
Han et al. / Front Inform Technol Electron Eng 2015 16(6):429-448 429

Frontiers of Information Technology & Electronic Engineering

www.zju.edu.cn/jzus; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

Review:

Distributed coordination inmulti-agent systems:

a graph Laplacian perspective∗

Zhi-min HAN1, Zhi-yun LIN‡1,2, Min-yue FU2,3, Zhi-yong CHEN2

(1State Key Laboratory of Industrial Control Technology, College of Electrical Engineering,

Zhejiang University, Hangzhou 310027, China)

(2School of Electrical Engineering and Computer Science, University of Newcastle,

Callaghan NSW 2308, Australia)

(3State Key Laboratory of Industrial Control Technology, Department of Control

Science and Engineering, Zhejiang University, Hangzhou 310027, China)

E-mail: hanzhimin@zju.edu.cn; linz@zju.edu.cn; minyue.fu@newcastle.edu.au; zhiyong.chen@newcastle.edu.au

Received Apr. 13, 2015; Revision accepted May 15, 2015; Crosschecked May 15, 2015

Abstract: This paper reviews some main results and progress in distributed multi-agent coordination from a graph
Laplacian perspective. Distributed multi-agent coordination has been a very active subject studied extensively by
the systems and control community in last decades, including distributed consensus, formation control, sensor
localization, distributed optimization, etc. The aim of this paper is to provide both a comprehensive survey of
existing literature in distributed multi-agent coordination and a new perspective in terms of graph Laplacian to
categorize the fundamental mechanisms for distributed coordination. For different types of graph Laplacians, we
summarize their inherent coordination features and specific research issues. This paper also highlights several
promising research directions along with some open problems that are deemed important for future study.
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1 Introduction

In different communities, the terms ‘agent’ and
‘multi-agent system’ have different connotations.
But roughly speaking, the following interpretations
are broadly admitted: An ‘agent’ is a computational
mechanism that exhibits a high degree of autonomy,
performing actions in its environment based on in-
formation received, via sensors and feedback, from
the environment, and a ‘multi-agent system’ con-
tains more than one agent interacting with one an-
other with some constraints such that agents may
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not at any time know everything about the entire
system.

In computer science, the research for multi-
agent systems typically refers to software agents,
which have been widely studied in the 1980s and
1990s. Multi-agent systems have replaced single
agents as the computing paradigm in artificial in-
telligence (Weiss, 1999). On the other hand, the
agents in a multi-agent system can be robots as well
and thus multi-agent systems are also referred to as
multi-robot systems in the robotic society. The study
of multi-robot systems began in the early 1990s (for
example, Sugihara and Suzuki (1990)). However, it
is much later that researchers in the systems and
control community started to investigate more gen-
eral multi-agent systems. Since 2003, multi-agent
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systems have become a very active research topic in
systems and control, where a multi-agent system is
usually considered to be a collection of autonomous
or semi-autonomous, but interacting, dynamic sys-
tems. A schematic diagram of a multi-agent system
is shown in Fig. 1, where the network represents the
coupling structure among the agents. The coupling
links can be communication channels, sensing infor-
mation flow, or physical connections, and thus can
be static or dynamic when links may be established
or dropped over time.

Agent 1 Agent 2

Network

... Agent n

Fig. 1 A multi-agent system

The agents in a multi-agent system have several
important features.

1. Autonomy: The agents are at least semi-
autonomous.

2. Local views: No agent has a full global view
of the system, or the system is too complex for an
agent to make practical use of such knowledge (e.g.,
the states of all agents).

3. Decentralization: Each agent interacts with
only a few neighboring agents based on relative in-
formation from neighbors, in absence of designated
controlling agents.

4. Time evolution: The state of each agent
evolves according to certain local coordination pro-
tocols interacting with one another, which eventually
leads to the occurrence of collective behaviors of the
entire system.

This survey paper will focus mainly on recent
progress on multi-agent systems in the systems and
control community, considering both continuous-
and discrete-time dynamics. Research issues include
consensus, formation control, flocking, sensor local-
ization, distributed optimization, etc. In the systems
and control community, pioneering works on multi-
agent systems started with the investigation of the
consensus problem (Jadbabaie et al., 2003; Lin et al.,
2004; 2005; Olfati-Saber and Murray, 2004; Moreau,
2005; Ren and Beard, 2005). After that, a huge num-
ber of works have appeared concerning a variety of
control tasks, agent models, and control strategies

in multi-agent systems. In addition, there have been
several monographs on multi-agent systems from the
system and control viewpoint (Lin, 2008; Ren and
Beard, 2008; Bullo et al., 2009; Qu, 2009; Mesbahi
and Egerstedt, 2010; Ren and Cao, 2011). Moreover,
excellent surveys on distributed control of multi-
agent systems were given in Leonard et al. (2007),
Murray (2007), Olfati-Saber et al. (2007), Ren et al.
(2007), Anderson et al. (2008), Dörfler and Bullo
(2014), and Oh et al. (2015b). However, these survey
papers focused either on one specific research prob-
lem in multi-agent systems such as consensus (Olfati-
Saber et al., 2007; Ren et al., 2007), synchronization
(Dörfler and Bullo, 2014), formation control (Ander-
son et al., 2008; Oh et al., 2015b), or ocean sam-
pling (Leonard et al., 2007), or general multi-agent
research problems in terms of applications (Murray,
2007).

This paper intends to present a survey from
a new perspective in terms of graph Laplacian,
which connects different research issues of multi-
agent systems in one string for distributed coordi-
nation. Based on this motivation, we categorize the
existing results in multi-agent systems into ordinary
Laplacian, signed Laplacian, complex Laplacian, and
generalized Laplacian based protocols according to
the type of graph Laplacian.

1. Ordinary Laplacian based protocols: An or-
dinary Laplacian refers to a Laplacian matrix as-
sociated to a graph with positive and real weights.
Consensus, translational formation control, flocking,
and distributed resource allocation can all be solved
by ordinary Laplacian based protocols.

2. Signed Laplacian based protocols: A signed
Laplacian refers to a Laplacian matrix associated
to a graph with real weights that may be positive
or negative. Bipartite consensus, cluster consensus,
optimization over convergence speed, affine forma-
tion control, and distance-based localization call for
signed Laplacian based protocols.

3. Complex Laplacian based protocols: A com-
plex Laplacian refers to a Laplacian matrix associ-
ated to a graph with complex weights. Similar forma-
tion control and relative position based localization
use complex Laplacian based protocols.

4. Generalized Laplacian based protocols: A
generalized Laplacian refers to a Laplacian matrix
associated with a graph with weights that may
be matrices, time-varying variables, or dynamic
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systems. This appears in bearing-angle based lo-
calization, distributed coordination over switching
topologies, and distributed coordination with dy-
namic gains.

The rest of this paper is structured as follows:
Preliminaries about graph and graph Laplacian are
presented in Section 2. In Section 3, we survey the
recent development of multi-agent research with re-
spect to different categories of graph Laplacian. Sec-
tion 4 highlights several promising research direc-
tions along with some open problems and Section 5
concludes the paper.
Notations: 1 stands for a vector of all 1 elements.
In represents the n×n identity matrix. For a vector
w = [w1, w2, . . . , wm]T, diag(w) is the diagonal ma-
trix with its diagonal entries being w1, w2, . . . , wm.

2 Preliminaries

This section introduces basic concepts and no-
tations of graph and graph Laplacian.

2.1 Graph concepts

Throughout the paper, a system of n agents is
modeled as a graph. Specifically, agents are repre-
sented as nodes of a graph and interactions due to
sensing and communication are represented as edges
of the graph. Next, we review basic notions from
graph theory (Godsil and Royle, 2001) and several
new notions (Lin et al., 2014; Wang et al., 2014b).

A directed graph G = (V , E) consists of a node
set V = {1, 2, . . . , n} and an edge set E ⊆ V × V .
An edge of G is denoted by an ordered pair of nodes
(j, i), which means that the edge has tail at node
j and head at node i. Alternatively, (j, i) is called
an ‘incoming edge’ of node i and an ‘outgoing edge’
of node j. If (j, i) ∈ E , node j is called an ‘in-
neighbor’ of i and node i is called an ‘out-neighbor’
of j. We define Ni as the in-neighbor set of agent i,
i.e., Ni := {j : (j, i) ∈ E}.

A ‘walk’ in a directed graph G is an alternating
sequence p : v1e2v2e2 . . . vkek of nodes vi and edges ei
such that ei = (vi, vi+1) for every i = 1, 2, . . . , k − 1.
If there exists a walk from node u to v in G, then node
v is said to be ‘reachable’ from node u. A directed
graph is said to be ‘strongly connected’ if every node
is reachable from every other node. Moreover, a
directed graph is said to be ‘rooted’ if there exists a
node, from which every other node is reachable.

For a directed graph G, a node v is said to be
‘2-reachable’ from a non-singleton subset of nodes
{u1, u2, . . . , uk} if there exists a walk from a node
in {u1, u2, . . . , uk} to v after removing any one node
except v. A directed graph G is said to be ‘2-rooted’
if there exists a subset of two nodes, from which
every other node is 2-reachable. The notions of k-
reachable and k-rooted for k ≥ 2 are defined in the
same manner.

We consider undirected graphs as directed ones
with special properties. That is, if a directed graph
G = (V , E) satisfies the property that (i, j) ∈ E and
(j, i) ∈ E , then G is said to be ‘undirected’.

2.2 Graph Laplacian

A weighted ‘adjacency matrix’ A = [aij ] ∈
R

n×n of a directed graph G with n nodes is defined
such that aij is the weight of edge (j, i) satisfying
aij �=0 if (j, i) is an edge of G and aij =0 otherwise.
The ‘degree matrix’ D = [dij ] ∈ R

n×n is a diagonal
matrix defined as

dij =

{∑
j∈Ni

aij , i = j,

0, otherwise.

The graph Laplacian is then expressed as

L = D −A.

From the definition, it is certain that L1 = 0. In
other words, 0 is always an eigenvalue of L with the
associated eigenvector 1.

For an undirected graph, suppose that it
has m edges, labeled 1, 2, . . . ,m with weights
w1, w2, . . . , wm. We can then arbitrarily assign a
direction for each edge. The ‘incidence matrix’
B = [bil] ∈ R

n×m is defined as

bil =

⎧⎪⎪⎨
⎪⎪⎩
1, edge l starts from node i,

−1, edge l ends at node i,

0, otherwise.

In this case, the Laplacian can be written as

L = Bdiag(w)BT,

where w = [w1, w2, . . . , wm]T. The Laplacian
of an undirected graph is symmetric and positive
semi-definite.
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3 Survey of distributed multi-agent
coordination

Due to the feature of local views in multi-agent
systems, the agents can access only the relative in-
formation about a portion of other agents. That is, if
we denote by xi the state of agent i (i = 1, 2, . . . , n),
then the following information

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

yij1 = xj1 − xi,

yij2 = xj2 − xi,
...

yijm = xjm − xi,

shall be available to agent i, where j1, j2, · · · , jm ∈
Ni. This relative information is then used by agent
i to make a control signal for local coordination. If
a linear feedback control is considered, then it must
be of the form given in Fig. 2. Such a control struc-
ture naturally leads to a Laplacian associated to a
graph with weights Kij , where Kij can be a static
gain or a dynamics. Depending on the type of Kij ,
we classify distributed multi-agent coordination into
four categories.

Kij

Kij

Kij

yij

yij

yij

ui

... ...+

1

2

m

1

2

m

Fig. 2 Linear feedback control

3.1 Ordinary Laplacian based protocols

When the gains Kij in Fig. 2 (namely, the
weights on the edges of the graph modeling a multi-
agent system) are real scalars and positive, the re-
sulting Laplacian is called the ‘ordinary Laplacian’.
Consensus and its related extensions such as transla-
tional formation control, flocking, and distributed re-
source allocation adopt the ordinary Laplacian based
protocols.

3.1.1 Consensus

Consensus is a basic distributed coordination
problem in multi-agent systems. ‘Consensus’ means
the agreement of all agents on some common fea-

tures by negotiating with their neighbors from ar-
bitrary initial states. The consensus features can
be positions, velocities, attitudes, and many other
quantities. The consensus problem was originally
studied in management science (Degroot, 1974) and
similar ideas were found in distributed computing
(Tsitsiklis, 1984; Tsitsiklis et al., 1986). In recent
years, some consensus algorithms were studied un-
der various setups (Jadbabaie et al., 2003; Lin et
al., 2004; 2005; Olfati-Saber and Murray, 2004;
Moreau, 2005; Ren and Beard, 2005; Hong et al.,
2006; Cortés, 2008; Ren, 2008; Tahbaz-Salehi and
Jadbabaie, 2008; Stanković et al., 2009; Tian and
Liu, 2009; Nedic et al., 2010; Li et al., 2011; Cai
and Ishii et al., 2012; Hendrickx and Tsitsiklis, 2013;
Fanti et al., 2015).

1. Continuous-time consensus
Consider agents with single-integrator dynamics

given by
ẋi = ui, (1)

where xi ∈ R and ui ∈ R are the state and control
input of agent i, respectively. A linear consensus
law was studied in Jadbabaie et al. (2003), Lin et al.
(2004), Olfati-Saber and Murray (2004), and Ren
and Beard (2005) as

ui =

n∑
j=1

aij(xj − xi), i = 1, 2, . . . , n, (2)

where aij is a positive real constant, which is the
weight attributed to edge (j, i) from the graph per-
spective. With control law (2), the multi-agent sys-
tem can be written in a matrix form:

ẋ = −Lx, (3)

where x = [x1, x2, . . . , xn]
T and L is the ordinary

Laplacian associated with graph G.
Consensus is said to be ‘achieved’ if for all xi(0)

and all i, j = 1, 2, . . . , n,

|xi(t)− xj(t)| → 0 as t→ ∞.

It is known that consensus is achieved for system (3)
if and only if L has a simple zero eigenvalue, or equiv-
alently, the directed graph is rooted (having a span-
ning tree is an equivalent notion (Ren and Beard,
2005)).

To apply the consensus algorithms in practice,
many factors should be taken into consideration,
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such as link failures, communication delays, distur-
bances from the environment, and complicated agent
dynamics. Therefore, the consensus problem has
been further investigated (Olfati-Saber and Murray,
2004; Hong et al., 2006; Bliman and Ferrari-Trecate,
2008; Cortés, 2008; Tian and Liu, 2009; Zhu and
Cheng, 2010; Cao et al., 2011; Li et al., 2011; Hen-
drickx and Tsitsiklis, 2013).

2. Discrete-time consensus
For implementation on digital platforms, a

discrete-time counterpart of the consensus laws is
considered. That is, in discrete time, the single-
integrator (1) can be approximately written as

xi[k + 1]− xi[k]

T
= ui[k], (4)

where k is the discrete-time index, T is the sampling
period, and xi[k] and ui[k] denote the state and con-
trol input of the ith agent at t = kT , respectively.
The consensus control law in discrete time takes the
same form:

ui[k] =

n∑
j=1

aij(xj [k]− xi[k]), i = 1, 2, . . . , n, (5)

where aij is a positive real constant. Substituting
Eq. (5) into Eq. (4), the multi-agent system can then
be written in a matrix form:

x[k + 1] = (In − TL)x[k], (6)

where x[k] = [x1[k], x2[k], . . . , xn[k]]
T and L is the

Laplacian associated to graph G. Under the assump-

tion that T <
1

maxi lii
, the same result can be es-

tablished as the continuous-time counterpart. That
is, consensus is achieved for system (6) if and only
if L has a simple zero eigenvalue or equivalently the
directed graph is rooted.

3.1.2 Translational formation control

Formation control refers to a control task that
aims to steer a group of agents to form a specific rela-
tive configuration between each other. This problem
is relatively straightforward in the centralized case,
in which all team members know the desired shape,
location, and orientation of the formation. How-
ever, in many situations, the agents cannot access
the global information in a centralized way. As a
result, distributed formation control attracts huge
attention.

Suppose that the agents have a common sense
of direction in the plane. Consensus control schemes
can be modified by including displacement vectors
to solve the formation control problem (Lin et al.,
2004; 2005; Ren, 2007; Huang and Wu, 2010; Kuriki
and Namerikawa, 2014). However, it should be noted
that the formation achieved by the modified consen-
sus control schemes has only translational freedom
as compared to the desired formation specified in a
global coordinate system, which is then referred to
as ‘translational formation control’ in this study.

Regarding translational formation control, Lin
et al. (2004) pointed out that if convergence to a
point formation is feasible, then more general for-
mations are achievable too. The simplest strategy
for formation control in the plane may be the cyclic
pursuit strategy given by{

żi = (zi+1 + ξi)− zi, i = 1, 2, . . . , n− 1,

żn = (z1 + ξn)− zn,
(7)

where zi ∈ C is the position of agent i, and
(ξ1, ξ2, . . . , ξn) =: ξ is the target configuration of the
n agents satisfying that the centroid of them is at
the origin. The vector form of Eq. (7) is

ż = −Lz + ξ, (8)

where z is the vector of all zi’s, and L is the ordi-
nary Laplacian of the cycle graph that models the
cyclic interactions. For a more general interaction
graph, by analyzing the associated Laplacian, it can
be concluded whether a translation formation can be
achieved or not.

If the agents do not have a common sense of
direction, a simultaneous orientation alignment and
formation control strategy was studied in Oh and
Ahn (2014). The control strategy has two compo-
nents. The first component is concerned with orien-
tation alignment, designed as

θ̇i =
∑
j∈Ni

aij(θj − θi), (9)

where θi is the orientation angle of agent i’s local
frame and aij is a positive real constant. Let Θ =

[θ1, θ2, . . . , θN ]T. Then from Eq. (9), it is obtained
that

Θ̇ = −LΘ, (10)

which is the standard consensus control law given in
Eq. (3). Therefore, there exists Θ∞ = θ∞1 such that
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Θ(t) exponentially converges to Θ∞ if the graph is
rooted. The second component is concerned with the
translational formation control, designed as

ui
i =

∑
j∈Ni

bij((z
i
j − zi

i)− (z∗
j − z∗

i )), (11)

where ui
i ∈ R

2 and zi
j ∈ R

2 denote the control input
and the position of agent j in agent i’s local frame
respectively, z∗

j − z∗
i is the desired displacement be-

tween agents j and i with respect to some common
frame, and bij is a positive real constant. Under
the orientation alignment law (10) and the forma-
tion control law (11), the multi-agent system expo-
nentially converges to the desired formation with its
orientation determined by θ∞.

Due to distributed and linear features of these
ordinary Laplacian based formation control laws, re-
search focuses have also been extended to forma-
tion control with more specifications such as collision
avoidance and robustness to disturbances (Cortés,
2009; Huang and Wu, 2010; Kuriki and Namerikawa,
2014).

3.1.3 Flocking

Flocking is an amazing natural phenomenon,
e.g., flocking of birds, schooling of fish, and swarming
of bacteria (Okubo, 1986), attracting much attention
in biology, physics, and computer science (Reynolds,
1987). This phenomenon emerges from limited en-
vironmental information and simple protocols that
organize a large number of agents into a coordinated
motion. As a control problem, ‘flocking’ means that
the same velocity is attained by all the agents and the
distances between the agents are maintained (Mosh-
tagh et al., 2006).

Flocking can be considered as a variant of the
consensus problem. Thus, the ordinary Laplacian
based protocols can be adopted to solve the flock-
ing problem. The flocking problem has also been
widely investigated from single-integrator kinematics
to double-integrator dynamics, from timely commu-
nication to delayed communication, from fixed topol-
ogy to switching topology, and from without robust-
ness to robustness (Blondel et al., 2005; Moshtagh
and Jadbabaie, 2007; Li et al., 2008; He et al., 2012;
Wang and Peng, 2012; Martin, 2014; Semnani and
Basir, 2015).

3.1.4 Distributed resource allocation

The distributed resource allocation problem
deals with how to allocate available resources to a
number of users, called agents, in a distributed man-
ner, which can be found in many applications in
financial markets, smart grids, wireless sensor net-
works, cloud systems, etc. The problem is commonly
formulated as an optimization problem subject to a
network structure constraint. The network is mod-
eled as a directed graph of n nodes. Each node i
is associated with a variable xi ∈ R and a corre-
sponding convex cost function fi : R → R. Then the
following optimization problem represents a resource
allocation problem:

min

n∑
i=1

fi(xi) s.t.
n∑

i=1

xi = c, (12)

where c ∈ R is a given constant. The variable xi
can be thought of as the amount of some resources
available to agent i and −fi can be interpreted as the
local concave utility function. The problem (12) is
to find an allocation of the resource that maximizes
the total utility −∑n

i=1 fi(xi).
Assume that the cost functions fi are convex

and twice continuously differentiable with second
derivatives that are bounded below and above. The
optimization problem (12) has a unique optimal so-
lution x∗ = [x∗1, x

∗
2, . . . , x

∗
n]

T. Let

∇f(x) = [f ′
1(x1), f

′
2(x2), . . . , f

′
n(xn)]

denote the gradient of f at x. The optimality condi-
tions for this problem are

1Tx∗ = c, ∇f(x∗) = λ∗1,

where λ∗ is the unique optimal Lagrange multiplier
and 1 is the all-one-vector of a proper dimension.

A distributed iteration algorithm is proposed to
solve problem (12) (Xiao and Boyd, 2006), which
has the same idea as the ordinary Laplacian based
protocols for consensus. That is, each node updates
according to

xi[k + 1] = xk[k] +
∑
j∈Ni

aij(f
′
j(xj [k])− f ′

i(xi[k])),

where aij > 0 is a real number. Aggregating all node
updates together leads to the matrix form

x[k + 1] = x[k]−L∇f(x[k]), (13)
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where L is the ordinary Laplacian matrix associ-
ated to the graph with weights aij . Under the
assumption that the Laplacian is balanced (i.e.,
1TL = L1 = 0), for an initial condition satisfy-
ing 1Tx[0] = c, it follows that 1Tx[k] = c for all
k by the update law (13), which ensures the equal-
ity constraint in (12). Moreover, the equilibrium
x̄ of Eq. (13) satisfying A∇f(x̄) = 0 implies that
∇f(x̄) = λ̄1 for some λ̄. This means that the equilib-
rium x̄ of Eq. (13) is the optimal solution x∗ of prob-
lem (12). Therefore, the ordinary Laplacian based
law given in Eq. (13) solves the distributed resource
allocation problem.

In many applications, the resource allocation
problem also includes an inequality constraint for
each variable xi. That is, in addition to the linear
equality constraint in problem (12), there are addi-
tional inequality constraints:

xi ≤ xi ≤ x̄i, for i = 1, 2, . . . , n, (14)

where xi and x̄i are two real numbers. In this case,
Yang et al. (2013) introduced a surplus variable for
each node to temporarily store the mismatch due
to the inequality constraint by adopting the surplus
idea of solving the averaging consensus problem for
directed graphs (Cai and Ishii, 2014), and then solved
the distributed resource allocation problem (12) with
inequality constraints (14). The algorithm proposed
in Yang et al. (2013) can deal with static directed
graphs without the need of assuming the Laplacian
to be balanced. To overcome the challenges caused
by time-varying directed communication graphs, Xu
et al. (2015) proposed a non-negative surplus scheme
and applied the ordinary Laplacian based idea to
solve the same distributed resource allocation prob-
lem (12) subject to the inequality constraints (14).
Moreover, various consensus based algorithms have
been developed to solve the distributed resource al-
location problems. Here we provide some examples.
Lakshmanan and de Farias (2008) proposed a decen-
tralized, asynchronous gradient-descent method that
is suitable for implementation in the case where the
communication between agents is described in terms
of a dynamic network. Dominguez-Garcia et al.
(2012) addressed the problem of optimally dispatch-
ing a set of distributed energy resources in a dis-
tributed fashion, and showed how the ratio consen-
sus algorithm, which is a linear-iterative algorithm,
enables components in a multi-component system to

achieve consensus on a certain quantity. Kar and
Hug (2012) presented a fully distributed approach for
economic dispatch in power systems. The approach
is based on the consensus + innovation framework,
in which each network agent participates in a collab-
orative process of neighborhood message exchange
and local computation. Xing et al. (2015) also pre-
sented a fully distributed algorithm for the economic
dispatch problem, with the goal of minimizing the
aggregated cost of a network of generators, which co-
operatively furnish a given amount of power within
their individual capacity constraints.

3.2 Signed Laplacian based protocols

When the gains Kij in Fig. 2 (namely, the
weights on the edges of the graph modeling a multi-
agent system) are real scalars but may be positive or
negative, the resulting Laplacian is called the ‘signed
Laplacian’. Bipartite consensus, cluster consensus,
optimization over convergence speed, affine forma-
tion control, and distance-based localization call for
a signed Laplacian based approach. A signed Lapla-
cian can be thought of as a generalization of ordi-
nary Laplacian, and many new treatments on signed
Laplacian have to be developed due to its distinct
features.

3.2.1 Bipartite consensus

For a multi-agent system, ‘bipartite consensus’
means that the states of all the agents converge to
a value which is the same in modulus but not in
sign. For this problem, some edges of the graph are
weighted by positive numbers while some others are
weighted by negative numbers. A positive weight
is associated to a friend relationship between two
agents linked by an edge, while a negative weight
is associated to an enemy relationship between two
agents linked by an edge (Wasserman and Faust,
1994; Easley and Kleinberg, 2010). A graph with
signed weights is said to be ‘structurally balanced’
if it admits a bipartition (V1 and V2) of the nodes
such that (1) V1 ∪ V2 = V , (2) V1 ∩ V2 = ∅,
(3) aij ≥ 0 for i, j ∈ Vq, q ∈ {1, 2}, and (4)
aij ≤ 0 for i ∈ Vq and j ∈ Vr, q �= r, q, r ∈ {1, 2}.

It is said to be ‘structurally unbalanced’
otherwise.

For a graph with signed weights aij , one type of
signed Laplacian Ls = [lsij ] ∈ R

n×n is defined in the
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following form (Kunegis et al., 2010):

lsij =

{ ∑
k∈Ni

|aik|, j = i,

−aij , j �= i.
(15)

For a symmetric Ls, it was shown in Kunegis et al.
(2010) that the signed Laplacian Ls is positive semi-
definite and that it is positive definite if and only if
the graph is structurally unbalanced.

In Altafini (2013), a control law was proposed
to solve the bipartite consensus problem using signed
Laplacian. Just like the ordinary Laplacian for the
consensus problem, one can have the same gradient
system for the bipartite consensus problem, i.e.,

ẋ = −Lsx, (16)

which in components reads

ẋi = −
∑
j∈Ni

|aij |(xi − sgn(aij)xj), (17)

where | · | represents the absolute value of a real num-
ber and sgn(·) is the standard signum function. It
was then shown that system (16) admits a bipartite
consensus solution if and only if the graph modeling
the multi-agent system is structurally balanced. But
the premise is that the graph is connected when it is
an undirected graph and that the graph is strongly
connected and the weights on pairs of edges of the
same nodes have the same sign when it is a directed
graph.

Such an idea of using signed weights and signed
Laplacian has been extended to solve various bi-
partite consensus problems, for example, Morbidi
(2013), Jiang et al. (2014), and Zhang H and Chen J
(2014).

3.2.2 Cluster consensus

The consensus condition in Section 3.1.1 is
known as ‘complete’ in the sense that all the agents
are required to converge to the same state. However,
a real-world network may be composed of multiple
smaller subnetworks, called clusters. As a result,
agents in the network may reach more than one con-
sistent state, while the agents in the same cluster
reach consensus. Very recently, increasing attention
has been paid to cluster consensus (Wu and Chen,
2009; Wu et al., 2009; Lu X et al., 2010a; 2010b; Yu
and Wang, 2010; Liu and Chen, 2011; Xia and Cao,
2011; Han Y et al., 2013; Qin and Yu, 2013), by which

it means that for any initial states of the nodes, not
only all the nodes within the same cluster reach com-
plete consensus, but also there is no consensus be-
tween any two different clusters. Cluster consensus
can find examples in engineering control (Passino,
2002), distributed computation (Hwang et al., 2004),
etc.

The cluster consensus problem is often consid-
ered in the following extensively studied model that
consists of n coupled agents in m clusters:

ẋi = fi(t,xi) + cΓ

n∑
j=1,j �=i

aij(xj − xi), (18)

where xi ∈ R
p denotes the state of agent i (i =

1, 2, . . . , n), fi : R+ × R
p → R

p is continuous and
globally Lipschitz, c>0 is the coupling strength, Γ =

diag(γ1, γ2, . . . , γn) with γk ≥ 0 (k = 1, 2, . . . , n) is a
diagonal matrix denoting the inner coupling, and aij
is the coupling coefficient from agent j to agent i for
i �= j.

Denote the m clusters as⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C1 = {1, 2, . . . , r1},
C2 = {r1 + 1, r1 + 2, . . . , r2},

...
Cm = {rm−1 + 1, rm−1 + 2, . . . , n},

where 1 ≤ r1 < r2 < . . . < rm−1 < n. Then the
Laplacian matrix of the graph modeling the system
can be written in the following block matrix form:

L =

⎡
⎢⎢⎢⎣

L11 L12 . . . L1m

L21 L22 . . . L2m

...
...

...
Lm1 Lm2 . . . Lmm

⎤
⎥⎥⎥⎦ ,

where Lij (1 ≤ i, j ≤ m) specifies the coupling from
cluster Cj to Ci. In order to make the cluster consen-
sus problem solvable, it is often assumed that∑

j∈Cl

aij = constant, ∀i ∈ Ck, k �= l.

This means that for nodes within the same cluster,
the sums of the incoming weights from the same
other cluster are the same. A simple case is that the
constant is 0 for any k and l, which is also termed
the ‘in-degree balanced’ condition. This in-degree
balanced condition shows that the inter-cluster cou-
pling may be either positively or negatively weighted
and indeed both signs are required.
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To guarantee cluster consensus, it is usually as-
sumed that different clusters of nodes have different
self-dynamics fi(t,xi) and nodes in the same clus-
ter have the same self-dynamics (Lu W et al., 2010;
Xia and Cao, 2011), or that there is a leader for each
cluster of nodes and such leaders have no coincidence
with each other (Liu and Chen, 2011; Qin and Yu,
2013).

A comparison summary of consensus, bipartite
consensus, and cluster consensus is given in Table 1.

3.2.3 Optimization over convergence speed

In distributed multi-agent coordination, to
achieve some optimal features such as convergence
speed, the edge weights of the network need to be
selected to maximize or minimize specific cost func-
tions. As pointed out in Boyd (2006), signed weights
may improve the convergence speed such as in con-
sensus. Some specific cases of this general problem
have been addressed in a series of recent papers.

1. Fastest linear averaging. Find weights in a
distributed averaging network that yield the fastest
convergence (Xiao and Boyd, 2004). Besides, a class
of predictive controllers can be used to significantly
accelerate the convergence (Zhang H and Chen Z,
2014).

2. Absolute algebraic connectivity. Find edge
weights that maximize the algebraic connectivity of
the graph (i.e., the smallest positive eigenvalue of its
Laplacian matrix). The optimal value is called the
absolute algebraic connectivity by Fiedler (de Abreu,
2007).

3. Fastest mixing Markov chain. Find edge
transition probabilities that give the fastest mixing
Markov chain on the graph (Boyd et al., 2009).

4. Fastest mixing Markov process. Find the

edge transition rates that give the fastest mixing
Markov process on the graph (Sun et al., 2006).

5. Minimum total effective resistance. Find
edge weights that minimize the total effective resis-
tance of the graph. This is the same as minimizing
the average commute time from any node to any
other, in the associated Markov chain (Ghosh et al.,
2008).

6. Least steady-state mean-square deviation.
Find weights in a distributed averaging network,
driven by random noise, that minimize the steady-
state mean-square deviation of the node values (Xiao
et al., 2007).

In many interesting cases, the problems are con-
vex, involving minimizing a convex function (or max-
imizing a concave function) over a convex set. In
Boyd (2006), a variety of standard methods were pro-
vided to effectively solve the aforementioned prob-
lems. We take one example here. For an undirected
graph with m edges, a Laplacian can be written in
the following form:

L(w) =

m∑
l=1

wlblb
T
l = Bdiag(w)BT, (19)

where wl is the weight of edge l, diag(w) ∈
R

m×m is the diagonal matrix formed from w =

[w1, w2, . . . , wm]T ∈ R
m, and B = [b1, b2, . . . , bm] ∈

R
n×m is the incidence matrix of the graph. It is a fact

that the Laplacian of any undirected graph is posi-
tive semi-definite and has the smallest eigenvalue at
0. We define the eigenvalues of the Laplacian matrix
L as

0 = λ1 ≤ λ2 ≤ · · · ≤ λn.

Let φ be a symmetric closed convex function defined
on a convex subset of Rn−1. Then

ψ(w) = φ(λ2, λ3, . . . , λn)

Table 1 A comparison summary of consensus, bipartite consensus, and cluster consensus

Type Dynamics Laplacian No_0 Geometric condition Graphical condition

Bipartite ẋ = −Lsx Signed A simple zero ker(Ls) =

{
a

[
1

0

]
− a

[
0

1

]}
Sturcturally balanced

Consensus ẋ = −Lx Ordinary A simple zero ker(L) = {a1} Rooted

Cluster ẋ = −Lx Singed m zeros ker(L) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
a1

⎡
⎢⎢⎢⎢⎣

1

0
...
0

⎤
⎥⎥⎥⎥⎦+ · · ·+ am

⎡
⎢⎢⎢⎢⎣

0
...
0

1

⎤
⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

Each cluster is rooted

No_0: number of zero eigenvalues
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is a convex function of w. Thus, a symmetric con-
vex function of positive eigenvalues yields a convex
function of the edge weights.

Consider the optimization problem with the
general form:

min ψ(w) s.t. w ∈ W , (20)

where W is a closed convex set and the optimiza-
tion variable is w ∈ R

m. The problem (20) is to
choose edge weights on the graph, subject to some
constraints, to minimize a convex function of pos-
itive eigenvalues of the associated Laplacian ma-
trix, which often leads to signed weights and signed
Laplacian.

3.2.4 Affine formation control

Affine formation is a new type of collective pat-
tern in multi-agent systems, which was introduced
in Lin et al. (2013a) and Wang et al. (2014b). An
‘affine formation’ represents a class of collective con-
figurations that preserve collinearity and ratios of
distances (i.e., the agents lying on a line initially still
lie on a line and maintain the ratio of distances after
transformation). Identically, an affine formation of
a target configuration ξ = (ξ1, ξ2, . . . , ξn) with each
ξi ∈ R

d for 1 ≤ i ≤ n is any configuration in its
‘affine image’, defined as

A(ξ) := {q = (q1, q2, . . . , qn) | qi = Aξi + a,

A ∈ R
d×d, a ∈ R

d, i = 1, 2, . . . , n},
or equivalently,

A(ξ) :={q = (In ⊗A)ξ + 1n ⊗ a | A ∈ R
d×d,

a ∈ R
d}.

In Lin et al. (2013a), a signed Laplacian was
introduced, which satisfies

L1n = 0 and (L⊗ Id)ξ = 0,

where ξ is the target configuration and d is the di-
mension of the ambient space that the agents lie in.
In general, the signed Laplacian contains both pos-
itive and negative off-diagonal entries. The signed
Laplacian is then used to solve the affine formation
control problem. That is, for a group of n agents,
whose states are denoted by z = [zT

1 , z
T
2 , . . . , z

T
n ]

T

with zi ∈ R
d, the signed Laplacian based protocol

ż = −(L⊗ Id)z (21)

is able to steer the agents to form an affine forma-
tion of p under certain conditions. It is shown that
an affine formation is stabilizable over an undirected
graph if and only if the undirected graph is univer-
sally rigid, while an affine formation is stabilizable
over a directed graph if and only if the directed graph
is (d+ 1)-rooted.

For the undirected graph case, the signed Lapla-
cian L can be written in the form of Eq. (19). Thus,
an effective Laplacian to solve the affine formation
control problem can be found by solving the follow-
ing convex optimization problem:

min ψ(w) s.t. w ∈ W and (L(w) ⊗ Id)ξ = 0.

(22)
For the directed graph case, it was shown in

Wang et al. (2014b) that for almost all signed Lapla-
cian associated to a (d+1)-rooted graph, a real diag-
onal matrix D exists to assign the eigenvalues of DL

in the right-half complex plane. In other words, by
proper scaling, an effective Laplacian can be found
to solve the affine formation control problem. With
the same idea, Han T et al. (2014a; 2014b) ad-
dressed the formation merging control problem in
the 3D space under directed and switching topolo-
gies, which merges a group of followers and a group
of leaders into a single rigid formation.

3.2.5 Distance-based localization

Network localization is one of the primary func-
tions that are commonly desired in spatially dis-
tributed multi-agent systems (e.g., sensor networks
or robotic networks), as the positional information
may crucially help decide an agent’s behaviour or
identify the meaning of the data collected by the
agents. Localization is usually related to solve linear
or nonlinear equations, which come from the con-
straints in terms of the Euclidean coordinates of all
the agents and all the locally available inter-agent
measurements.

For inter-agent distance measurements, Khan
et al. (2009) developed a barycentric coordinate
based localization approach, which converts the non-
linear distance constraint to a linear equation related
to an ordinary Laplacian. Later, the idea was gener-
alized in Diao et al. (2014) by relaxing the assump-
tion that each sensor node lies inside the convex hull
spanned by its neighbors and all sensor nodes lie in-
side the convex hull spanned by the anchor nodes,
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which then calls for a signed Laplacian.
Consider a static sensor network in the plane,

composed of m ‘anchor nodes’ (their coordinates are
known in a global coordinate system Σg) and n ‘free
nodes’ (their coordinates in Σg are unknown and
need to be determined). A sensor network is com-
monly modeled as an undirected graph G = (V , E),
with each vertex i ∈ V corresponding to a sensor
node (either an anchor node or a free node) and each
edge (i, j) ∈ E indicating that sensor nodes i and j

are able to communicate with each other and that
the distance between i and j is available to both
sensor nodes.

Recall from Goldenberg et al. (2006) that if all
free nodes in the network are localizable, then ev-
ery free node in G has at least three disjoint paths
from the set of anchor nodes. This implies that lo-
cally each free node has at least three neighbors in
G. For any free node i ∈ V , denote by Ni the set of
all its neighbors in G. Moreover, denote by pi ∈ C

the coordinate of sensor node i in Σg (it is repre-
sented as a complex number just for notation sim-
plicity). We say that the real constants aij (j ∈ Ni)
are barycentric coordinates of node i with respect to
its neighbors if the following two properties hold:

linear precision: pi =
∑
j∈Ni

aijpj, (23)

constant precision:
∑
j∈Ni

aij = 1. (24)

Given inter-agent distance measurements, the
barycentric coordinates aij can then be computed,
based on which the aggregated constraint of (23)
can be written as

p = Ap, (25)

where p = [p1, p2, . . . , pm+n]
T and A is the ma-

trix with the (i, j)th entry being aij . Due to prop-
erty (24), it is then clear that L := I −A is a Lapla-
cian matrix satisfying L1 = 0. Note that in general,
the barycentric coordinates aij may be positive or
negative. Thus, L is a signed Laplacian. Eq. (25)
can be re-written as

Lp = 0. (26)

Without loss of generality, write p = [pT
a ,p

T
s ]

T,
where pa is the vector of the Euclidean coordinates of
all anchor nodes and ps is the vector of the Euclidean

coordinates of all free nodes. Then the localization
problem can be solved by solving for ps from the
linear equation (26) for given pa.

In addition to the aforementioned localization
scheme that relates to signed Laplacian, there are
also other localization approaches related to graph
Laplacian, see for example, the kernel locality pre-
serving projection (KLPP) technique (Wang et al.,
2009) and the semi-supervised Laplacian regularized
least squares algorithm (Chen et al., 2011).

3.3 Complex Laplacian based protocols

When the gains Kij in Fig. 2 (namely, the
weights on the edges of the graph modeling a multi-
agent system) are complex numbers, the resulting
Laplacian is called the ‘complex Laplacian’. Com-
pared with real-valued Laplacian, complex Laplacian
exhibits more freedoms and thus can be used to solve
formation shape control and sensor localization in
the plane without requiring all the agents to have a
common sense of direction.

3.3.1 Similar formation control

Similar formation control refers to the control
task that aims to steer a group of agents to form a ge-
ometry pattern of the same shape as desired regard-
less of its size. A similar formation is one obtained
from the target configuration via rotation, transla-
tion (horizontal and vertical), and scaling, and thus
has four degrees of freedom. Similar formation con-
trol using complex Laplacian was proposed in Ding
et al. (2010), and then extended and generalized
in Ding et al. (2012), Han et al. (2012), Han Z et
al. (2013; 2014), Wang et al. (2012a; 2012b; 2014a),
and Lin et al. (2013b; 2014). The goal is to drive
a network of agents in the plane to form a forma-
tion shape as desired while the size of the target
formation is not a concern. This is motivated mainly
by the observation that if the size of the formation
can be varied, the whole formation can dynamically
adapt to changes in the environment such as pass-
ing through a narrow area, adapt to changes of their
ongoing tasks, and respond to unseen threats.

First, several notions related to similar forma-
tion are presented. In the plane, a tuple of n complex
numbers

ξ = [ξ1, ξ2, · · · , ξn]T

is called a ‘target configuration’ for n agents, which
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defines a formation pattern in a specific coordinate
system. Usually, two agents are not expected to
overlap each other, and thus we assume that

ξi �= ξj for i �= j.

A similar formation has four degrees of freedom,
namely, translation (horizontal and vertical), rota-
tion, and scaling, which can be defined as

Fξ = c11n + c2ξ,

where c1, c2 ∈ C.
In Wang et al. (2012b), the formation control

law based on complex Laplacian for single-integrator
agents was given as

żi =
∑
j∈Ni

wij(zj − zi), i = 1, 2, · · · , n, (27)

where zi ∈ C represents the position of agent i, and
wij = kije

ιαij is a complex weight, for which kij > 0,
αij ∈ [−π,π), and ι =

√−1 is the imaginary unit.
The aggregated dynamics of the n agents under

control law (27) turns out to be

ż = −Lz, (28)

where z = [z1, z2, · · · , zn]T ∈ C
n and L is the com-

plex Laplacian.
Unlike real-valued Laplacian, complex Lapla-

cian may not have all eigenvalues in the right-half
complex plane. Therefore, to stabilize system (28),
a pre-multiplication of a diagonal complex matrix D

may be necessary. Thus, system (28) changes to

ż = −DLz, (29)

where D = diag(d1, d2, . . . , dn) is diagonal and in-
vertible. It is certain that the null space of DL is
the same as the one of L. Thus, the two systems
have the same equilibrium formation, and the basic
idea of solving the formation control problem is as
follows: First, find a complex Laplacian L such that
the set of all configurations with the desired forma-
tion shape is exactly the null space of L. Second,
find an invertible and diagonal matrix D to assign
the eigenvalues of DL such that all trajectories con-
verge to form the desired formation shape.

As shown in Wang et al. (2012a; 2012b; 2013)
and Lin et al. (2014), if the graph is undirected and
2-rooted, then for any formation vector ξ, a complex

Laplacian exists such that its null space equals the
set of all configurations with the desired formation
shape as ξ; if the graph is directed and 2-rooted, then
for any ‘generic’ formation vector ξ (a configuration
ξ is said to be generic if the coordinates ξ1, ξ2, . . . , ξn
do not satisfy any non-trivial algebraic equation with
integer coefficients (Gortler et al., 2010)), a complex
Laplacian exists such that its null space equals the
set of all configurations with the desired formation
shape as ξ. Moreover, for both cases, an invertible,
complex, and diagonal matrix D exists, which can
arbitrarily assign the eigenvalues of DL if the graph
is 2-rooted.

With a small number of knowledgeable agents
in the group knowing the desired size of the target
formation, Lin et al. (2014) showed how a formation
with the desired size can be accomplished. In addi-
tion, Han et al. (2012) and Lin et al. (2013b) solved
the similar formation control problems over a leader-
follower network based on complex Laplacian. The
formation manoeuvring problem with a constant ve-
locity was addressed in Han Z et al. (2013; 2014).

A comparison summary of translational forma-
tion control, affine formation control, and similar
formation control is given in Table 2.

3.3.2 Relative position based localization

Complex Laplacian also plays a very important
role in sensor network localization. In particular, for
sensor nodes with relative position measurements on
non-consistent local frames (i.e., the orientations of
local frames on different nodes are different and are
not known), the localization problem of determin-
ing all node positions has been rarely investigated.
Diao et al. (2013) first addressed the relative position
based localization problem by adopting the idea of
using complex Laplacian.

For a sensor network G containing m location-
known anchors and n sensor nodes to be localized,
called free nodes, denote by pi ∈ C the coordinate of
node i (either an anchor or a free node) in a global
coordinate systemΣg. For every free node i, suppose
that it measures the relative positions of its neighbors
in its own frame Σi. We denote by θi the orientation
difference between Σi and Σg. Then the relative
position information in node i’s local frame Σi can
be represented as

yij = eιθi(pj − pi), j ∈ Ni,
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Table 2 A comparison summary of translational, affine, and similar formation control

Formation Dynamics Dimension Laplacian No_0 Geometric condition Graphical condition Stability

Translational ż = −Lz + ξ, 2 or d Ordinary, 1 ker(L) = {a1 : a ∈ R} Rooted Stable
z ∈ C

n L ∈ R
n×n

Similar ż = −Lz, 2 Complex, 2 ker(L) = {c11+ c2ξ : 2-rooted Stabilizable
z ∈ C

n L ∈ C
n×n c1, c2 ∈ C} by a complex

diagonal D
Affine ż = −(L⊗ Id)z, d Signed, d+ 1 ker(L) = {(In ⊗A)ξ (d+ 1)- Stabilizable

z ∈ R
nd L ∈ R

n×n +1⊗ a : A ∈ R
d×d, rooted by a real

a ∈ R
d} diagonal D

No_0: number of zero eigenvalues

which is available to node i. Thus, with a sufficient
number of neighbors, sensor node i can solve a set of
complex coefficients wij to satisfy

∑
j∈Ni

wijyij = 0. (30)

Notice that for the same set of complex coefficients
wij , Eq. (30) implies

∑
j∈Ni

wij(pj − pi) = 0. (31)

Writing down all these equations for all nodes,
we have

Lp = 0, (32)

where p = [pT
a , p

T
s ]

T with pa and ps being the aggre-
gated coordinate vectors of all anchor nodes and all
free nodes respectively, and L is an (m+n)×(m+n)

complex Laplacian, which associates to the graph
with complex weights wij solved from Eq. (30). Note
that the anchor nodes do not need to measure the rel-
ative positions of their neighbors. Thus, the complex
Laplacian must be of the following form:

L =

[
0 0

B H

]
,

where B indicates the links from the anchor nodes
to free nodes and H indicates the links from other
free nodes. Thus, Eq. (32) turns out to be

Bpa +Hps = 0, (33)

and the localization problem becomes to find a solu-
tion ps from linear equation (33).

For the localization problem using relative po-
sition measurements, a necessary and sufficient con-
dition was presented for localizability in terms of 2-
reachability of the sensing graph (Diao et al., 2013;

Lin et al., 2015). Moreover, a distributed and it-
erative localization algorithm was provided as well
to compute the coordinates of each sensor node in
the global coordinate systemΣg, which requires only
communication between neighbors.

3.4 Generalized Laplacian based protocols

Besides positive real numbers, both positive
and negative real numbers, and complex numbers,
the gains Kij in Fig. 2 can be matrices, variables,
or even dynamic systems. With these generalized
weights and generalized Laplacian, many more real-
istic scenarios can be taken into account and many
more complicated control tasks can be addressed
in the same framework. We will survey matrix-
valued Laplacian, time-varying Laplacian, and dy-
namic Laplacian as well as relevant distributed coor-
dination problems.

3.4.1 Bearing-angle based localization

In some applications such as bearing-angle
based localization, a matrix-valued Laplacian will be
adopted to solve the localization problem. The work
of Zhu and Hu (2014) is an example, which aims to
determine the locations of all sensor nodes in a net-
work given the angle-of-arrival (AOA) measurements
among neighboring nodes together with the absolute
coordinates of several anchor nodes.

To solve the AOA based localization problem,
a matrix-valued Laplacian L was constructed us-
ing locally available AOA measurements, which was
called the ‘stiffness matrix’ in Zhu and Hu (2014).
To be more specific, the matrix-valued Laplacian
used in AOA localization has the block matrix form
L = [Lij ] with Lij ∈ R

2×2 given by

Lij =

{ ∑
k∈Ni

aikPik, i = j,

−aijPij , i �= j,
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where aij > 0 and Pij � eije
T
ij ∈ R

2×2 is a projec-
tion matrix which can be computed by node i using
its AOA measurement about node j. If the graph
modeling the sensing relationship of the sensor net-
work is an undirected graph, L has positive semi-
definite diagonal blocks and negative semi-definite
off-diagonal blocks. Moreover, each row and column
add up to zeros.

With the matrix weights aijPij , a distributed
protocol was then given in Zhu and Hu (2014) for
undirected networks:

˙̂pi = −
∑
j∈Ni

aijPij(p̂j − p̂i), ∀i, (34)

where p̂i ∈ R
2 represents the current estimate of

node i’s position pi. This dynamics is similar to
the continuous-time consensus protocol (2), with the
difference being the matrix-valued weights instead of
scalars.

Zhong et al. (2014) also developed effective al-
ternatives for sensor localization using AOA mea-
surements. Assuming that AOA information can be
mutually measured by pairs of sensor nodes in their
local frames, which may not share the same orien-
tation, a distributed localization scheme was then
proposed based on matrix-valued Laplacian.

3.4.2 Distributed coordination over switching
topologies

Instead of fixed constants or matrices, the
weights can be time-varying variables, which are of-
ten used to solve distributed coordination problems
under time-varying settings. A typical case is the
consensus problem over a switching topology. That
is, the topology switches over time, so is the Lapla-
cian (Lin et al., 2004; Olfati-Saber and Murray, 2004;
Ren and Beard, 2004; Moreau, 2005; Cao et al., 2011;
Proskurnikov, 2013; Wei and Fang, 2014).

For a multi-agent system with n agents, it
is associated with a time-varying weighted graph
G(t) = (V , E(t)), where V = {1, 2, . . . , n} is the ver-
tex set consisting of all agents in the system and E(t)
is the edge set at time t. The time-varying Laplacian
is then defined as L(t) = [lij(t)], with

lij(t) =

⎧⎪⎪⎨
⎪⎪⎩

−aij(t), i �= j and j ∈ Ni,

0, i �= j and j /∈ Ni,∑
k∈Ni

aik(t), i = j,

where aij(t) is a time-varying weight.
Thus, the multi-agent system governed by a

time-varying Laplacian is as follows:

ẋ = −L(t)x, (35)

where x = [x1, x2, . . . , xn]
T. For such a system, it is

well known that the system reaches consensus if there
exists T > 0 such that for any t, the graph associated
to

∫ t+T

t
L(τ)dτ is connected (for undirected graphs)

or rooted (for directed graphs).
With the similar way, the time-varying Lapla-

cian was adopted to solve the consensus problem for
double-integrator agents (Kingston and Beard, 2006;
Casbeer et al., 2008; Ren and Cao, 2008; Qin et al.,
2011; Zhang et al., 2011).

3.4.3 Distributed coordination with dynamic
Laplacian

For more complex agent models, distributed
multi-agent coordination naturally leads to the use
of dynamic Laplacian (i.e., the entries of the Lapla-
cian are also dynamic systems). However, very few
works are concerned with dynamic Laplacian.

In Oh et al. (2015a), a consensus problem was
considered for a network of linear systems, whose
models are represented by the multiplication of pos-
itive real systems and a single integrator in the s-
domain. This can be considered as a generalization
of single-integrator consensus networks. That is, in
the s-domain, the distributed multi-agent coordina-
tion can be described by

sXi(s) = −
∑
j∈Ni

aijGi(s)(Xi(s)−Xj(s)), (36)

whereXi(s) is the Laplace transform of xi(t). In this
scenario, aijGi(s) is the weight attributed to edge
(j, i), which is a dynamic system. The corresponding
Laplacian L(s) can then be defined as follows with
lij being the (i, j)th entry:

lij =

⎧⎪⎪⎨
⎪⎪⎩

−aijGi(s), i �= j and j ∈ Ni,

0, i �= j and j /∈ Ni,∑
k∈Ni

aikGi(s), i = j.

Let X(s) = [X1(s), X2(s), . . . , Xn(s)]
T. Then

the aggregated system of Eq. (36) can be written as

sX(s) = −L(s)X(s). (37)



Han et al. / Front Inform Technol Electron Eng 2015 16(6):429-448 443

Certainly, the properties of the dynamic Laplacian
L(s) determine the collective behaviors of the multi-
agent system.

The system (36) was also considered in Wang
and Elia (2010) to model the consensus network with
dynamic communication channels. It was shown that
for an undirected graph, system (36) asymptotically
reaches consensus if and only if G is connected and
the characteristic equation det(sIn + L(s)) = 0 has
a distinct root at zero, and all the other roots are in
the open-left-half complex plane.

4 Future research directions

Although there has been substantial progress
in multi-agent systems, many fundamental yet chal-
lenging problems remain unsolved. Summary and
discussion on further issues are provided in the
following.

4.1 Spectrum of variant graph Laplacians

Though the spectrum of ordinary graph Lapla-
cian has been well studied, the variants including
signed Laplacian, complex Laplacian, and general-
ized Laplacian have not been fully explored. How-
ever, the spectrum of these variant graph Lapla-
cians is very important in understanding how collec-
tive behaviors emerge from local coordination and
on how to design effective distributed coordination
schemes for engineering applications. As reviewed in
this paper, some basic links between graph connec-
tivity and the number of zero eigenvalues for vari-
ant graph Laplacians have been established, which
provide fundamental solutions to a variety of dis-
tributed multi-agent coordination problems. How-
ever, unlike ordinary Laplacian, signed Laplacian,
complex Laplacian, and generalized Laplacian may
have eigenvalues in the whole complex plane and ex-
hibit more complicated phenomena. In particular,
it is still unclear how the weights of different types
affect the spectrum of the corresponding Laplacian.
Moreover, it is more desirable to have a distributed
approach to find proper weights in some constrained
set such that the resulting multi-agent system meets
certain specifications, while at the present stage, cen-
tralized computation based on global knowledge of
the network may still be required. An example is
how to find a (block) diagonal matrix D to stabilize
a signed Laplacian, complex Laplacian, or matrix-

valued Laplacian in a distributed manner.

4.2 Distributed multi-agent coordination
over directed and time-varying graphs

In the analysis of distributed multi-agent co-
ordination, the directed graph case shows much
more challenges than the undirected graph case and
the time-varying graph case leads to more difficul-
ties than the static graph case. However, the na-
ture of a multi-agent network is often directed and
time-varying. Within the directed and time-varying
setup, many multi-agent coordination problems in-
cluding formation control, sensor localization, and
distributed optimization remain open and relevant
research is in its infant stage. To address these chal-
lenging issues, further study on variant graph Lapla-
cians associated to directed and time-varying graphs
is necessary. New tools have to be developed in the
future such that some breakthrough can be made.

4.3 Distributed multi-agent coordination
with interaction dynamics

As seen in this survey paper, most up-to-date
works still focus on static weights (either a scalar, a
complex number, or a matrix) for distributed multi-
agent coordination. On the one hand, from the
control viewpoint, dynamic feedback can solve some
problems that are not able to be solved by static
feedback; that is to say, if the weights Kij in Fig. 2
are a dynamic system rather than a static gain,
the multi-agent system may have better coordina-
tion performance. On the other hand, the dynamics
on the edges may also represent the dynamic be-
haviors of wireless communication channels or data
pre-processing techniques such as filters. Thus, the
multi-agent systems with dynamics on interaction
links present a more general framework and can
unify many realistic systems. Current study such
as Oh et al. (2015a) considered a very special case,
for which the dynamics Gi(s) in system (36) can be
taken out from the summation expression such that
L(s) can be decomposed into a product of a diagonal
matrix and an ordinary Laplacian.

4.4 Nonlinear multi-agent coordination

Graph Laplacian based approaches are linear
approaches for distributed multi-agent coordination.
However, the world is nonlinear. For example, the
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agent model may be nonlinear such as unicycle.
The measurement output may be nonlinear such
as formation control with only distance measure-
ments. The control specification may also be non-
linear, e.g., to maintain desired distances between
pairs of agents. Moreover, the coordination law may
have to call for a nonlinear one, as a linear one may
not be competent such as in solving the rendezvous
problem (Lin et al., 2007). Graph Laplacian based
linear approaches, however, serve a starting point for
nonlinear multi-agent coordination research. Thus,
it is fundamental and systematic to study nonlinear
multi-agent coordination by moving the coordination
results from linear setup to nonlinear setup.

4.5 Distributed coordination of heteroge-
neous agents

Heterogeneous agent networks are a common
form of multi-agent systems, meaning that the agents
in a network may have different sensing and com-
munication capabilities, different dynamic models,
and different autonomy. One of the challenges in
heterogeneous agent networks is the missing of a uni-
fied framework and analysis tool in determining the
system’s overall performance and capabilities when
the agents are non-homogeneous and equipped with
different resources. Interesting example problems
include sensor localization and formation control,
for which a combination of different measurements
(e.g., inter-agent distances, inter-agent bearings, and
inter-agent relative positions) is used in a network
by different agents. Another interesting example is
the synchronization problem with heterogeneous dy-
namics, whose individual systems are different and
in particular the state dimensions may be different.

5 Conclusions

Throughout the paper, we come to understand
that the graph Laplacian plays a significant role in
distributed multi-agent coordination, including con-
sensus, formation control, sensor localization, dis-
tributed optimization, etc. Though with different
focuses on different research issues in multi-agent
systems, they are commonly based on graph Lapla-
cians that may be of different types but have the
same structure. Thus, the analysis of coordination
behaviors can be transformed to the analysis of vari-
ant graph Laplacians. This paper surveyed recent

developments in multi-agent systems, particularly
related to graph Laplacian based approaches, and
highlighted several open fundamental yet challenging
research problems. We expect that this paper pro-
vides a helpful overview of distributed multi-agent
coordination principles for anyone who will conduct
research in multi-agent systems.
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