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Abstract— This paper is concerned with the finite-horizon
filtering estimation problem by using the reductive information
of the true quantized measurements from the measurements.
We consider the case where quantizer is logarithmic, an upper
bound of the estimation error covariance is derived for all
the quantized measurements. The calculation of the filter
involves solving two Riccati recursions related to the quantized
measurements.

Index Terms— Discrete-time system, logarithmic quantizer,
quantized estimation, sector bound.

I. INTRODUCTION

Recently, quantized control and quantized estimation prob-
lems have been investigated abundantly due to the develop-
ment of networked control systems especially for industrial
control and automation. Examples of quantized feedback
control problem include [1][2][3][4] and references therein.
For its applications in the bandwidth-constrained wireless
sensor network, the coarsest quantizer that quadratically
stabilized a single input linear discrete-time invariant system
is proven to be logarithmic in [1]. In [2] the logarith-
mic quantizer is considered, it shows that the logarithmic
quantizer performs better than the linear quantizer when it
deals with the quantization error, for logarithmic quantizer
gives a multiplicative quantization error which reduces as the
measurements becomes small, while the quantization error
of linear quantizer is addictive and grows linearly as the
measurements becomes large. What’s more for the the log-
arithmic quantizer, the quantized feedback control problems
can be converted into classical robust control problems with
sector bound uncertainties.

As in the classical control and estimation theory, state
estimation plays an critical role to control theory due to
the separation theory [11]. Though only a high resolution
separation theorem holds [3], quantized estimation is also
important to quantized feedback control problems [3]. In [8]
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and [9], the quantized estimation based on quantized innova-
tion is derived based on the assumption that the conditional
probability of the estimated state based on the innovations
is the same as that based on the quantized innovations.
As in [5], the infinite-level and finite-level quantizers are
considered, but only the steady state estimator is given. In
this paper, we use the original measurements to recover the
logarithmic quantized information to design a state estimator
for a single output linear discrete-time invariant system. In
this paper infinite-level quantizer has been considered. The
reminder of the paper is organized as follows. Section II
formulates the quantized estimation problem. Section III
presents the solution of the estimation problem using the
quantized measurements. Finally, section IV draws some
conclusions of this paper.

II. PROBLEM FORMULATION

Consider the following linear discrete-time system:

x(t+ 1) = Ax(t) +Bw(t), (1)

y(t) = Cx(t) +Dv(t), (2)

where x(t) ∈ Rn is the state, y(t) ∈ R is the observation,
B, D are matrices with proper dimensions, w(t) ∈ Rm

and v(t) ∈ Rk are noises. We put forward the following
assumptions:

Assumption 1: : For all integers t and l ≥ 0,

E[w(t)] = 0, E[w(t)wT (l)] = Qw�tl,

E[v(t)] = 0, E[v(t)vT (l)] = Qv�tl, (3)
E[w(t)vT (l)] = 0.

where E[⋅] denotes the expectation and �tl denotes the
Kronecker Delta.

Assumption 2: :

(1)E[x(0)xT (0)] = q0, wℎere q0 = qT0 ≥ 0 is a

known matrix,

(2)rank[A BQ
1
2
w] = n, (4)
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We consider the logarithmic quantizer as following:

U = {±ui : ui = �iu0, i = 1, 2, ⋅ ⋅ ⋅}
∪
{±u0}

∪
{0},

witℎ 0 < � < 1, u0 > 0 (5)

where � is called quantized density of the quantizer. As
illustrated in [2], using the sector bound uncertainty we have

y −Q(y) = �y, ∣�∣ ≤ Δ. (6)

with

Q(y)=

⎧⎨⎩
ui, if 1

1+Δui <y ≤
1

1−Δui, y > 0

0, if y = 0
−Q(−y), if y < 0

(7)

where

Δ =
1− �
1 + �

. (8)

Then we can rewrite the quantized measurements as:

z(t) = Q(y(t)) = y(t) + �ty(t)

= (C + �tC)x(t) + (D + �tD)v(t), (9)

where ∥�t∥ ≤ Δ, hence ∥ �tΔ ∣ ≤ 1.
The quantized filter design problem can be stated as: given

the quantized measurements {z(0), z(1), ⋅ ⋅ ⋅ , z(t)}, to design
a filter

x̂(t+ 1) = Ax̂(t) +Ktz(t), (10)

where Kt is a time-varying matrix to be determined in order
that the variance of the estimation error is guaranteed, that
is, there exist a sequence of positive-definite matrices Mt =
MT
t ≥0 (0≤ t≤ N ) satisfying:

E
[
(x(t)− x̂(t))(x(t)− x̂(t))T

]
≤Mt,

and then minimize Mt.

III. QUANTIZED FILTER DESIGN

It is noted that (9) and (11) involves uncertainties, and the
accurate error covariance is impossible to be determined, so
in this section we try to find an upper bound for the time-
varying estimation error covariance. By (9) we have:

x̂(t+ 1) =Ax̂(t) +Kt[(C+�tC)x(t)+(D+�tD)v(t)]

=Ax̂(t)+Kt(C+�tC)x(t) +Kt(D+�tD)v(t).(11)

Define the following new state vector as:

�(t+ 1) ≜

[
x(t+ 1)
x̂(t+ 1)

]
, (12)

�(t) =

[
w(k)
v(k)

]
, (13)

So by (1) , (11) and (12), (13), we have the following
auxiliary system:

�(t+ 1) = (Ât+Âet)�(t)+B̄�(t), (14)

where

Ât =

[
A 0
KtC A

]
, (15)

B̄ =

[
B 0
0 (1 + �t)KtD

]
. (16)

Âet = H̃(t)F (t)Ẽ, (17)

while

H̃(t) =

[
0

ΔKtC

]
, F (t) =

�t
Δ
, Ẽ =

[
In 0

]
. (18)

It is straightforward to write the Lyapunov equation that
governs the evolution of the covariance matrix:

Σ̃t+1 = E[�(t+ 1)�T (t+ 1)]

= (Ât + Âet)Σ̃t(Ât + Âet)
T +Gt, (19)

where

Gt = B̄E(�(t)�T (t))B̄T .

Note Assumption 1, we have :

E[�(t)] = 0, E[�(t)�T (l)] =

[
Qw 0
0 Qv

]
�tl, (20)

then Gt is calculated as:

Gt = B̄E(�(t)�T (t))B̄T

= B̄

[
Qw 0
0 Qv

]
B̄T

=

[
BQwB

T 0
0 (1 + �t)

2KtDQvD
TKT

t

]
.(21)

Next, we want to find a positive-definite matrix Σt+1

satisfying:

Σ̃t+1 ≤ Σt+1. (22)

Lemma 1: [13] Given matrices A,H,E, and F with com-
patible dimensions and FFT ≤ I . Let X be a positive
definite matrix and � > 0 be an arbitrary constant such that
�−1I − EXET > 0, then we have :

(A+HFE)X(A+HFE)T

≤ A(X−1 − �ETE)−1AT + �−1HHT . (23)
So by lemma 1, we have:

Σ̃t+1 = (Ât + Âet)Σ̃t(Ât + Âet)
T +Gt

≤ Ât[Σ̃−1
t −�tẼT Ẽ]−1ÂTt+�

−1
t Ĥ(t)ĤT (t)+Gt,(24)

Definition 1: we define the following Riccati equation

Σt+1 = Ât[Σ
−1

t −�tẼT Ẽ]−1ÂTt +�−1
t Ĥ(t)ĤT (t)+Gt, (25)

where

�−1
t I − ẼΣtẼ

T > 0. (26)

901



Definition 2: The filter (10) is called quantized quadratic
filter, if there exist a sequence of �t > 0, Σt = ΣTt , (0 ≤
t ≤ N) satisfying the following Riccati equation

Σt+1 = Ât[Σ
−1
t −�tẼT Ẽ]−1ÂTt +�−1

t Ĥ(t)ĤT (t)+Jt, (27)

where

�−1
t I − ẼΣtẼ

T > 0, (28)

with

Gt≜

[
BQwB

T 0
0 Kt(D + �tD)Qv(D + �tD)TKT

t

]
,

subject to ∣�t∣ ≤ Δ,so we have

Gt ≤Jt =

[
BQwB

T 0
0 (1 + Δ)2KtDQvD

TKT
t

]
, (29)

Lemma 2: If the equations (27) (25) have solutions

Σt,Σt

respectively with the initial condition satisfying:

Σ0 = Σ0,

then we have

Σt ≤ Σt. (30)

Proof : For convenience we define the following equations:

St(Σt) ≜ Ât[Σ
−1
t −�tẼT Ẽ]−1ÂTt +�−1

t Ĥ(t)ĤT (t)+Jt,

ℎt(Σt) ≜ Ât[Σ
−1

t −�tẼT Ẽ]−1ÂTt +�−1
t Ĥ(t)ĤT (t)+Gt,

So by (27) (25) we have

Σt+1 = St(Σt), Σt+1 = ℎt(Σt)

with the initial condition that

Σ0 = Σ0,

we prove the lemma by induction. Obviously,

Σ0 ≤ Σ0,

Suppose

Σt ≤ Σt,

then Σt+1 = ℎt(Σt) ≤ St(Σt) = Σt+1. The proof is
completed here.

∇
Lemma 3: For any t, we have the following inequality

holds:

E[e(t)eT (t)] ≤
[
I −I

]
Σt
[
I −I

]T
, (31)

where e(t) = x(t)− x̂(t) is tℎe estimation error.
Proof : This lemma can be easily deduced by lemma 2 from
the fact that Σ̃t+1 ≤ Σt+1 ≤ Σt+1. ∇

Let

P (t) ≜
[
I 0

]
Σt
[
I 0

]T
,

then by Definition 2 we have

P (t+ 1) = AP (t)AT +AP (t)[�−1
t I − P (t)]−1

×P (t)AT +BQwB
T , (32)

where

�−1
t I − P (t) > 0. (33)

The initial condition of the equation (32) is

P (0) = q0. (34)

with q0 = E[x(0)xT (0)] ∇
Remark 1: It can be easily known that the upper Riccati

equation is similar to that defined in [7].
Lemma 4: Under the assumption 2, for a given filter (10)

and for some scalar �t > 0, the Riccati equation (27) has
bounded solutions Σt over [0, N ] satisfying:

�−1
t I − ẼΣtẼ

T > 0,

then for the same Σt there exist bounded solutions P (t) to
the Riccati equation (32) over [0, N ] satisfying:

�−1
t I − P (t) > 0.

Proof : Applying the matrix inversion lemma, (27) can be
converted into the following form:

Σt+1 = Ât[Σt+ΣtẼ
T (�tI−ẼΣtẼ

T )−1ẼΣt]Â
T
t

+�−1
t Ĥ(t)ĤT (t) + Jt

= ÂtΣtÂTt + ÂtΣtẼ
T (�tI − ẼΣtẼ

T )−1ẼΣtÂ
T
t

+�−1
t Ĥ(t)ĤT (t) + Jt. (35)

By multiplying [I 0] to the left side and multiplying [I 0]T

to the right side of the Riccati equation (35), we obtain (32).
∇
Our next theorem presents a necessary and sufficient condi-
tion for the existence of a quantized quadratic filter with an
optimized upper bound of the error variance.

Theorem 1: Under the Assumption 1 and Assumption 2,
there exists a quantized quadratic filter that minimizes the
bound of the error variance if and only if for some �t > 0,
there exist solutions P (t) = PT (t) > 0 over [0, N ] to
the Riccati equation (32). Under this condition, a quantized
quadratic filter with an optimized upper bound of error
covariance is given by

x̂(t+ 1) = Ax̂(t) +Ktz(t), (36)

where

Kt = AM(t)Q(t)CTW−1(t), (37)

M(t) =
[
I −I

]
Σt
[
I −I

]T
, (38)
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Q(t) = I + (�−1
t I − P (t))−1PT (t), (39)

and

W (t) = (1+Δ)2DQvD
T +Δ2�−1

t CCT + CP (t)CT

+CP (t)(�−1
t I − P (t))−1PT (t)CT . (40)

Moreover the optimized covariance bound is M(t).
Proof : “⇒ ” :

M(t+ 1)

=
[
I −I

]
Σt+1

[
I −I

]T
= (1 + Δ)2KtDQvD

TKT
t + Δ2�−1

t KtCC
TKT

t

+KtCP (t)(�−1
t I − P (t))−1PT (t)CTKT

t

+KtCP (t)CTKT
t −AM(t)CTKT

t

−KtCP (t)(�(t)−1I − P (t))−1MT (t)AT

−AM(t)(�−1
t I − P (t))−1P (t)TCTKT

t

−KtCM
T (t)AT +BQvB

T +AM(t)AT

+AM(t)(�−1
t I − P (t))−1M(t)TAT

= Kt[(1+Δ)2DQvD
T +Δ2�−1

t CCT +CP (t)CT

+CP (t)(�−1
t I − P (t))−1PT (t)CT ]KT

t

−AM(t)[I+(�−1
t I−P (t))−1PT (t)]CTKT

t

−KtC[MT (t) + P (t)(�−1
t I − P (t))−1MT (t)]AT

+BQwB
T +AM(t)AT

+AM(t)(�−1
t I − P (t))−1MT (t)AT

= (Kt +K∗(t))W (t)(Kt +K∗(t))T

−AM(t)[I + (�−1
t I − P (t))−1PT (t)]CTKT

t

−Kt[CM(t)TAT −CP (t)(�−1
t I−P (t))−1MT (t)AT]

+BQwB
T +AM(t)AT −KtW (t)KT

∗ (t)

+AM(t)(�−1
t I − P (t))−1MT (t)AT

−K∗(t)W (t)KT
t −K∗(t)W (t)KT

∗ (t), (41)

where K∗(t) = −AM(t)Q(t)CTW−1(t) it can be seen that
if we choose Kt = −K∗(t), then M(t+1) will be minimized.
In this condition we have

M(t+ 1) = BQwB
T +AM(t)AT

+AM(t)(�−1
t I − P (t))−1MT (t)AT

−AM(t)Q(t)CT [R�t
+ CP (t)Q(t)CT ]−1

×CQT (t)MT (t)AT , (42)

where

R�t
= (1+Δ)2DQvD

T +Δ2�−1
t CCT . (43)

“⇐ ”: By Lemma 4 we know that there exists a bounded
solution Pt = PTt > 0, let

Σt =

[
P (t) P (t)−M(t)

P (t)−M(t) P (t)−M(t)

]

Then by some straight manipulations, it follows that

Σt+1 = Ât[Σt+ΣtẼ
T (�tI−ẼΣtẼ

T )−1ẼΣt]Â
T
t

+�−1
t Ĥ(t)ĤT (t) + Jt

= ÂtΣtÂTk + ÂtΣtẼ
T (�tI − ẼΣtẼ

T )−1ẼΣtÂ
T
t

+�−1
t Ĥ(t)ĤT (t) + Jt.

By Definition 2, we know (36) is quantized quadratic filter
with an upper bound of error covariances M(t). The proof
is completed here. ∇

Remark 2: It can be seen that M(t) also depends on �t.
So in order that M(t) is minimized in the sense of matrix
norm, we can applying a similar technique as in [6] to find
the best �t.

IV. CONCLUSIONS

In this paper, we use the sector bound approach to treat the
quantization error caused by the logarithmic quantizer. We
give an algorithm which only involves solving two related
Riccati equations to guarantee that the covariances of the
estimation error of the finite-horizon estimator is bounded.
This approach can also be extended to systems with norm-
bounded parameter uncertainties and missing measurements.
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