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Finite—horizon quantized estimation using sector bound approach
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Abstract: This paper is concerned with the finite-horizon filtering estimation problem by using the reductive information
of the quantized innovations from the innovations. We consider the case where the quantizer is logarithmic and an up-
per bound of the estimation error covariance is derived for all the quantized innovations. The calculation of the filter in—
volves solving a Riccati equation related to the quantized innovations.
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0 Introduction

Recently quantized control and quantized estimation problems have been investigated abundantly due to the
development of networked control systems especially for industrial control and automation. Examples of quan-—
tized feedback control problem include 1 —4 and references therein. For its applications in the bandwidth—
constrained wireless sensor network the coarsest quantizer that quadratically stabilizes a single input linear dis—
crete-time invariant system is proven to be logarithmicin 1 . In 2 the logarithmic quantizer is considered it
is proved that the logarithmic quantizer performs better than the linear quantizer when it deals with the quantiza—

tion error for logarithmic quantizer gives a multiplicative quantization error which reduces as the measurement
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becomes small while the quantization error of linear quantizer is addictive and grows linearly as the measurement
becomes larger. What’ s more for the the logarithmic quantizer the quantized feedback control problems can be
converted into classical robust control problems with sector bound uncertainties 5 and so on. As in the classical
control and estimation theory state estimation plays an critical role in control theory due to the separation theory

8 . Though only a high resolution separation theorem holds quantized estimation is also important to quantized
feedback control problems 3 . In 9 and 10 the quantized estimation using quantized innovations is de—
rived under the assumption that the conditional probability of the estimated state based on the innovations is the
same as that based on the quantized innovations. As in 11  the infinitedevel and finitedevel quantizers are
considered but only the steady state quantized estimator is given. In this paper we use the original innovations
to recover the logarithmic quantized information to design a state estimator for a single output linear discrete-time
invariant system just asin 12 for the problem of control with communication constraints. 5 proposes a new
quantization dependent Lyapunov function to study the problem of analysis and synthesis for quantized feedback
control system which leads to less conservative results. 6 investigates the quantized H_ control problem for
discrete-time systems with random packet losses. In 7 the optimal tracking design for a linear system with a
quantized control input is given. By using dynamic programming approach the best attainable tracking perform—
ance is obtained in terms of the space equation of given systems and the unique solution of the discrete-time al—
gebraic Riccati equation.

In this paper the quantized quadratic filter of logarithmic quantizer with guaranteed performance has been de—
signed. The paper is organized as follows section 1 puts forward some assumptions and formulates the quantized
estimation problem. Section 2 presents the solution of the estimation problem using the quantized innovations. In
section 3 an example is given to show the effectiveness of the proposed approach. Finally section 4 ends this
note with some conclusions.

Notations: Throughout this paper E +  denotes the expectation and §, denotes the Kronecker Delta.

1  Problem formulation

Consider the following linear discrete-time system:
x(t+1) =Ax(t) +Bw(1) (1)
y(1) =Cx(1) +Dv(1) (2)
where x( t) € R" is the state vector y(t) € R is the observation A B C D are matrices with proper dimen—
sions w(t) e R™ and v( ) e R" are noises satisfying:
for all integers ¢ and [ =0
E w() =0E w(t)w' () =0,8,
E () =0 Eo(0o'() =05, )
E w(t)v"() =0.
Assumption 1

(1) E x(0)x'(0) =gq, where q,=q,=0 is a known matrix

(2) rank[A BQ?] =n. (4)
Consider the logarithmic quantizer with infinite levels as following:
U={ +u;:u,=p'uy i=12 -} U{ zu,} U{0}
0<p<l wu,>0. (5)
where p is called quantized density of the quantizer. As illustrated in 2  using the sector bound approach the

quantization error satisfying:

y=0Q(y) =8y 18l<A (6)
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where
u; Ifl Aul<y$1 AU y >0;
-Q( -y) ify<0.
with
1 +p'
e(t) =y(t) —9(1)

Denote
e(t) =x(1t) —%(1)

Q(e(r)) =e(t) =6,&(t) =(C-8,C)e(t) +(D-6D)v(1)

z(t) =

5,
—I=<l

where || 8, || <A hence || A

The quantized filter design problem can be stated as: Given the quantized innovations {z(0) z( 1)

design a filter
£(r+1) =A2(1) +K,2(1)

there exist a sequence of positive—definite matrices M( t)
E (x(1) —2(1)) («(2) —2(1)) " <M(1)

and then minimize M( t) in the sense of norm.

2 Quantized filter design

M(t) "=0 (0<t<N) satisfying:

using the quantized innovations to design the filter then the quantized innovation can be rewritten as:

where K, is a matrix to be determined in order that the variance of the estimation error is guaranteed

~z(1) }

(10)

that 1s

It is noted that (9) and ( 10) involve uncertainties
mined. In this section we try to find an upper bound for the time-varying estimation error covariance.

By (9) the filter can be written as:
#(e+1) =A%(1) +K, (€C-5,C)e(t) +(D -8,D)v()
Az(t) +(1-6,) (K,Ce(t) +K,Dv(1)).

Define a new state vector and noise let
fi+1) é[9c(t+l)
£(t+1)
w( k)
t) A
LR ]

(11) and (12) (13) the following auxiliary system holds
Et+1) =(A,+A4,) &(1) +Bn(1)

then by (1)
where
1= A 0
'"[&c A—Kﬁ]
B B 0
_[O (l_sz)KtD]
A, =H(t)F(1)E
0 8 =
] F(t) —X E—[ In In].

with
(1 =[

thus the accurate error covariance is hard to be deter—
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It is straightforward to write the Lyapunov equation that governs the evolution of the covariance matrix of
(12):
S=E ) (e+]) =(A4,+4,)3,(4,+4,) " +6, (19)

where

According to (3) we have:

ety =0 Eat0n <[ |6 (20)
then G, is calculated as:
_ . . BQ,B" 0
G,=BE n(t)n"() B"= [ 0 o ] [ (1-8)°k00 DK (21)
Next we want to find a series of positive-definite matrices 3,,,,(0<<t<N) satisfying:
S.as3L (22)
Lemma 1"  Given matrices A, H, E, and F, with compatible dimensions and F .F' <I. Let X, be a posi-

tive definite matrix and o, >0 be an arbitrary constant such that o' I = E X,E' >0 then the following inequality
holds:

(A, +HFE)X(A +HFE)" <A (X '-aE (1)E) A +a HH,. (23)
Using Lemma 1 the following inequality holds:
Soa=(A4,+A)3S,(4,+4,) " +6G, <A, 37" o, E'"E 'A] v+, H(1t) H"(1) +G,. (24)

In order to deduce the matrices 3, the following definition is necessary.

t+1
Introducing the following Riceati equation:

S, =A, S =, E'E T'Al v H(0) H'(1) +G (25)

13

where
o ' I-ES, E">0. (26)
The design of the quantized quadratic filter ( 12) can be restated as: If there exist a sequence of numbers o, >

0 3,=3 (0<t<N) satisfying the following Riccati equation

Soa=4, 37 - B'E AT +a A1) H'(1) +1, (27)
where
o ' I-E3, E">0 (28)
with
BQ B' 0
J, A
0 K(D-6D)Q,(D-8D) TKT]

subject to 18,1 <A. The following inequality holds:
BQH.'BT 0 ]

J<l, = i -
0  (1+A)*K,DQ,D"K'

(29)

The next lemma gives the properties of the solutions of the equations (25) and (27) which is useful in deri—
ving the upper bound of the quantized quadratic filter.
Lemma 2 [f the equations (25) (27) have solutions 3,3, trespectively with the initial states 3,3, satis—
fying 3, =3, then there holds:
3, <3,

Proof For convenience of the proof define the following operators:
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h(3) LA, S -, E'E T'AT v A1) A'(1) +6,
S(3) LA, ' —a, E'E T'AT o A1) H(1) +1,
so by (25) (27) the following holds
3. =h(2) 2.,=5(2)

with the initial condition that

3, =3,
we prove the lemma by induction. Obviously
3, <3,
Suppose
3, <3,

then 3,,, =h,(3,) <S,(3,) =3,.,. The proof is completed here.
From lemma 2 the upper bound of the estimation error is given as follows:
Lemma 3 For any t the following inequality holds:
Ee(t)e'() <[I -1I3[1I -N" (30)
where e(t) =x(t) —%(t) is the estimation error.
Proof According to lemma 2 with the fact that 3,,, <3,,,<3,,, the conclusion follows.
Let P(t) 2[1 0]3,[1 0]" then by (27) the following recursions of P(t) holds:
P(t+1) =AP(1) A" +AM(1) o' I-M(1) ~'"xM(t)A" +BQ B (31)
The initial condition of the equation (31) is
P(0) =g, (32)
with g, =E x(0)x'(0) and M(0) =0. where
o " T-M(1) >0. (33)
Lemma 4 Under the assumption 1 for a given filter ( 10) and for some scalar o, >0 the Riccati equation
(27) has bounded solutions 3, over 0 N satisfying:
o 1-ES, E' >0
then for the same 3, there exist bounded solutions P(t) to the Riccati equation (31) over 0 N satisfying:
o ' 1-P(1) >0.
Proof According to the matrix inversion lemma (27) can be converted into the following form:
S, =A, 3, +3,E"(al-ES,E") 'ES, AT o, H(1)H" (1) +], =
ASAT +AS E"(al-ES, E") 'ES, AT +o7 H(t) H (1) +J. (34)
Pre-and post-multiplying the Riccati equation (34) by I 0 and I 0 " we obtain (31).
The next theorem presents a necessary and sufficient condition for the existence of a quantized quadratic filter
with an optimized upper bound of the error variance.
Theorem 1 Under Assumption 1 there exists a quantized quadratic filter that minimizes the bound of the er—
ror variance if and only if for some o, >0 the Riccati equation (31) has solutions P(t) =P"'(t) >0 over 0
N . Under this condition the quantized quadratic filter ( 10) with

K, =AM( 1) Q(1) C'W (1) (35)
where
Q(1) =1+ (o " T-M(1)) 'M"(1) (36)
M(i) =[1 -11=,[1 -11" (37)
W(t) =(1+A)°DQ,D" + A, CC" +CM(1) C" +
CM(t) (o' I-M(1)) ""M"(1) C". (38)

satisfies the optimized covariance bound is M(t) .
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Proof Suppose there exists a quantized quadratic filter for the system. It follows from that there exists a
bounded solutions 3, =0 to (27) and such that o' I —E(t) 3,E'(t) >0 over 0 N . Thus from lemma 4
there exist bounded positive definite solutions P(¢) M(t) to the Riccati equation ( 31) satisfying o, I -M( 1) >

Next a necessary condition

I/
Oover 0 N . From lemma3 we know that E e()e' () <[I —I]E,[ /|

for the quantized quadratic filter with guaranteed cost on the variance of the estimation error is derived.
M(t+1) =[1 -0N%,.,[1 -11"=(1+A)’K,DQ,D'K] + A’ K,CC'K] +BQ B" +

(A=K, C)M(t) (A-KC)"+(A-KC)M(1t) (o ' 1-M(1)) 'M(1)(A-KC)" =

K, (1+A)°DQ,D" +A’a, " CC" +CM(t) C" +CM(1) (e, T-M(1)) 'M"(1)C" K -

AM() T+(a ' T-M(1)) 'M"() C'K'-K,C I+M(1) (o, ' T-M(1t)) " M'(1)A" +

BQ B" +AM(t) A" +AM(1t) (o' I-M(1)) "M "(1)A" =

(K, +K. () W(t) (K, +K. (1)) " =AM() I+(a ' I-M(1)) 'M'() C'K -

K, CM(t)"A" =CM(1) (" T-M(1)) 'M"()A" +

BQ B" +AM(t) A" —K,W(t) K (1) +AM(¢t) (o "' T-M(1)) 'M"(1)A" -

K. () W(t) K] =K. (¢) W(1) K (1) (39)
where K, (1) = =AM(t) Q(t) C"W™'( ). It can be seen that chosen K, = =K, () then M(t+1) will be
minimized. Under this condition

M(t+1) =BQ,B" +AM(t) A" +AM( 1) (o' T-M(1)) "'M"(1)A" -
AM(t) Q(t) C"W ' (1) COQ (1) M(1) A" (40)
where the initial value of M(t) is M(0) =0.
By Lemma 4 there exists a bounded solution P() =P (1) >0 let
P(1) P(t) —M(1)
P(t) =M(t) P(1) -M(1)
Then by some manipulations it follows that
A, 3 +3, E"(al-E3 E") 'ES, Al +o 7 H(1) 0 (1) +], =
ASA +AS, E'"(al-ES, E") 'ES, AT +o7 H(t) H" (1) +J.
By (27) we know (10) with the optimal gain ( 35) is quantized quadratic filter with an

2, =

which equals to 3,

t+1°

upper bound of error covariances M( t) . The proof is completed here.
Remark 1 [t can be seen that M(t) also depends on the time-varying parameter o, so in order that M(t) is

minimized in the sense of matrix norm we can applying a similar technique as in 13  to find the best q,.

3 Simulation

In this part an example is given to verify the obtained theoretical results.

0.2 1 2 1
Consider the following system: A =[ ] B= ’ 1] C= 1] D =1 the statistical properties of the

0 1.05
noises w(t) v(¢) are Q, =0.04 @, =0.01 the quantization density is taken as p =0.25 A =0.6 q, is chosen
0.5
to be a constant with o =0.2 the initial state of the system is x, = 0 5] using the approach discussed in the

paper we get the gain with the error covariance as M(t) what we want to show is that the covariance is guaran—
teed with the upper bound W(t) that is the W(¢) <M( ). The following two figures show the eigenvalues of
M(t) =W(t) from which it is easily to know that the M(t) — W(t) is semi-positive definite which is equivalent
to W(t) <M(¢).
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Fig. 1 The first set of eigenvalues of the 2 x2 Fig.2 The second set of eigenvalues of the 2 x2
matrix M(t) — W(t) matrix M(t) —W(t)

Conclusion

In this paper the sector bound approach is used to characterize the quantization error caused by a logarithmic

quantizer. An algorithm which only involves solving two related Riccati equations has been given to guarantee

that the covariances of the quantized estimation error of the finite-horizon estimator is bounded. This approach

can also be extended to systems with norm-bounded parameter uncertainties and missing measurements.
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