1− q
0 0 p 1− q 0 0
0 0 0 0 Q 0

 , (72)

with Q = (1−q)Id−2, u = [1 1 . . . 1] and z = [1 0 . . . 0]′.
The eigenvalues of M are given by {λ : det(λI−M) = 0}.
To compute this determinant we use its cofactor expansion
along the last row. Doing so, we obtain the characteristic
equation

λ2 (λ− (1− q))

(
λd −

(
1 +

pq

(1− q)2

)
(1− q)d

)
= 0.

(73)
It follows from (73) that {0, 0, (1− q)} are eingenvalues of
M . Also, all the other eigenvalues have magnitude (1 −
q)

(
1 + pq

(1−q)2

)1/d

.
As pointed out in [6], uMT z can be written in a polyno-

mial form as

uMT z =

2∑
l=1

ΛT
l Ψl(T ) (74)

where Λ1 = (1 − q)
(
1 + pq

(1−q)2

)1/d

, Λ2 = 1 − q, and
Ψ1(T ) and Ψ2(T ) are polynomials in T of order less than
the size of the Jordan blocks associated with eigenvalues
with the corresponding magnitude. In this case, since the
eigenvalue 1 − q has multiplicity one, we have Ψ2 = K,
where K is a constant independent of T . We will now show
that Ψ1(T ) ̸= 0 by contradiction. Suppose that Ψ1(T ) = 0.
Then, we have

Pr(M1) = uMz = K(1− q) (75)
Pr(M2) = uM2z = K(1− q)2. (76)

The probability of having a sequence ΓT
t ∈ MT is easy to

compute using basic probabilities

Pr(M1) = Pr(Γ1 = {0} ∪ Γ1 = {1}) (77)
= p+ (1− p) = 1 (78)

Pr(M2) = 1− Pr(Γ2 = {1, 1}) (79)
= 1− (1− p)2 = 2p− p2. (80)

Putting (75) to (80) together, we have{
Pr(M1) = K(1− q) = 1
Pr(M2) = K(1− q)2 = 2p− p2

(81)

Notice that the solution for (81) is K = (1 − q)−1 and
it requires q = p2 − 2p + 1. The inclusion of Pr(M3) =
K(1 − q)3 further requires that 2p4 − 6p3 + 5p2 = 0, for
d > 2 and p4 − 3p3 + 2p2 + p = 0 for d = 2. In both cases,
none of the solutions allows 0 ≤ p ≤ 1. Hence we conclude
that uMT z ̸= K(1− q)T and therefore Ψ1(T ) ̸= 0.

Now, since Λ1 > Λ2, we have

lim sup
T→∞

(uMT z)1/T = lim sup
T→∞

(ΛT
1 Ψ1(T ))

1/T (82)

= Λ1 lim sup
T→∞

(Ψ1(T ))
1/T (83)

= (1− q)

(
1 +

pq

(1− q)2

)1/d

.(84)

Substituting (82) in (58) (or (60)), we obtain the following
necessary and sufficient condition for the boundedness of the
EEC:

α2(1− q)

(
1 +

pq

(1− q)2

)1/d

< 1. (85)

Notice that this condition is equivalent to (13), reported
in [12]. If we consider i.i.d. packet losses, then q = 1−p = λ
and the condition (85) becomes

α2(1− λ)
d−1
d < 1. (86)
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