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Abstract— Narrow-band position error at mid-frequencies
around the open-loop crossover frequency can not be effectively
reduced using a conventional peak filter, because the attenuation
of sensitivity gains has to compromise with the associated
decrease of phase margin. This paper presents a general
second-order filter that is applicable to reject narrow-band
disturbances at any frequency range. The filter zero is designed
to minimally degrade the closed-loop system stability and obtain
a smooth sensitivity curve around the disturbance frequency. A
nonlinear optimization procedure is developed to select the filter
parameters such that the statistical position error is minimized.
Experimental results of a PZT-actuated head positioning control
system on spinstand demonstrate that the add-on filter can
further reduce the mid-frequency PES NRRO by 8% and
preserve the stability margin of the original control system.

Keywords—Hard disk drive, narrow-band disturbance filter,
PZT microactuator, servo control, spinstand.

I. INTRODUCTION

The narrow-band disturbances with spectral energies con-
centrating at narrow frequency bands commonly exist in a
practical servomechanism, e.g., the hard disk drive (HDD)
servo system. In HDDs, the track misregistration (TMR) is
composed of many factors such as the repeatable runout (RRO)
and the nonrepeatable runout (NRRO). Typically, a large por-
tion of the NRRO is contained within narrow frequency bands.
In order to meet the requirement for a high track density HDD,
the classical loop shaping methods and modern control theories
such as H2 and H∞ optimal control techniques have been
applied to reject the RROs and the narrow-band NRROs [1].
The modern control design based on state-space formulations
is an automated design tool, which however often results in an
impractically high-order controller. The classical loop shaping
methods can provide more intuition and a greater ability to
tune designs to achieve performance than the automated tools
[2]. The narrow-band disturbance filter proposed in this paper
is also based on the classical loop shaping technique.

In the HDD servo, the peak filter was effectively employed
to reject the low-frequency (100–600 Hz) narrow-band distur-

bance caused by disk shift, disk warp and spindle vibration
[3]. However, the peak filter is hardly applied to reject the
mid-frequency disturbances around the open-loop crossover
frequency because of its intrinsic phase loss that negatively
impacts the phase margin and distorts the sensitivity gain
around the disturbance frequency. Thus, a phase-lead peak
filter [4] was proposed to reject the mid-frequency (1.6 kHz)
narrow-band disturbances. The filter is improved by adding a
differentiator to provide additional π/2 phase lead such that
the phase margin is preserved and the sensitivity curve is
smoothly shaped. For the high-frequency (4–10 kHz) narrow-
band disturbance rejection, a phase-stabilized servo controller
[5] was developed to suppress the windage disturbance caused
by suspension vibrations. The controller should be designed
to keep the phase of the open-loop system at the disturbance
frequency within −2π±π/2 and ensure a second phase margin
(> 40 deg) to maintain the robust stability.

Previous filter designs are only effective to reject the
narrow-band disturbances in a limited frequency range. This
paper generalizes the filter design to minimally degrade the
closed-loop system stability and effectively reduce the distur-
bances in an unlimited frequency range by assigning the filter
zero. The developed filter was applied to a PZT-actuated head
positioning servo system on a spinstand platform. Experimen-
tal results demonstrated that the filter can further reduce the
mid-frequency position error signal (PES) NRRO by 8%.

II. GENERALIZED DISTURBANCE FILTER REALIZATION

AND DESIGN

This section presents a generalized narrow-band disturbance
filter with parallel realization added on a baseline servo system.
The design process of the filter parameters is developed such
that the resultant servo system can achieve optimal tracking
accuracy by rejecting the narrow-band disturbance.

A. Disturbance Filter Structure with Parallel Realization

The disturbance filter structure with parallel realization
added on to a baseline servo system is shown in Fig. 1. The

1–4244–0342–1/06/$20.00 c© 2006 IEEE ICARCV 2006



u
+ _

P(s) Σ
+

+ yr=0

d

C(s)

F(s)

+

+

Baseline
 controller Plant

ΣΣ

Disturbance filter

Σ
nym

+

+

Fig. 1. Block diagram of a disturbance filter structure with parallel realization
added on a baseline servo system (y: controlled output; y m: measured output,
d: output disturbance, n: noise).

baseline servo system is assumed to have basic stability and
performance. The filter is connected to the baseline controller
in a parallel form such that the filter can be easily embedded
in the tracking mode. Moreover, the parallel realization has
better numerical resolution than cascade realization in the case
of fixed-point implementation. The most important advantage
for this kind of structure is that the control design can be
decoupled into two stages. This can be illustrated by the
transfer function from the disturbance d to the controlled
output y in Fig. 1, which is given by

S(s) =
1

1 + PC(1 + F )

=
1

1 + PC

1 + PC

1 + PC + PCF
= S0SF (1)

where

S0(s) =
1

1 + PC
(2)

SF (s) =
1

1 + T0F
(3)

T0(s) =
PC

1 + PC
(4)

Note that S0 and T0 are the sensitivity function and com-
plementary sensitivity function of the baseline servo system,
respectively. The equation (1) shows that the overall sensitivity
function of the closed-loop system is the multiplication of two
subsystem S0 and SF , which implies that the controllers can
be designed by a two-stage approach. In the first stage, we
can design the baseline controller C(s) for basic closed-loop
stability and disturbance rejection performance indicated by
S0. In the second stage, we can design the filter F (s) based
on the pseudo-plant T0 as shown in (3) such that SF is shaped
to a desired curve for rejecting disturbances in some frequency
ranges.

Since we aim at rejecting the narrow-band disturbances, the
disturbance filter of the following form can be adopted

F (s) = K
s[ω0cos(ϕ) − sin(ϕ)s]

s2 + 2ζω0s + ω2
0

(5)

where
ω0: is the disturbance frequency, at which high disturbance

rejection is required;
ζ: is the damping ratio with ζ ∈ (0, 1);

ϕ: is the phase angle determined by

ϕ = arg
[
T0(jω0)

]
∈ [−π, π] (6)

K: is the positive filter gain. Moreover, the closed-loop
system will be guaranteed to be stable if

0 < K < γ (7)

where γ is the minimal positive real solution of K in
the following two equations{

Re[Q(ω, K)] = 0
Im[Q(ω, K)] = 0 (8)

with Q(ω, K) = 1+T0(jω)F (jω). Here, Re(·) and Im(·)
denote the real and imaginary part of a complex number,
respectively. Note that if (8) has no solution except K =
ω = 0, then γ = +∞.

The disturbance filter in (5) is a general high-gain controller
structure to reject narrow-band disturbances in a wide fre-
quency range because the filter zero location can be automati-
cally shifted according to the disturbance frequency associated
with the baseline servo system. The next two sections will
discuss the servo properties of stability and sensitivity gain
shaping due to the zero location and the filter gain.

B. Stability Properties Using the Disturbance Filter

The disturbance filter has two complex poles at p1,2 =
ω0e

±jθ, where θ = arcctan(− ζ√
1−ζ2

). The poles can provide

the high loop gain at the disturbance frequency. The filter
contains two real zeros at z1 = 0, z2 = ω0ctan(ϕ). z1

is specified at the origin in order to maintain the DC gain
substantially below the disturbance frequency as that of the
baseline servo system such that the corresponding sensitivity
gains are not affected. The other zero z2 is specified in order
to achieve phase stabilization, more specifically, the zero will
make the departure angles of the filter poles approach to π in
the root locus of T0(s)F (s). This is the correct choice since the
poles move in the most stable direction [6]. This property can
be verified by Fig. 2. Applying the rule for departure angles
from the root locus design method [7], the departure angle
from the pole p1 is given by

φdep = θ + α + β − π

2
+ πi, i =

{
1, for ϕ ∈ [−π, 0]
0, for ϕ ∈ [0, π] (9)

where α = arg[T0(p1)] denotes the sum of the angles from
the zeros of T0(s) to p1 minus the sum of the angles from the
poles of T0(s) to p1. In practice, the filter damping ratio ζ is
chosen as a small value (< 0.1) to provide the high gain at
the disturbance frequency. Thus, the filter poles will be very
close to the imaginary axis, and we can make the following
approximations

θ ≈ π

2
(10)

α ≈ arg[T0(jω0)] = ϕ (11)

β ≈
{ −ϕ, for ϕ ∈ [−π, 0]

π − ϕ, for ϕ ∈ [0, π] (12)
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Fig. 2. Root locus for the system T0(s)F (s). The departure angles from the
disturbance filter poles p1,2 approach to π by assigning the location of the
filter zero z2.

Substituting (10)–(12) into (9), it gives that

φdep ≈ π (13)

Therefore, the root locus at the filter poles will move towards
the left-half plane (LHP) when the loop gain K increases from
0. The point where the locus crosses the imaginary axis can
be computed by (8); and the corresponding K value equals to
γ, below which the poles of the closed-loop system are all in
the LHP, which guarantees the system stable.

C. Sensitivity Shape Properties Using the Disturbance Filter

The zero placement of the disturbance filter can further-
more lead to another important advantage of minimizing the
sensitivity gain at the disturbance frequency without obviously
distorting the gains at other frequency bands. This can be
confirmed by the sensitivity function of (3), from which it
gives that

|SF (jω0)| =
1

|1 + T0(jω0)F (jω0)|
≥ 1

1 + |T0(jω0)||F (jω0)| (14)

By computing the phase angle of F (s) at the disturbance
frequency s = jω0, it is easy to derive that

arg[T0(jω0)] + arg[F (jω0)] = 0 (15)

Therefore, the equal mark in (14) holds, which implies that
|SF (jω0)| approaches the minimum value that can be derived
as follows

|SF (jω0)|min =
1

1 + K
2ζ |T0(jω0)|

(16)

In fact, the equation (15) indicates that the filter zero
provides the exact phase lead amounting to the phase lag of
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Fig. 3. Nyquist plot. The filter zero provides the exact phase lead such that
T0F at ω0 is located on the positive real axis. Moreover, the overall curve of
T0F is moved away from the −1 circle, implying reduced sensitivity gains
around ω0 and no obvious distortion of the gains at other frequencies. The
“−1 circle” represents the unit circle whose center is at −1 point.
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Fig. 4. Frequency responses of the sensitivity gain of S F (s) with different
filter zero placements and disturbance frequency at various frequency range.
The curve achieved with optimal zero is smooth without a sharp peak.

T (s) at ω0 such that the point of T0(jω0)F (ω0) is assured
to locate on the positive real axis, where |SF (jω0)| reaches
the minimum. This property can be clearly illustrated from the
Nyquist plot in Fig. 3. Another feature observed from the figure
is that the phase lead provided by the filter zero tends to move
the overall curve of T0F away from the −1 circle. Thus, the
sensitivity gains around ω0 are reduced, and in the meantime
the sensitivity gains at other frequencies are not obviously
increased because the curve segments at these frequencies are
closed to the neighbourhood of −1 circle. Fig. 4 further shows
the comparison of the sensitivity gains obtained with different
filter zero placements at various frequency ranges. It is obvious
that the filter with optimal zero design achieves a smooth



sensitivity curve around the disturbance frequency, at which
the other two filters with different zeros exhibit sharp peaks.

D. Optimal Rejection of the Narrow-Band Disturbance

According to the waterbed effect in linear systems, the
push-down sensitivity gains around the narrow-band distur-
bance frequency is generally accompanied with the pop-up
sensitivity gains somewhere else. This phenomenon can be
observed from Fig. 4, where the curve achieved by the pro-
posed filter has no sharp peak but still has some region about 0
dB. Therefore, it is necessary to determine the peak value and
bandwidth of the filter associated with K and ζ such that the
disturbances along the entire frequency band is statistically
minimized while maintaining the other performance such as
the stability margin and servo bandwidth.

The selection for the disturbance filter parameters K and
ζ can be determined by an optimization process based on a
MATLAB/Simulink1 model with the block diagram in Fig.
1. It is assumed that the plant model P (s), the baseline
controller C(s) and the disturbance source d are known and
the measurement noise n is white noise. In the case that
the disturbance is unmeasurable, the method proposed by [8]
can be employed to estimate the equivalent disturbance. The
method can be simply described as: collect the time traces
of the measured output under the baseline servo, say ym(k),
k = 1, · · · , N , where N represents a sufficiently large number
of measurement points (e.g., N = 20000); then the disturbance
time traces can be estimated from the following equation

d(k) = Z−1{S0(z)−1ym(z)} − n(k) (17)

where Z−1{•} denotes the inverse z transform of a signal; and
n(k) has the same PSD (power spectral density) magnitude as
the baseline PSD magnitude of ym(k).

When the disturbance time traces are available, it is easy to
obtain the corresponding frequency spectrum plot. Hence, from
the plot the disturbance frequency ω0 of the dominant narrow-
band disturbance can be read out directly where the magnitude
is relatively high. Alternatively, adaptive technique [9] can
be used to search for the dominant disturbance frequency.
The disturbance is then injected into the Simulink model
and the controlled output y(k) are regenerated for different
filter parameters. Finally, the simulated results are evaluated
according to the performance criteria such that the optimal
filter parameters are determined. Our objective is to minimize
the standard deviation of y(k) under the disturbance d(k).
Thus, the optimization problem of the filter parameters is
formulated as follows

min
x=(K,ζ)

σ[y(x)] (18)

subject to the constraints :
PM(x) ≥ PM0

GM(x) ≥ GM0

fc(x) ≥ fc0

(0, 0) ≤ x ≤ (γ, 1)

1MATLAB and Simulink are registered trademarks of The Mathworks, Inc.

where PM0, GM0 and fc0 are the minimal requirements
of phase margin (PM), gain margin (GM) and open-loop
crossover frequency, respectively; and γ can be determined
by (8) for each fixed ζ.

The optimization problem can be solved by using the
constrained minimization function fmincon in the MATLAB
Optimization Toolbox [10]. The following remarks are in
order:

(1) The disturbance filter generally causes multiple open-
loop crossover frequencies, which leads to multiple
candidate PM values. Since the phase margin requires
the least phase perturbation to drive the system to insta-
bility, we must choose the minimum of all the possible
PMs [7]. Therefore, the PM along with the open-loop
crossover frequency need to be reevaluated.

(2) A tighten constraints and bound of the variables can
help to achieve global minimization. Moreover, a good
starting guesses of the variables can improve the execu-
tion efficiency and help to locate the global minimum
instead of a local minimum. An initial estimate of the
filter parameters can be set as

ζ =
∆(ω0 + 0.5∆)

4ω2
0

(19a)

K = (10M/20 − 1)
2ζ

|T0(jω0)| (19b)

where ∆ is the disturbance bandwidth, which is defined
as the frequency difference between the first two points
away from the peak whose magnitudes are 1/

√
2 times

of the peak value in the frequency spectra plot, and M
(unit: dB) is the desired reduction ratio of the narrow-
band disturbance.

(3) The solution might be trivial when the narrow-band
disturbance is not the dominant disturbance factor on
the controlled output.

III. APPLICATION

In this section, the disturbance filter design method is
applied to a PZT-actuated head positioning control system on a
spinstand platform for improved tracking accuracy by rejecting
the mid-frequency NRROs.

A. System Description

In disk drive industry, the spinstands are used for the testing
and evaluation of magnetic media and heads before the compo-
nents are assembled into the disk drive during production. With
the increasing requirement of a high areal density HDD, it is
urgent to increase the track density. Therefore, high precision
and efficient servomechanism is needed to position the head
on the desired track to support the increased demand for high
track density under the spinstand platform. Moreover, precise
positioning capability are required for disk media and head
testing, track profile and track interference analysis.

We have upgraded the capability of a Guzik spinstand
(1701A) with the new design of a PZT head cartridge base
[11], which has a displacement range of 2 µm and resolution
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Fig. 5. A PZT-actuated head positioning device on spinstand.

of 0.02 nm as the positioning device for quick and precise
tracking purpose. A picture of the platform setup is shown
in Fig. 5. The disk is rotated by the spindle at 4000 RPM.
The head position servo patterns are prewritten on the disk
using a multi-frequency servo encoding and decoding scheme
[12]. A dual-frequency PES demodulator implemented within
a digitizer board with on-board FPGA (Acqiris AC240) is used
to generate the PES based on the readback signals of the servo
patterns on real-time with the sampling frequency of 40 kHz.
The PES is then fed back to the controller for reader servo
control.

The plant model, i.e., the controlled object on the spinstand
platform consists of the PZT microactuator, the head cartridge
base and a suspension carrying the read/write head. The control
input is applied to the PZT microactuator via a PZT amplifier.
The control variable PES is the relative error between the head
position and the servo sectors prewritten on the disk surface.
Here, the plant model P (s) is identified using the following
equation with the mechanical system model Pm(s) and the
equivalent time delay model Pd(s)

P (s) = Pm(s)Pd(s) (20a)

Pm(s) = k

3∑
i=1

ri

s2 + 2ζiωis + ω2
i

(20b)

Pd(s) =
1

T
2 s + 1

e−λs (20c)

The modal parameters of the first resonance mode are r1 = 1,
ζ1 = 0.015, and ω1 = 11.5 kHz. Pd(s) includes an approxi-
mate transfer function of the zero-order hold [7] with T = 25
µs and a time delay term due to process and computation delay
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with λ = 20 µs. The frequency responses of the identified and
measured plant model are shown in Fig. 6.

B. Baseline Servo Design

The baseline controller C(s) is designed such that the servo
system ensures the basic stability margin and disturbance and
noise rejection performance. The designed C(s) is of the
following equation

Cs(s) = 0.003
s + 2π13000

s
· s2 + 2890s + (2π11500)2

s2 + 130100s + (2π11500)2

· s
2 + 6032s + (2π600)2

s2 + 603.2s + (2π600)2
(21)

which includes a PI controller, a notch filter to gain-stabilize
the first resonance mode and a peak filter to suppress the
low-frequency (600 Hz) disturbances caused by disk flutter
and spindle vibrations. The baseline servo system achieves an
open-loop crossover frequency fc = 1400 Hz, GM = 10 dB,
PM = 45 deg (see Fig. 8) and desired disturbance rejection at
low frequencies (see Fig. 9). The frequency spectrum of the
PES NRRO with baseline servo is shown in Fig. 7.

C. Optimal Filter for Mid-Frequency NRRO Rejection

Fig. 7 indicates that a narrow-band mid-frequency NRRO
occurs at the center frequency 1300 Hz, at which the baseline
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servo amplifies the disturbances. It is expected that the rejec-
tion of the disturbance at this band by the add-on disturbance
filter can further reduce the NRRO. Hence, the disturbance
filter in (5) has the following directly determined parameters

ω0 = 2π1300, ϕ = −71 deg (22)

After carrying out the optimization procedure in Sec. II-D with
the constraints chosen as PM0 = 40 deg, GM0 = 6 dB, fc0 =
1300 Hz, the other filter parameters in (5) are obtained as

K = 0.26, ζ = 0.11 (23)

The resulting servo system with the add-on filter has the
crossover frequency fc = 1800 Hz, GM= 7 dB, PM = 50
deg. The measured frequency responses in Figs. 8 and 9 show
that the add-on filter achieves gain attenuation around 1300 Hz
without obviously distorting the shape at other frequencies on
the sensitivity curve, while the phase lead feature has preserved
the stability margin.

The frequency spectrum of the PES NRRO with the add-
on filter is shown in Fig. 10, which indicates that the mid-
frequency NRROs around 1300 Hz are significantly attenuated
while the NRROs at other frequency bands are not obviously
amplified. The PES NRRO 3σ value is further reduced from
0.121 µinch with the baseline servo to 0.111 µinch with the
add-on filter, which is a 8% reduction ratio. The improvement
can increase the track density from 275 kTPI to 300 kTPI.
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Fig. 10. Frequency spectrum of the PES NRRO with the add-on filter
(3σ=0.111 µinch).

IV. CONCLUSION

A generalized optimal disturbance filter design method is
developed to reject the narrow-band disturbances at any fre-
quency range. The filter zero is assigned to minimally degrade
the closed-loop system stability and obtain a smooth sensitivity
curve around the disturbance frequency. The disturbance filter
was applied to a PZT-actuated head positioning servo system
on the spinstand platform. Experimental results showed that
the add-on filter further reduced the overall 3σ value of PES
NRRO by 8% and preserved the stability margin of the original
baseline servo system.
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