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Abstract. In this paper, a class of nonlinear uncertain
systems with an up-triangular structure is considered
and a design method is proposed for robust stabiliza-
tion via state feedback. The up-triangular structure
has been considered in the literature of forwarding de-
sign. But our method has a unique feature, i.e., we
allow uncertain parameters (of large size) to be present
in the system. Also, our design method is conceptually
different from those available in the literature. When
specialized to linear systems, we recover an important
result of Wei on quadratic stabilization.
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1 Introduction

This paper studies the problem of robust stabiliza-
tion for nonlinear systems which have an up-triangular
structure:

j:l = f1(1'2,"',1'n,q)
' (1)
En-1 = frn-1(Zn,q)
Tpn = fn(x17"'azn»q)+u
where z;,---,xz, are state variables, ¢ is an uncer-
tain parameter vector in a compact set 2 and f;,

i=1,---,n are smooth functions.

The up-triangular system (1) can be constructed recur-
sively via a series of up-augmentations (see definition
in Sections 2 and 3). The first person studying the
up-triangular structure is perhaps Wei [6]. In [6], Wei
proved an impressive result for quadratic stabilization
of linear systems with this structure and uncertain pa-
rameters. A lot of work has also been in the nonlinear
case; see, e.g., [5], [1], [2], [3] and [4]. However, all the
existing methods for the nonlinear case require precise
information of the system.

The purpose of this paper is to present a Lyapunov-
based approach for robust stabilization of nonlinear
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systems with the up-triangular structure. That is, we
allow the system to have uncertainty parameters of pos-
sibly large size. When specialized to linear systems, we
recover the result of Wei [6].

2 Linear Systems

In this section, quadratic stabilization of a class of lin-
ear systems with the up-augmented structure will be
discussed. This is the same problem that Wei consid-
ered in [6]. However, Wei’s approach seems hard to be
extended to nonlinear systems. Hence, a new proof will
be given in this section for his quadratic stabilization
result. This proof provides an explicit formula for con-
structing Lyapunov functions and controllers, serving
the key to the nonlinear case in Section 3.

Up-Augmentation

Consider the uncertain linear system
&= A(Q)z + b(g)u (2)

where z € R™ is the state, u € R is control input, q is
an uncertain parameter vector belonging to a compact
set @, A(-) and b(-) are continuous functions. We will
refer to (2) as the base system.

An up-augmented system has the following structure

To = aq)z
& = A(q)z + blu + d(q)o] (3)

where zo is an extra state variable, a(-) and b(-) are
continuous functions.

Assumption 2.1 (System Structure):

w0 19
b0) =0n(@) | | = 0n(arp )

and
a(q) =[bo(g) * ] (6)



where A=(q) € R(*-UX(»=1) g ,(q) € R, x is an
arbitrary uncertain term, 1 > f(¢) > 8, > 0 and
1>0,(9) 28,>0,Yq€Q. o

—_— =N

Assumption 2.2 (Quadratic Stabilizability of the Base
System): There exist & symmetric and positive-definite
matrix P € %™ and a constant € > 0 such that

PA(q) + AT(q)P < eI, VgeQ

(see [6] for definition of quadratic stabilizability).

(7)

O

Remark 2.1 Although the uncertain parameter vec-
tor g is restricted to be constant in (2) and (3), the re-
sult in this section applies even when ¢ is an arbitrary
time varying function provided ¢(t) € Q, Vt € [0, 00).
This is the nature of quadratic stabilization and this
comment applies to all the results in this paper. ]

Remark 2.2 The continuity assumption on A(-), b(-)
and a(-) is for convenience only and can be relaxed. O

Lyapunov Function and Controller Design

The key to quadratic stabilization of the up-augmented
system (3) is to construct a suitable Lyapunov function
and stabilizer. This is where our approach differs from
Wei [6] where only stabilizability is addressed and no
Lyapunov function is directly provided. Consider the

following Lyapunov function candidate for (3):
V*(2o,2) = [20 — (v 0)Pz]* + 2T Pz (8)

where the scalar v < 0 is to be specified.

Defining z+ = (2o, 7)T and
. 1 —-(y O)P
Fr= —P<g) P+P<8)(7O)P ©)

then the Lyapunov function candidate in (8) becomes
VH(z*t) = (zH)TPtet. (10)

Before discussing the stabilization of the system (3)
with our new approach, we shall give a lemma.

Lemma 2.1 Suppose s # 0, v be a constant and P =

PT > 0. Denote
-(y O)P
)('7 0P |-

"e[a(i) (s

0
Then the inverse of Pt is

1

Y
0

. 1457y O)P( g ) s7i(y 0)
o 571 < g ) sTip~t

1984

The proof is straightforward and thus omitted.

Theorem 2.1.  For the up-augmented system (3)
satisfying Assumptions 2.1-2.2, there exist v < 0, a« > 0
and et > 0 such that the linear controller

u(t) = —a(zH)Tb" = —a2Th

(11)

will render

VH(at) < —etvH(zt), Vot e Rt (12)
Moreover, the following choice of v, @ and et will suf-
fice :

0<é< Emaz
= min Amin [-P~" (AT(q)P + PA()) P™'], (13)
q

Bo(d) [a(q) (AT (q)P + PA(q)

Y < Ymaz = {1%1(51

+eP?) " aT(g) - ¢], (14)
et = %éz\mm(P*‘) and o= g (15)
where
— - Ydn1(g)
o=zl o+ [ of| o
and
2t = (20, 20)T = P*zt. 17)

Proof : The derivative of V*(z1) along the trajectory
of the system (3) is

VT =2[zo — (v 0)Pz][zo — (y 0)Pi] + 227 Pi
=2(zH)TPrit. (18)

Thus, from system (3), equation (18) can be rewritten
as

V= (@) [PrAt(@) + 41 (@) P2t

+2(zt)TPTb* (g)[u + d(g)zo)- (19)
where
_| 0 alg |, _ 0
A+_[0A(Q)]’ b+_<b(Q))' (20)

Denoting S* = (P*)~! and applying the Lemma 2.1,
it holds

A*(q)S* + 5T AT ()"
w@( 7))  a@P+0 047@
P @+ AW () PAT@ + AP
(21)



With the transformation (17), (19) and (21) lead to

Vvt = (z+)T [A*(9)ST + ST AT(g)] 2T
+2(z1) 76 ()[u + d(g)o]

= (1) 260(q)y a(q)P!
P~laT(q) P~1AT(q) + A(g)P~
#2674 (] ) 20+ 26 (@l + dlghaol

(22)
"The definition of € and +y in (13) and (14) guarantees

260(q)y a(q)P!
P~taT(q) P7'AT(q) + A(q)P?

] < -l (23)
because by Schur complement, (23) is equivalent to
PIAT(q) + A(Q)P~ 1 +&I <0
and
200(g)y + € — a(g) P~ [P7T AT (g) + A(q)P?
+eI"'PtaT(g) < 0
which hold when (13)-(14) do.
On the other hand, with the structure of the matrix

A(q) and the vector b(q) in Assumption 2.1, we can
easily get

4@ (7 ) =20y,

Also note that (2+)Tb+ = 2Tb. Therefore, from the
above augments and (22), we have

V< —et (21)T 2t + 2021 ToH(g) [u+ d(g)2*] (24)
where

d(g)z* = d(q)zo + v 0"1(((1'1)) 20

and
d(g) = [d(g) 0}(PT)™' + [del(lI) 0} ‘

6n(q)

Using (16) and triangular inequality, we have

FYTR (N Y+ < 200 00,4\ T €
275 (@02t < T (B @) + 5 (2
Applying (11), (15), (25) and the fact 1 > 4
8, > 0, (24) becomes

n(q) 2
Vvt < —g
- _% ((P+)1/2 z+)TP+ ((P+)1/2 m+)

242 242
+2-62(0) (270)" = =0n(q) (=™1)°

< —etvt(zt).

Hence, the system (3) is quadratically stabilized. VVV

)T 2+ (25)

()" 2% + 2L ()TH @) + 20 @)

3 Nonlinear Systems

In this section we generalize Theorem 2.1 to nonlinear
systems up-augmneted from a base system. The key
mechanism involved is a two-step control law. In the
first step, a nonlinear controller is applied to the base
system so that its state converges to a “small” bounded
set () while the state of the up-augmentation part is
not regulated. In the second step, another nonlinear
controller is designed to maintain the state of the base
system within 2 while reducing the state of the up-
augmented part. When the state of the up-augmented
system becomes sufficiently small, the second controller
will then be able to drive the combined state to zero.
Overall, this two-step control law achieves robust global
asymptotic stabilization (RGAS) and robust local ex-
ponential stabilization (RLES).

Up-Augmentation

As in the linear case, we start with a base system

(t) = f(z(t),9) + blg)u(?) (27)
where z(t), u(t), ¢ and b(q) are the same as be-

fore, f(z,q) is continuous in ¢ and smooth in z with
f(0,9) =0.

The up-augmented system is given by

fo(z,q)
F@q) + @ + dazamg)] )

where o € R, fo(z,q) is continuous in ¢ and smooth
in z with f(0,¢) = 0, d(z,20,7,q) is continuous in
¢ and smooth in (z,z,n) with d(0,0,0,q) = 0. The
parameter 7 reprensents the state variables other than
zo, = if (28) is a subsystem of a large system. We
denote &+ = [zo,zT]T and d(z+,n,q) = d(z, z0,7, ).

Tg
T

I

Assumption 3.1 (Local Smoothness Properties):
There is a local region €, such that, for any z € Q,,,
Wwe can express

fo(z,9) = a(z,9)z;  f(x,q) = Az, )z
b@=%@(?)=%@b (29)
with .
0 A~ (z,q)
Alea) = [ dn1(z,q) *
a(z,q) = [fo(x,q) #] (30)

and 1 > y(z,q) > 8,
U, Vg € Q.

> 0; 1>0(x,q)>0n,V:L'€

Assumption 3.2 There exists a constant matrix P =

(26) PT > 0 and € > 0 such that

PA(z,q) + AT(z,q)P < —¢lI, Yz € Qn,q€ Q. (31)



Remark 3.1 Assumptions 3.1-3.2 imply that, when
u = 0, the system of (27) is RLES, i.e., there exist
g > 0 and some (possibly different) € > 0 such that
the local Lyapunov furction V(z) = 27 Pz satisfies the
following property:

Y fra) < -eV(@), Veeo. (32)

where

Q={z: TPz <pu}CcQ,. (33)

Assumption 3.3 (Giobal Properties): The following
system, driven from (28),

& = f(z,q) + b(g)[u + d(z*, 7, q)] (34)

has the following property: Given any continuous func-
tion n(t) and 0 < p < 1, there exists a smooth con-
troller u,(z¥,n) such that, with

u(t) = un(z™ (), n(1)), (35)

the state of the system (34) will be driven into p{) in
a finite time for some 0 < p < 1, where 2 is given in
(33), and pQ2 = {pz: z € N}. a

Remark 3.3 Assumption 3.3 may appear to be strong.
However, we note that it is automatically satisfied for
first order systems because a “high-gain” u(t) can be
designed to “overcome” both f(z,q) and d(z*,7,q),
forcing the state to converge to pQ?. In next section,
we will show that this property can be preserved in the
process of up-augmentation. )

Lyapunov Function and Controller Design

Now we pay attention to controller design for (28).
First, we utilize Assumption 3.3 and apply (35) to drive
z(t) into pf in a finite time T'. In this step, zo(t) is
not regulated. Once z(t) € pQ), we switch to a local
mode where a different controller u*(z*,7) is applied.
This controller will maintain x(¢) in  while driving
z(t) to zero. The design of u* (z*,n) relies on a local
Lyapunov function for (28)

() = (g — 2 H
V¥(z™) = (zo — (v 0)Pzx) +1n,u—:z;TPz>0’

Vz e Q (36)

where 7 < 0 is a constant to be specified. Note that
this Lyapunov function is non-quadratic. However, as
z - 0, V¥(z*) becomes quadratic in z+. We also note
that the In(-) resembles a “potential barrier” and this
Lyapunov function is valid only for z € €2, i.e.,

Vtat) 00 as TPz —u (37)

This implies that future = € 2 as long as that V*(z)
remains bounded.

Differentiating V+ (27 (¢)) along the trajectory of (28),
we have

. ‘ ) 25T Pg
V*=2(zo — (v 0)Pz)(do — (v 0)Pi) + L—2TPz’

Defining s(z)
rewritten as

1 .
7=zTPz> above equation can be

Vvt =2 TPt (38)
where
1 - (v O)P
Pr= [—P( ’ ) s(:c)P+P( 7 ) (y oyp| 39
Further define
2t = (2, 20)T = Ptot. (40)

To simplify the analysis, we start with the case in which
the system (28) does not involve with the function 7,
ie, d(zt,n,q) = di(z*,q). Since di(z*,q) is smooth
in zt and d,(0,q) = 0, we can rewrite

dy(z*,q) = D¥(z,q)z* = D*(a*,q)ST2"  (41)
for some smooth D (z, q).

Theorem 3.1 For the up-augmented system (28)
satisfying Assumptions 3.1-3.3 and d(zt,7n,q) =
di(z%,q), there exist v < 0 and a(zt) > 0 such that
the nonlinear controller

u(zt) = —a(zH) ()Tt = —a(z)2Th (42)
will render
VHat) < —et(@)Vt(at), VzeQ,zoe R (43)

for some constant e*(z) > 0, z € Q. Moreover, the
following choice of v, at(z1) and et will suffice :

0<&<Emez= mMin_Amin [-P7! (AT(z,q)P

g€Q;ze
+PA(z,q)) P7], (44)
— 3 1 T
V< Yo = min s [a(z,q) (AT (z,q)P
+PA(z,q) +2P?) ' aT(z,0) -], (45)

(@) = Dmin (T @P (@) >0, (46)

alat) = 5712 &) (47)



where §(z ™) is any smooth function satisfying

Dia*,q)S* () + 7B

d(z") < max e

T gEQ;zER

(48)
Proof : Using Assumptions 3.1-3.2 (see Remark 3.1),
we obtain

V= (") [PTA*(z,9) + A*(z,9) P*|a*
+2(z) TP (g)[u + di(z™, g))]

With the inverse matrix S* of Pt in Lemma 2.1, it
holds

(49)
where At (z,q) is defined as

0 a(z,q)

A*(@,q) = [ 5 oo

At (z,q)S* + ST A*(z,9)T

2a(z,q) ( g )

P~1aT(z,q) + A(z,q) ( g )

a(z,q)P~" + (v 0)AT(z,q) ]
Pl AT(z,q) + Alz, )P~ |
200($7q)7

P=1aT(z,q)

-1

=s (z)

(50)
1t follows from (49) and (50) that

Vvt =5 (@) (2N)" [

a(z,q)P!

+
P~1AT(z,q) + A(z,q) P! } g

+2s Hz)2T A(z, q) ( g ) 20
+2 (z+)T bvH(Q)[u +di(zT, )] (51)

As in the linear case, the choice of £ and v in (44) and
(45) assures, for Vg € @ and z € Q,
] < -l

|

Also, with Assumption 3.1 and (z+)Tbt = 27b, we
have

260(z,q)y a(z,q)P7!
P~ta¥(z,q) P71AY(z,q) + A(z,q) P!

2T A(z,q) ( g ): vadnl(:c, Qb

dnl (ZZZ, q)
6n(q)

Therefore, from the above discussion and (51), we have

(=) 7o ().

vVt < —s Y @)e (1) 2t + 2571 () (2 M) T (g)
d'nl (.’B, Q)

X [s(””)“ 1@

20+ dy (a:ﬂq)} . (52)

1987

Using (48), we have
dnl (Q)
On(9)

Then substituting (53), (47), (48) and the controller
(42) into (52) results in

D(zt,q)ST(s) +

H <@t (53)

v+ < _S—l(z)g(z+)Tz+
< —s'l(w)g (P+1/2z+)T (s7Ha)PT) (P+1/2w+)
< —et(@h)V(z?). (54)

In particular, e7(0) > 0. Hence, we have RGAS and
RLES for the closed-loop system (28). \AAY)

4 Nested Up-Augmentation

When an up-augmented system (28) is a subsystem of
a large system such as (1), the up-augmented system
may involve state variables, denoted by 7, from other
parts of the large system. We assume that 7 is available
for control and we note that it appears in Assumptions
3.1-3.3. In this section, we will show that, under the
Assumptions 3.1-3.3, there exists a robust controller
such that the up-augmentation process preserves these
assumptions. Thus, robust stabilization of (1) can be
done recursively.

Since d(z*,n,q) = 0 as (z*,n) = 0, the function
d(z*,n,q) can be decomposed as

d(z*,n,q) = di(a*,q) + do(z¥,m,9)n  (55)
where di(z7,q) =0 as zt = 0.
Consider the following controller
u(zt,n) = wi(e¥) + ua(a™, n). (56)

Applying Theorem 3.1, design the controller u;(zt) =
u(zt) in (42). Then, the system

fo(fl’, Q)
f(z,q) + b(g)[ur (zF) + di (a7, q)]

is RGAS and RLES.

Zo
z

(57)

Since the fo(z,q), f(z,q) and b(g){u1(z) + di(z7, q)]
are smooth functions, the system (57) will satisfy the
Assumption 3.1. Denote AT (z ", q) such that

| = 4zt 0

fo(z,q)
[ (58)

fz,q) + b(@)[ur(z") + di(z*, 9)]
where the matrix A} (z%, q) has following structure

s 0 a*(z,q)
At(zt,q) = (2) At |



Theorem 4.1 For the system (57), there exist a con-
stant matrix Py and positive constants ef and ut
1 ~(y O)P

©e o) (oo

where sg > s5(0) > 0, such that

v

(59)
0 :

PFAY(z*,q) + (AT (et,9) P < —ef1  (60)

for st € QF = {2+ : () TP+ <pt}.

Proof: Assuming that the variable z+ in the matrix
AT (., q) is independent from the system state z+, from
the process of proof in Theorem 3.1, we have

P*(s)Af (zF,q)+AF T (z*,q) Pt (s) < ~et(a)I. (61)
Denoting As = sg — s(z), Ae = e(z) — € and applying
(61), it follows that

PH(so) AT (z*,q) + (AF =+, )" P (s0)
= PH(s) At (@t q) + (At (@t 0) " PH(s)

0 at(z,q)P
P(a*(z,q))" PA(z%,q) + AT (z%,q)P

< —ef I+ Ael

0
P(at*(z,9)"

+As [

at(z,q)P ]
PA(z*,q) + AT (z%,q)P |-
(62)

)

are smooth functions of z+ and e(z) < 0, Vz € pf? and
0 < p < 1, there exist constants sg, 63_ and v such
that, when ||z%]|| < v, As, Ae are small enough and
the right side of (62) will be negative. Hence, choosing
wt = v/ Amaz (P (s0)) result in (60). \AVAY)

+As [

Noting that As, Ae and

0 a*(z*,q)P

Amas [ P(a*(z*, )T PAc(zt,q) + AT (z*, )P

Theorem 4.2 Suppose that the up-augmented system
(28) satisfies Assumptions 3.1-3.3. Given 8 > 0, the
controller

U(t) =U1(.’E+) +U2(E+,7I,5) (63)
will locally render
Viat) < -Vt +8 (64)

for e > 0 where

us(a*,m, ) = —%s—l(le +72) ()b 8 (e, m)
(65)
and
& (zt,n) > |d2(zt,m,9)}, g € Q. (66)

1988

Proof: From (55), (52) and Theorem 3.1 , there holds

VHat) < —etVi(@t) + 257 (z)2t bt

x[s(z)ua(n)(z*,, B) + da(z*,m, q)n].  (67)

Applying the triangular inequality and the controller
(65) leads (64). \AYAY

Remark 4.1 Theorems 4.1 and 4.2 imply that, un-
der Assumptions 3.1-3.3, the controller (56) will pre-
serve the properties in these assumptions for the up-
augmented system. 0

5 Conclusions

In this paper, we have generalized a quadratic stabi-
lization result of Wei [6] to nonlinear systems. Our
results allow us to robustly stabilize a class of uncer-
tain nonlinear systems with an up-triangular structure,
which are generated via a series of up-augmentations.
The unique feature of our design method in comparison
with methods given in [1]-[5] is that our controller is ro-
bust against uncertainties of large size. For uncertain
linear systems, the result of Wei [6] is recovered.
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