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Asymptotic Properties of Subband Identification

Damian Marelli and Minyue FuSenior Member, IEEE

Abstract—The purpose of this paper is to study the asymptotic
properties (i.e., strong convergence and asymptotic convergence u(t)
rate) of the subband identification method in every subband and
in the overall method. The study of strong convergence aims to an-
swer the question whether the “best possible” model is retrieved,
on the limit, with probability one. The study of the asymptotic con-
vergence rate aims to give an expression that quantifies how fast the
model approaches the “best possible” value as the number of sam-
ples goes to infinity. To do this, we need to generalize existing re-
sults for fullband identification. In the process of doing so, we come Fig. 1. Fullband identification block diagram.
up with a new notion of ergodicity, which we call strong ergodicity.

Strongly ergodic signals not only satisfy the assumptions required combined to give a fullband model. In many applications, the
forouranalysis butalso enjoy an interesting property, whichisthat - o124 models are used directly to estimate certain subband

strong ergodicity is invariant under a number of transformations. . . . L
In particular, the subband components of a strongly ergodic signal  Signals that are combined using a synthesis filterbank to form a

are guaranteed to be strongly ergodic, therefore, ergodic, which is required signal estimate.
not true for an ergodic signal in general. An example of such applications is speech echo cancellation.
Index Terms—Ergodicity, multirate signal processing, subband 1h€ reverberation model for a typical video conferencing room
adaptive filtering, subband signal processing, system identification. requires a tap size in the order of 500-1000 or more. A training
signal is often available for estimating the reveberation model.
Estimating a fullband model may be very computationally in-
volved, not to mention the numerical stability issues. In this
HE theory of linear system identification is well devel-case, subband models of reverberations can be estimated using
oped. Many references are available on the subject; saanore numerically efficient subband identification algorithm.
e.g., [1] and [2]. The setting of the identification problem is ilThese models can then be used to give an estimate of the source
lustrated in Fig. 1, where(t) is the input signalw(t) is the signal (i.e., the speech signal without reverberation) in each sub-
output of the systermy(¢) is the measured output(¢) is the band. Finally, these subband signals are combined to give an es-
process noisey(q) [q is the forward shift operator (i.ezz(¢t) = timate of the (fullband) source signal.
x(t + 1))] is the transfer function of the systefjiq, 6™) is the Another application where the subband identification tech-
model of the system, anil¢, ™) is the prediction error, where nique can be used is broadband wireless channel equalization.
6™ € C” represents the parameters of the model. In most sigi@dthogonal frequency division multiplexing is a preferred mod-
processing applicationg,(q, ™) is chosen to be a finite im- ulation technique. This involves using a possibly large number
pulse response (FIR) model. Identification algorithms based ohequally-spaced subcarriers to modulate transmit signals. The
the least-squares technique are commonly employed in practm@nmunication channel involves many (slowly time-varying)
and their behaviors are well understood. However, the direct useltipaths. One main difficulty with broadband wireless equal-
of these algorithms may not be most suitable for real-time appization is that the multipath channel model may require a large
cations where high-order FIR models are required (e.g., spe¢ap size, mainly due to the high data rate. Again, subband iden-
echo cancellation and channel equalization). tification can be used to solve this problem. There is an extra
To alleviate the computational problem, the so-called subdvantage of the subband technique in this application because
band identification technique has been proposed; see, e.g.,tfi8 subband signals (i.e., the subcarrier signals) are readily avail-
and [4]. Loosely speaking, the subband approach divides thigle at the receiver. This advantage yields a major computational
input and output signals into a number of subbands using ansdving [5].
ysis filterbanks. Each analysis filterbank consists of a bank of The purpose of this paper is to study the asymptotic properties
M filters whose output is downsampled by a factoriofi.e., ofthe subband identification method in every subband and in the
one out ofD samples is kept). Then, for each subband channelerall method. The asymptotic properties include strong con-
a subband model is identified. These subband models canveegence and asymptotic convergence rate. The study of strong
convergence aims to answer the question whether the “best pos-
. . . _ sible” model is retrieved, on the limit, with probability one. The
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cients) in the system model, whereas in [6], the transfer functidn Ergodicity and Stationarity

of the system model is used. However, these approaches turn o

to be inadequate for the subband case since the subband m

are typically used directly for reconstructing a particular S|gng§m

(as in the example of echo cancellation) rather than used

forming a fullband model. Motivated by this point, we choos

to consider the power of the prediction error as a measure of

performance of the identification. That is, we establish conaclme)

tions that give satisfactory asymptotic properties for this power Definition 1: Let {x(¢)} and{y(t)}, ¢ € Z be two random
The technical assumptions on the signals required in [6] hLocesses. They are jointly ergodic if, for every: Z

that the signals:(¢) andw(t) are assumed to be deterministic

onvention 1: All the random variables, random processes,
linear systems considered are assumed to be scalar and
plex, unless explicitly specified. The supersctipienotes
complex conjugateZ denotes the set of integers, axdlenotes

e set of natural numbers (i.e., integers greater or equal to

signals that do not need to be related in any particular wayy. y(t el (Dt —0 1
andu(t) is a random process. In [1] instead, the signgly, 7—o T Zx ) - STyt + )} b
w(t), and v(¢) are random processes, as required for our 1)

approach. However, the signal(t) needs to be generated Definition 2: Let {z(¢)} and{y(¢)}, ¢ € Z be two random
by a combination of white noise and a deterministic signgbrocess. They are jointly quasistationary if we have the fol-
filtered by linear time-variant systems, andt) needs to be lowing.

generated byi(t) through another linear filter. The stumbling 1) They have uniformly bounded second moments (i.e.,
block in generalizing the work of [1] to subband identification there existsM. > 0 such thaté |$(f)|2 1/2 <

is that this required assumption is not preserved after subband r ) '
decomposition. Hence, we cannot apply the results of [1] M, Vt € Z and equivalently fofy(#)}).

directly to subband identification. The approach we take in 2) Forallr € Z, the following limit exists:

this paper is to determine the conditions on the signéis,

w(t), andv(t) such that their subband components will satisfy

th(e )conditic()n)s compatible with those used in [1]. In the process 1520 T Z Ela™(B)y(t +7)}- 2)
of doing so, we come up with a new notion of ergodicity that -

we call strong ergodicity. Roughly speaking, we require the |f they further satisfy that, for alt, B € N anda, b € Z, the
fullband signalsu(t), w(t), andwv(t) to be strongly ergodic. following limit exists:

This guarantees that their subband components satisfy the

assumption required to carry out the asymptotic analysis for 1 X

each subband. An interesting property of strong ergodicity lim —ZE{:E*(At+a)y(Bt+b)}

is that it is invariant under a number of transformations. In ToT t=1

particular, the subband components of a strongly ergodic signal
are guaranteed to be strongly ergodic, and therefore ergo
which is not true for an ergodic signal in general. The bulk
this paper is devoted to the study of strong ergodicity because

n, they are jointly quasistationary by phases. If they further
osfaflsfy that for allD € N andr € Z

its analysis is quite involved mathematically.
The rest of the paper is organized as follows: In Section ﬂ“—»oo T ZE{‘T (Dt)y(Dt + 1)}
we introduce the notion of strong ergodicity and its key prop- T
erties. In Section 1, we study the asymptotic properties of the — lim = Z Oyt +7)}
fullband method in terms of the power of the prediction error. In T—o0 T —1
Section IV, we study the asymptotic properties of the subband
method in each subband and in the overall method. then they are almost stationary. Finally, if they further satisfy

that for allt, 7 € Z

Il. STRONGLY ERGODIC RANDOM PROCESSES
E{z*(t)y(t+7)} = hm —ZE{J: Hy(t+7)}

Given a collection of random processes, we can generate
another collection by filtering, downsampling, upsampling, and
additions of the random processes of the generating coIIecu&UP\en they are stationary.
We would like that if the generating collection is made of ergodic We will extend definitions 1 and 2 to a single random process
(in the second-order) random processes, then the genera@d to a finite collection of random processes as follows:
random processes were also ergodic. This turns out to bde€finition 3: A random process is ergodic (or quasista-
not true, but it is true under a stronger condition on théonary, etc.) if it is jointly ergodic (or jointly quasistationary,
generating random processes, which implies ergodicity. \W#c.) with itself. In addition, a collection of random processes is
call this condition strong ergodicity (in the second order).ergodic (or quasistationary, etc.) if every two random processes
However, first we need to review the notions of ergodicity anig the collection (including a random process with itself) are
stationarity. jointly ergodic (or jointly quasistationary, etc.).
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For.a.q.uasistationary random process, it'malfe sense to defmﬁ'h(k) 11(Z) be given byh(k) = ek k>0 _and
Definition 4: Let{z(¢)}, t € Z be a quasistationary random 0, k<0
process. The auto-correlation pf(t)} is defined by definey(w,t) = h(q)z(w, ). Then
T (w,7,T) = Z > e S|gr(w
.1 .
Ry(1) = Tlggofzf{x Oz (t+7)}. @) k=11=1
=t d w>0
- - Z { = asT — oo
The power of{z(t)} is defined by —~ 00, w<0

and therefore{y(w, t)} is not ergodic.

Sz = Rz (0) (4) Now, we are ready to introduce the notion of strong ergod-
] ) icity.
and the power spectra ¢i:(t)} is defined by Definition 5: Letp € {1,2}, and let{z(¢)} and{y(t)}, t €
oo Z be two random processes. They are strongly ergodijaiof
Z Ry (7)e=9e7 (5) order if the following holds.
r=—o0 1) They have uniformly boundethbth moments.

) o ] 2) ForanyA, B € N, there exists” > 0 such that
provided the infinite sum exists.

A/B./a,b,T)HpS%, Va,b e Z @)

102 (

where|¢||, = E{ery/p, £{.} denotes the expectation
operator, and

B. Strong Ergodicity

As stated previously, the ergodicity property can be lost after
one of the transformations mentioned. To illustrate this point,
we introduce two examples. The following example shows théty (4, B,a, b, T)
ergodicity can be lost after downsampling. 1 L

Example 1:Consider the probability spacé[—(1/2), =7 > a*(At+a)y(Bt+b)—€ {a*(At+a)y(Bt+b)}. (8)
(1/2)], B, A), whereB denotes the Boref-algebra on the set t=1

—(1/2), 1/2], and X\ denotes the Lebesgue measure. Define This definition extends to a single random process and to a
the random processr(w,t)}, w € [—(1/2),(1/2)],t € Z as setin away that is similar to Definition 3.

) 1/2(1 4+ signw)), tiseven The following proposition states that strong ergodicity im-
follows: z(w,?) = {1;221 - sig%w& tisodd ’ where plies ergodicity.
signw) = |w|/w. Let Proposition 1: If the collection of random process
. {en(t)},t € Z,n = 1,..., N is strongly ergodic of angth
order, then it is ergodic.
(w,7,T)= Z (w,t+7)—E{z(w, t)z(w, t+7)}- Proof: See A%pendix A. (]
=1 (6) Now, we want to explain what signals can form a strongly
Then ergodic collection. In Proposition 2, we introduce a strongly er-
godic collection of random processes, and in Theorem 1, we
Cop(w, 7, T) show how it can be transformed to generate other strongly er-

godic collections. In Lemmas 1-4, we introduce four possible
_ %1 (=1)'signw), Tiseven_, g o, tran;fprmations on the collgction tha}t preserve the strong er-
0, ~is odd godicity property. T_h_ey are intermediate steps in the Proof of
Theorem 1. Proposition 2 and Theorem 1 together show that the
so that{z(w, ¢)} is ergodic. Lety(w,t) = z(w,2t) = (1/2) usual si_g_na_ls of interest (_signals generated from w_hite noise and
(1 + signw)). Then determlnl_syc bounded signals) are strongly ergodic.
Proposition 2: Let {u,(t)},t € Z,n =1,..., N be a col-
lection of N random processes with uniformly boundéeth
moments, wherg € {1,2}, such that the set of random vari-
ables{ i, (t1),. .., un, (tr)} is independent, for any distinct

MH

il
-

1 .
Cy(w,r,T) = §S|gr’(w) -0 as T — oo

so that{y(w, ?)} is not ergodic. (n1,t1)s vy (nis ) € ({1,..., N}, Z). Let{hn1(q)}, t € Z,
The following example shows that ergodicity can be lost aftey — 1,..., N be a uniformly bounded collection of sequences
filtering with a time-invariant IR linear filter. of linear time-variant systems (i.e., there exis(s) € I1(2)

Example 2: Consider the probability spacé(—(1/2), such thathn.(r)| < h(r), forallr € Z,n — 1,..., N). If the
(1/2)],B,A). Define the random procesér(w,?)}, w €  collection{e, ()} is generated as follows:
[-(1/2),(1/2),t € Z by z(w,t) = (1/V2)

e”"(1+ signw)). DefineC,(w, 7, T) as in (6); then Z Bt (7)o (t = 7)

T=—00

—_

T
Cp(w, 7, T) = e~ "signw) = Z e=2 50, as T — oo. then,{e,(t)} is strongly ergodic opth order.
t=1

Proof: See Appendix A. [ ]
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Remark 1: Note that Proposition 2 includes the possibility{w(t)} is generated byu(t)} through another linear filter (see
that one or more of the signals are a deterministic signal [ib, Assumption D1]). Our result is derived under a different set
loo(Z). of assumption on the signals, i.e., Assumption 1. Indeed, our re-

Lemma 1: Let {e, ()}, t € Z,n = , N be strongly quirement on the signalu(¢)}, {w(¢)}, and{v(¢)} is weaker
ergodic ofpth order, and lek(t), ¢ € Z be a time-invariant than [1, Assumption D1].

linear system. If, for somé € {1 ..... ,N} Two assumption are required for this result.
Assumption 1:The signals{u(t)}, {w(t)}, and{v(t)} sat-
eni1(t Z h(T)ex(t — ) isfy the following.
T=—00 1) the collection formed by the signajs(¢)}, {w(t)}, and
then{e,(t)},n =1,..., N +1is strongly ergodic ofth order. {v(t)} is strongly ergodic of first order and quasista-
Proof. See Appendlx A. [ | tionary.

Lemma 2: Let {e,(t)},t € Z,n = 1,...,N be strongly  2) {v(¢)} is independent ofu(¢)} and{w(t)}.
ergodic ofpth order, and letx € N. If, forsomek e{1,...,N} Assumption 2:The model §(q,0™) is a parametric
linear model. The set of parameters is assumed to satisfy
" € D c C", whereD is assumed to be compact (i.e.,
then{e,(t)},n =1,..., N +1is strongly ergodic ofth order. ¢lose and bounded). There existé) € [1(Z) such that
Proof: See Appendix A. B 5(t,6™)] < §(t), for all ™ € D and allt € N, and there exists
Lemma 3: Let {e,(t)}, t € Z,n = 1,...,N bestrongly 4/() e ,(z), such thatg,(t,6m)| < §' (), for all 6" € D,
ergodic ofpth order, and letx € N. If, for somek; € {1.....N} andfork=1,...,n, wheregk(q ") is thekth component of

EN+1 (t) = ek(at)

_Je (L), Ltez the vectorg (qﬂ”) = (0/0a™)g(q,a™)|,~. The identification
enti(t) = 0, & ¢7 method is the prediction error method, i.e., the optimal vector
then{e..(t)},n = 1,..., N+ Lis strongly ergodic oftth order. of parameters up to tim®& (which is denoted by?y;) is chosen
Proof: See Appendlx A. m follows:

Lemma 4: Let {en(t)},t € Z,n = 1,..., N be strongly 07 € arg min Vi (6") (9)

ergodic ofpth order. If, for somé:, [ € {1,..., N} omeD
ent1(t) = en(t) + el(t) (note thatarg ming»ep f(0™) C D is a set), where

then{e,(t)},n = 1,..., N +1is strongly ergodic ofth order. _ 1 i 1. (t,6m)] (10)

Proof: See Appendix A. [ | N & 2

By combining Lemmas 1-4, we can prove the following the
orem, which we state without proof.

Theorem 1:Let {z,,(¢t)}, m = 1,...,M be apth-order
strongly ergodic collection of random processes {4f.(¢)},

(Note thatming.cp Vy (0™) is weII defined sincd/y (™) is a
continuous function, an® is compact).

Notation 1: Define the prediction error signal hy(¢, ™) =
w(t) — w(t, ™), and denote its power by;u(H"). Let

n = 1,..., N is another collection generated frofw,,(¢)}
by filtering with time-invariant linear filters, downsampling, up- Oope € arg min Sg(0™) and Sg, oo = Sa(0oy)-
sampling and additions, themw,,,(¢)} is strongly ergodic opth orep
order ' m Theorem 2: Consider the fullband identification method of
' Fig. 1, together with Assumptions 1 and 2. Then
Ill. FULLBAND IDENTIFICATION Nhfféo Sa(0n) = Sgopt w-p-1. (11)
In this section, we study the asymptotic properties of fullband  Proof: See Appendix B. |

identification. The system configuration is depicted in Fig. 1.
As explained earlier, our approach is similar to [1] and [6], blB- Asymptotic Convergence Rate
we focus on the power of the prediction error rather than the The following theorem gives a measure on how fast the power
parameters or the transfer function of the model. Two results @&®the prediction error goes to its optimal value. Asymptotic
presented on this section: one on the probability of convergengshvergence rate studies have been done in [1] and [6]. In [1],
of the power of the prediction error to its optimal value and one convergence study is done in terms of the speed at which
on the rate of the convergence. The results of this section will B vector of parametets; goes to its optimal value wheN
used in the analysis of subband identification in the next sectigjbes to infinity. The assumption on the signals is the same as
mentioned above, i.e., random processes related as in [1, As-
sumption D1]. The model is a quite generic one (uniformly
Theorem 2 states that the power of the prediction error costable linear model as defined in [1]). In [6], the convergence
verges, with probability one, to its optimal value. This result istudy is carried out by analyzing the speed at which the iden-
a generalization of [1, Th. 8.2], stated in terms of the power tified transfer functionj(e’“, 6%.) goes to its expected value,
the prediction error instead of the set of parameters. That tliestead of its optimal value, &8 andn go to infinity. The sig-
orem was proved under the assumption that the sign@l)} nals{u(¢)} and{w(¢)} are assumed to be deterministic signals,
is generated by a combination of white noise and a determamd they do not need to be related in any particular way. The
istic signal, filtered by uniformly bounded linear systems, anthodel is assumed to be FIR, and the wéyandrn go to infinity

A. Strong Convergence
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v(t)
u(t) w(t) y(t)
—» System |
h(g})l D
Y(t)
U(t) W, Vi(t6) 8(4,0)
——» (|l D —)G(a,0)— |—1 DR fTa—»

Fig. 2. Subband identification scheme.

is quite general (see [6, Assumption D1]). Our result states theTheorem 3: Consider the fullband identification method of
asymptotic convergence rate in terms of the speed at which ffig. 1, together with Assumptions 1-4. Then
power Sy (%) goes to its optimal value, a8 and» go to in-

finity. This approach includes the convergence of the vector of Jim Allm —E{S"( )} =50+ 2 (19)
parameters and the identified transfer function as mtermedl@\yﬁere S7(N) denotes the power of the signai(t, %) =
steps. The analysis is a generalization in the sense that the gig; 0%) — (1, 6%,,), S, is the power of the noise signait),
nals are assumed to be random processes that do not need

related in any particular way. On the other hand, our assump- . 1 [T

tions on the system (FIR) and the way andn go to infinity Xg = lm o [ 05 (w)Py(w)dw (16)

oJ =T

(lim,, o limy_. o) are slightly more restrictive. However, the 1 o 4
later can be generalized following the technique used in [6].  On(w)==Q% (e™)[R"] " lim E%[R"]7'Q,(e™) (17)
. . . n N—oo
In addition to Assumptions 1 and 2, we also require the fol-

lowing. fn ys w(t, 0 9
Assumption 3:The signals{u(t)}, {w(t)}, and{v(t)} sat- By = NEE fen(tenls o) (5 O}
isfy the following. (18)
1) The collection formed by the signdls(¢)}, {w(t)}, and
{v(t)} is strongly ergodic of second order. = Jim Z E{en(t)en(t)} 19)
2) {v(¢)} is stationary and has zero mean (i&u(t)} = Hw’
0, vt € N). QF (™) =[1,e" W,...,eﬂw(" 1. (20)
3) TRy(7), TRy(7) € li(Z). Proof: See Appendix B. m
4) There exists > 0 such thatb, (w) > ¢, Vw € [-m, . Remark 3:The residual term¥; in (15) depends on

Remark 2: Note that Assumption 3.3 is satisfied if the signalg;(¢, or..). It has a complicated expression. However, this term
{u(t)} and {v(t)} are generated by white noise filtered by @an be. neglected 82 _ . is negligible compared with the noise

uniformly bounded sequence of rational stable linear filters. powerS,. Define S2 'dlf( ) = Sa(6%) — S2 opt < Sz (N).
Assumption 4:The model g(q,6™) is a parametric FIR Then, informally, (15) can be interpreted as follows: For large
model of tap sizex. The setD satisfies n andN and for smallSy, .
n
ny i & ; < =S, (21)
arg min_S3(6") C int(D) (12) {S5.ais(N)} =

Remark 4: Note that in (15), we consider the limit whe¥i
where intD) denotes the interior (i.e., excluding the boundanygoes to infinity first, and then, we malkego to infinity. If we do
of D. The optimal parameters are solved using the least-squaties maken go to infinity, then the asymptotic convergence rate

(LS) algorithm, i.e.f7%; is calculated as follows: has a more complicated expression. It can be easily derived by

following the steps of the proof without considering the limit on
1 N n. However, the result in (15) is not restrictive since the subband
Ry]” N Z method is used mainly in applications wherés large, which

is the case when the subband approach has advantages over the

where fullband method.

N
_ 1 Z o (o (13) IV. SUBBAND IDENTIFICATION

The subband identification scheme is depicted in Fig. 2.
on(t) =[u(t),u(t —1),...,u(t—(n—-1))]. (14) As we mentioned in introduction, the idea of sub-
band identification is to split both signals(t) and y(t)
The superscript denotes transpose conjugate. into M subbands using two analysis filterbankg)) =
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[11(q); -, ()] andh(q) = [h1(q),...,ha(q)]". These component of the vecta®’(q,0") = (9/0a™)G(q, a™)
subband signals are downsampled, and the results are
noted by two vector signalﬁf(t) = [U(t),...,Un()]T
andY(t) = W(),..., Yy ()]T. The subband parametric
model G(q,0) = [G”(q 6)]” 1 Is identified in order to
reconstruct W (t,6) = [Wy(t,8),...., W (t,6)]7, which . v € arg min V,, x(67)
is the subband equivalent af(z, 0) The prediction error ’ oneP
V(t,0) = [Vi(t,h),...,Va(t,6)]T is then formed. Finally, where
a synthesis filterbank (q) = [f1(q),..., far(¢)]T is used to ~
reconstruct(t, ). Vi (67) = _1 Z
For analysis purposes, we denote the downsampled version N et
of h(q)w(t) by W(t) = [Wi(t),...,Wun(t)]". We define ) )
W (t,0) = W(t) — W(t,0) = [Wi(t,0),. W]\[(Le)]T and Notation 2: For each subband, we define the power of the

denote bya(t, ) the signal obtained by upsampliﬂ@[(t.ﬂ) prediction error signalV,, (¢, 0;,,) by Sy, (;,). Then, we de-

n

ﬂ?é identification method is the prediction error method,
i.e., the optimal vector of parameters up to tilNe(which is
denoted by}, ) is chosen as follows:

m(t,00)

N)|’—‘

and then filtering it withf (q). We also denote the downsampled'©te
version ofh(q)o(t) by V(1) = [Vi(t), .- Var(OI. g ¢ ag min Sy (63) and S, = Sip, (o)
The simplest configuration of this method uses critical sam- b7, €D msOP e
pling (i.e., D = M) and a diagonal subband mod&lq.0).  Thegrem 4: Consider the subband identification scheme of
It was shown [7], [8] that the filterbanks required for this CONg; ig. 2, together with Assumptions 5-7. Then,for= 1, ..., M
figuration need to be composed by nonoverlapping filters. In
practice, this means that the filters will have very narrow tran- hm SW (On) = S{}V opt w.p.1.
sition bands and, therefore, require a large tap size. There are
two approaches to relax the design of the filters. The first uses Proof: See Appendix C. ]

off-diagonal terms irGi(q, §), as studied in [3]. The second ap- In every subband, the sequence of random variables
proach uses oversampling (< M). In both approaches, the Sy (6, ), converges, with probability one to the deter-
filters are allowed to be overlapping and, thus, require a low tapinIStIC constantS"; ot , Which is the global minimum of
size. In this paper, we will study the first case (Assumption 7)s};, (67,). The overall errorS ,(#A") also converges, with
pronﬁabmty one, to a deterministic constas$i , . The fol-
lowing theorem states this fact formally. One extra assumption
is required.

Theorem 4 studies the strong convergence in every subbanddAssumption  8:In every subband, the setarg
whereas Theorem 5 studies that of the overall prediction erroring: ep SWW(HQ,,) has only one element.

A. Strong Convergence

For Theorem 4, three assumptions are required. Remark 6: Note that Assumption 8 is satisfied if Assump-
Assumption 5:The signals{«(t)}, {w(#)}, and{v(t)} sat- tions 9.4, 9.5, 10, and 11 below, are satisfied.
isfy the following. Theorem 5: Consider the subband identification scheme of

1) The collection formed by the signaa(t)}, {w(#)}, and Fig. 2, together with Assumptions 5-8. Then, there exists a de-

{v(t)} is strongly ergodic of first order and qua&staterm'mStIC constan's, 1im > 0 such that

tionary_ by phases. lim Sg(0M") =S . wp.l.
2) {v(t)} is independent of u(t)} and{w(t)}. N ’
Remark 5: Note that Assumption 5 is satisfied if the collec- ~ Proof: See Appendix C. u

tion formed by{u(t)} and{v(t)} is strongly ergodic of first ~ The constanby |, is not equal taSy .. in general. How-

order and quasistationary by phases, éﬂx@t)} is generated ever, a modlflcatlon in the |dentlflcat|0n method, which was in-

from {u(¢)} through a linear system(q) whose impulse re- troduced in [9], guarantees thaf; ,,, = Si ... In addition,

sponse satisfieg(t) € 11 (Z). with this modification, Assumption 8 is not needed for strong
Assumption 6:The analysis filterbank$(¢) and h(¢q) are Convergence.

such that,, (¢) andh,,(t) € I;(Z) forallm = 1,..., M.
Assumption 7:The subband model is a diagonal matri

G(q,0M™) = diag{Gm(q.07), m = 1,...,M}, where  As with the study of strong convergence, we have a theorem

oM = [(o)T,...,(05,)T]T and all the set of parametersfor the asymptotic convergence rate in every subband (Theorem

r, m = 1,...M have the same order. Each@,, .(¢,0) 6) and a theorem for the overall asymptotic convergence rate

satisfies Assumption 2 , i.e., for each € {1,..., M} the (Theorem 7). For Theorem 6, in addition to Assumptions 5-7,

model Gm(q,%) is a parametric linear model. The set ofve also require the following.

parameters is assumed to satiéfy € D C C”, whereD is Assumption 9:The signals{u(t)}, {w(t)}, and{v(¢)} sat-

assumed to be compact. There exis{g) € I1(Z) such that isfy the following.

|G (,07,)] < G(1) forall 07, € Dandallt € N, and there 1) The collection formed by the signga(#)}, {w(t)}, and

existsG/(1) € I (Z) such thatG’, (1,6%,)] < G'(1) for all {v(t)} is strongly ergodic of second order.

67, € D,and fork = 1,...,n, whereG’m, x(g,0™) is thekth 2) {v(¢)} is stationary and has zero mean.

B- Asymptotic Convergence Rate
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3) TR.(7),TR,(T) € I1(Z). The following result gives a bound for the normsZf and
4) There exists > 0 such tha®, (w) > ¢, Yw € [-m,7]. T},
5) The signau(t)} is almost stationary. Proposition 3: Consider the subband identification scheme

Remark 7: Note that Assumption 9.1 is satisfied if the collecin Fig. 2. Then
tion formed by{u(t)}, and{v(¢)} is strongly ergodic of second 1
order and quasistationary by phases, &ndt)} is generated IThll < D

from {u(¢)} through a linear system(q) whose impulse re- M D-1
sponse satisfieg(t) € 11(Z). [ sup {Z | B (€7) |2} + Y (ﬂ(—d)ﬂ(d))lﬂl
Assumption 10:The analysis filterbank&q) andh(q) are “TSWST (1 d=1

such thatl,,, (t) andth,,,(t) € 11(Z), form = 1,..., M. There

existsar > 0 such that with equality if 5(d) = 0, d = 1,..., D — 1, where

B(d) = S0 cn {0 [ (¢5°)] [l (277%) |}, and

bl : 2 — ¢—i(2/D) *j i
% Z ‘lm(ﬂdej(w/m) >a, Ym=1,..., M, Vwe [, 1] Q=¢7 . The norm ofo is bounded in the same way.

part ’ Proof: See Appendix C. ]
- Theorem 7: Consider the subband identification scheme of
whereQ = ¢—i(27/D). Fig. 2, together with Assumptions 5-11. Then, for largend

Assumption 11:Each G, (g, 6™) satisfies Assumption 4, N, and for smallSg im
i.e., for eachm € {1,..., M}, the modelG,,(q,67,) is a n n 9 9
parametric FIR model of tap size The setD satisfies E185,ar(N)} = 3 1T 17T 1™ S
wheresSy 4;:(N) = Sa(ON™) — S tim
the noise signab(t).

Proof: See Appendix C. ]

arg gmi}:l Sa(6™) C int(D). andsS, is the power of
neCn
The optimal parameters are solved using the least-squares (LS)

algorithm, i.e. 9" ,, is calculated as follows:
9 m, N V. CONCLUSIONS

i o1 N . We have studied the asymptotic properties of the subband
mN = (B N7 > O ()Y (t) identification method. The study was done in terms of the power
t=1 of the prediction error and was carried in every subband and in

the overall method. In the process of doing this, we came up

where
with a new notion of ergodicity called strong ergodicity. The
" 1 . key properties of strongly ergodic signals is that they are in-
mN =N Y O mn(t) variant under a number of transformations, i.e., filtering, down-
sampling, upsampling, and addition. Using the notion of strong
rmn () =[Um(t), U (t = 1), Un(t = (n = 1)]- ergodicity, the well-known asymptotic properties of the fullband

égentification method are generalized to subband identification.
In a companion paper [10], we will give a rigorous study of
the performance of the subband identification method to explain

Theorem 6: Consider the subband identification scheme
Fig. 2, together with Assumptions 5-11. Then, for each=

L. M, forlargen andXV, and for smalls, where the advantages of the method come from and how to op-
n timize the performance of the method.
E{SE  ae(N)} ~ NSV"’ (22)
APPENDIX A
whereSy, (V) = Sy, (0%) — S5, ., andSy,, is the PROOFS OFSECTION ||
powcgrgg;:hesgzliep;g:;ﬁn c(:t) - Lemma 5: Let {z(t)},t € Z be a sequence of random vari-

Notation 3: Consider the subband identification scheme %bles with uniformly boundegith moments, and led, > 0

. ) . e the bound of theth moments. Let;(7) be a uniformly
:i::]%af'nlq'ae;g_(t)’w(t)’v(t) € 1>(2). We define the following bounded linear system bounded b{r). If {y(¢)} is defined

by y(t) = .72 hi(7)z(t — 7), then thepth moments of
{y(t)} are uniformly bounded byfh(7)||; M..
Proof: We can interpret theth moment ofy(¢) as a norm

operation, i.e.|ly(t)||, = & {ly(t)l"}"/". Then

Ty : 12(Z) — 13" (Z) = y(t) = Y (1)
and7; : 13'(Z) — 12(Z) : V(t,0) +— i(t, )

whereT’; denotes the adjoint of some operaigr. We denote )
their induced norms by ELOIPY =lly®ll, < S The(n)] l(t = 7)lI,
1Tl = sup [|Zua(t)] o
() l,=1 ’ < Y h(r)M, = [|A(7)||; M.
and) 17| in a similar way. -
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Notation 4: Let {z(¢)} and{y(¢)}, ¢ € Z be two random
processesd, B € N anda,b € Z. The random process
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We can interpret the operatidh{~2}1/2 as a norm oper-
ation; then

{&zy(4, B, a,b,t)} is defined by

2y 1/2
(L+1)*-1
€oy(A, B, a,b,t) £ ( > |£Iy<A,B,a,b,t)|>
=z" (At + a)y(Bt +b) — E{2" (At + a)y(Bt+b)}. (23) t=L2
(L+1)% -1
The following proof is based on the technique used in the < Z £ {|€ (A, B,a,b t)|2}1/2 < 9L M2
proof of the Strong Law of Large Numbers [11, Th. 5.1.2]. B YN T = x

Proof of Proposition 1:Let z(t),y(t) € {e.(t)}. Let
(2, A,P) be the probability space on which the stochastic
processx(t)} is defined. We split the proof into three steps.

1) From (7) and Lyapunov’s inequality, we have that

S

whereM,, is the bound of the fourth moments pi(¢)};
then,& {D2, (A, B,a,b,L)} < 4(M,/L?), and there-
fore, there existd > 0, such that

o > &{D,(A,B,a,b,L)} <D, Va,bel.
}<S €{C2(A, B, a,b, L)}

OzC
2 s

In addition, from Chevychev's inequality [11, pp. 48]

C?,(A,B,a,b, L%}
Now, following the same reasoning as in step 1, we have
that

lim D;y(A,B,a,b,L) =0 w.p.1,

L—oo

3) For everyT' € N, we have thaC,,(4, B,a,b,T) <
Cyy(A, B,a,b,L?) + D, (A, B,a,b, L), whereL is the
largest integer such thdt?> < T'. Then, from (27) and

I A

7T2
0 Va,beZ. (24)

Va,beZ. (28)

1
P{|Cay(A, B, a,b, L)| > e} < 5E{CF, (A, B,a,b, L)}

Va,beZ,Ve > 0. (25) (28)
lim Cpy(A,B,a,b,T)=0 w.p.l, Va,beZ
Then, from (24) and (25) T—o0
which implies (1).
2 |
;P“C”(A’ B,a,b, L7)|>¢} Proof of Proposition 2: We consider the case where= 1.
To prove the case whefe= 2 is similar.

Z ry (A,B,a,b L2)} To simplify the notation, letv;,no € {1,...,N}, and let

£(t) = eny (1), (1) = eny(8), ut) = pin, (1), 0() = piny (1),
7r2 () fi(q@) = hn, +(q), andgi(q) = hn,+(q). Using the notation

<4 2 Vmb€EZ Ve>0. (26)  (23), we can write

By the Borel-Cantellilemma |11, Th. 4.2.1], (26) implie§ {ng(Av B, a,b, T)}

that 1 r T
=75 2 D _E{&y(A B a.b 1) (A, B.ab,5)}

P {lim sup {|Czy(4, B, a,b, LY > g}} =0, t=1 s=1
L—oo where &,,(A,B,a,b,t) = S S fr(k)g(l)
Va,b €2,Ve >0 &uw(A,B,a — k,b — [,t). Then, we have the first equation

shown at the bottom of the next page, where the exchange of
the expectation with the infinite sums, in the second inequality,
is valid in view of Fubini’'s Theorem sincé;(¢) andg,(t) are
uniformly bounded, and the random processes have uniformly
bounded fourth moments. It can be easily verified that

which, in turn, by [11, Th. 4.2.2], implies that

Jim Cuy(A,B,a,b,L*) =0 w.pl, VYa,beZ. (27)

2) Using the notation (23), let

<M,, f t=
5{fuu(/hB;a7b-/t)£uu(A7B,a7b-/3)}{;0 ‘o ¢j
Dzy(4,B,a,b,1) = Lr<re(Lpny |7 tz; boy(4,B,a,b,1)). whereM,, is the bound of the fourth moments pf(t)}. Then
Then E{C2,(A,B,a,b,T)} )
oo oo 1
£{D2,(A, B,a,b, 1)} SZ Z Y. D hRADAm)A(n) 25> Ma
k=—00 l=—00 m=—00 n=—00 t=1
2
(L+1)°-1 M
1 = |h(t 4 Va
<€ (L_ 2 |£M<A,B,a7b,t>|) IRy
t=L2 |
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Proof of Lemma 1:We consider the case whege= 1 to Proof of Lemma 4:Let z(t) = ex(t), w(t) = elt),
prove the case whege= 2 is similar. z(t) = en41(t), andy(t) € {e,(t)}. We have that
Letz(t) = ex(t), 2(t) = en+1(t) andy(t) € {e,(t)}. Using

the nOtation (23), we haVe that Ozy(A7 B7 (17 b7 T) = Czy (A/ B7 (1, b7 T) + Cwy(A7 B7 (17 b7 T)
and therefore

E{C2,(A,B,a,b,T)}

T

C?,(A,B,a,b,T) =C;,(A,B,a,b,T)+C,,(A,B,a,b,T)]

= %ZZ“:{% A,B,a,b,t)¢., (A, B,a,b,s)}

+2C,y(A,B,a,b,T)Cywy(A, B,a,b,T)
<C:,(A,B,a,b,T)+C} (A, B,a,bT)

wy

Where fzy(A,B,(l,b,t) = 220:700 h*(k)§$y(A,B,(l — 2 C A B b T C A B b T
k,b,t). Then, we have the second equation shown at the + |2 ey 2,5,T) Z”’( a.0,7)|
bottom of the page, where the exchange of the expectation, <2 (Cry(A B,a,b, T)+C4y (A, B a,b, T )

in the second equality, is valid in view of Fubini’'s Theorem
sinceh(t) € l1(Z), and the random processes have unlforml?/
bounded fourth moments. Then

nd the rest of the proof is straightforward. ]

APPENDIX B

) 5 C PROOFS OFSECTION IlI
£{C%,(A, B,a,b,T)} < [IR(t)lly = : .
r Proof of Theorem 2:We split the proof into four steps.

To prove thaf y(¢)} has uniformly bounded fourth moments, 1) Let
we apply Lemma 5. [ | Vo (07) = TV (67 29

Proof of Lemma 2:Let z(t) = ex(t), 2(t) = en41(t), (") = E{VN (")} (29)
andy(t) € {en(t)}. We have that From Assumption 1 and Theorem 1, we have that
{o(t,0™)} is ergodic for allf™ € D; then
C.y(A,B,a,b,T) =Cyy(aA, B,aa,b,T)

A}im V(™) = V(™) =0 w.p.1. (30)
and the rest of the proof is straightforward. n -
Proof of Lemma 3:This proof is similar to the proof of Since{u(t)}, {w(t)}, and{v(¢)} form a quasistationary
Proposition 2. ] collection, andj(q,6™) is an FIR filter,o(¢, ™) = w(t)—
1 T
£{C2(A,B,a,b,T)} < ﬁZZ|€{fmy(A,B,a,b7t)£my(A7B7a,b,s)}|
t=1s=1
<3 Y S S MkDA(m)A(n)-
k=—00 l=—00 m=—00 n=—00
1 T
T S > 1€ {un(A, Ba— kb — 1, 4)éu(A, B,a—m,b—n,s)}]

t=1 s=1

E{C%,(A,B,a,b,T)} = %izg{ > Z h* (k fry(ABa—kbt)ny(ABa—lbs)}

k=—o0 l=—00

= i i h*(k)h*(l)g {Czy(Ava a— ka bT)Czy(A7 37 a— lvbT)}

1 o0 o0
<3 S > @R (E{C2 (A, B,a—k,b,T)} + £{C2,(A,B,a—1,b,T)})

k=—ocol=—00
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w(t, 8)+wv(t) is quasistationary for ali™ € D. It follows
that the following limit exists:

lim VN(H")
N—o0
= lim E{VN (™)}
N —o0

:% lim %;g{w(w"n }é ™).  (31) Y

From (30) and (31)
A}im V(™) =V (0") w.p.l. (32)
2) Letf”, A§™ € D; then

AG™) — T (67))|

N (0" +
al 1
n n ~2 n
Nz:: {H 2(t, 0™ + A™)| — ‘21; (t,0m) }
1 al 1A2 n n 1A2 n
gﬁzg 07007 + AG") — S 0%(t,6")
t=
1 N
< 2 MG, = M || A6, (33)
t=1
where
o 1
M =E&4 su —02(t, " }
{0"epD dar 2 ( )9" 2

Consider the kth component of the gradient of

(1/2)0%(t, )

0 1
{0&”5 (t @ )ajk
o(t,0™) g1, (g, 0)u(t)

=
=o(t) + w(t) — (g, O)u(®)| 191 (q, O)u(t)]
< (@] + [w(®)] + §(q) [u(®)]) §'(a) lu(®)] -

Therefore
0 1.
—v°(t,
' 8@” 2 ( @ )072 2

< V(@) + [w®)] + §(a) [u®)]) §'(a) [u(®)] -

Now
M S\/ﬁ(f {v2(t)}1/2 _l_g{wz(t)}l/Q

se{Gun’} ") e {@ oy}
<V (M, + M, 4+ D), M) (0], M, < o

4)

where, for the last inequality, we applied Lemma
5. Therefore, for anyy” € D and anye > 0, if
|A8™ ]|, < 6 = +/e/L, then from (33), for allvV € N

|VN(0n + AH”) — VN(Hn)| <e
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and taking the limit agV goes to infinity
V(™ +A6™) - V(") <e

which shows that/(6") is continuous for alp™ € D.
Following the same steps, it is straightforward to show
thatVy (6™) is also continuous. Then, sin€eis compact,
the convergence in (32) is uniform @éft € D.

Let Do = argming-ep V(6™), which is well defined
and compact sincg (™) is continuous an@® is compact.
Since the limit in (32) is uniform 0fi™ € D, then

J\}grlooegnln 0% — 0", =0 w.p.l. (34)
Note that the operatiomin is well defined sinceD¢
is compact. To show (34), Igf2, A, P) be the under-
lying probability space ofu(t)}, {w(t)}, and{v(t)}. Let
Qo C Q be the set where (34) holds. Consider a particular
wo € Qp. Suppose that there exists a sequefipesuch
that

Nim  min Iy — 6", = L. (35)

Define the set
Dr = "e€D: min " —6" >L (36)
PE e g et 2

which is obviously compact. From (35) and (36), there
existsN; € N such that

0 € Dp, YN > Nj. (37)
Define V@ = mingrep, V(6"), which is well de-
fined sinceDr is compact, and defing = Vp —

ming.ep V(0™) > 0. Since the convergence in (32) is
uniform onf™ € D, then, there existd/; € N, such that

6
n| < 2 > Ny.
g}%WN ") =V < 3 YN =N, (38)

From (9), (37), and (38), for a™ € Do and N >
max { N1, No}

_ 2 _ 2
Vn(™) > Vo + 56 =V(") + 55

which is impossible in view of (38). Finally, from (34),
and sincel/ (6™) is continuous, it follows that

lim V(0%) = min V(6") w.p.1. (39)

N—oo oneD
Now, sinceu(t, 0% ) = w(t,0%) + v(t) and{w(t, ™)}
and{v(t)} are independent, then
[/ ny __ 1 n 1
V(a ) - 2Sw(9 )+ 2517
hence, from (39)

W, Sol08) = nly Sal07) = 5

w,opt-”
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To prove Theorem 3, we need the following lemma.
Lemma 6: Consider the fullband identification method of
Fig. 1. Let the collection formed by the signajs(t)} and

{v(¢)} be quasistationary, and satisfy Assumptions 3.2-3.4. Let

B 1 N N
Py=w YD E{enDenls)u(t)o™(s)}

(40)
t=1 s=1
whereyp,,(t) is given by (14). Then
Jim Py =P
where
[P™"kg = (Ru*R,)(k—1), Vk,le{l,...,n}. (41) "
Further
Py (w)
O (W n1—1 n n1—1 — v
nlggonﬁ (e)[R"]7F Tim PR[R"] Q2 (e) Bu(@)

whereR™ and(,,(¢') are given by (19) and (20), respectively.
Proof: This proof follows the steps of the [6, proof of th.

4.1], in spite of the fact that we have different assumptioms.
Proof of Theorem 3:We split the proof into six steps.

1) From Assumption 2, the set of paramet#tsc D, which
is a compact set of”. In this proof, we will allow that

n n 1 * ZUJ n
6™ € C". The result obtained will not be affected by thist Q * ()[R L

fact in view of (12) in Assumption 4.
2) From (10), it is straightforward to prove that

O3 — O = [RE]
where nhm
1 N
In= N Z P (t)o(t egp‘r) and

t=1
Then
N(O — 05,0) (0% — 00,)" = [BR]T'QR[BR]T (42)
with
1 N N
Qn = N ZZ 790pt)v (87921)t)

3) Now, due to Assumption 3.1, we have that there exists
My > 0 such that

S{H\/NfNHj} <M, ¥NeEN. (43)

In addition, by following an argument similar to [1, App.
9B], there exists\l; > 0 such that

e{|vFios - o0

4
} <M, VNeN. (44)
2

E{N(O% — 05,0 (0% —
4) LetQy

= lim
n—oo N—oo 27

In turn, (44) implies that there exisig3; > 0 such that

05.0)*} < Ms, VN eN. (45)

=& {Q } Since’l}(f, ggpt) - w(t aopt) (f)
{v(t)} is independent of (¢, 07 ;) } and has zero mean,
we have that

Qy =Py + EY (46)
where P and E% are given by (40) and (18), respec-
tively.

5) We have that

1 o o .
—Qi(el”)[R"]_lAlim PRIR" ™ Q™)

< &)’

N—oo

SinceR" andlimy_, o PR are Toeplitz matrices, then,
from (41) and [12, (6), p. 64], we have that, foralEe N

(B < flou @)l —and
| (@), () -

Assumption 3.3 guarantees tht,, (w)®
then, there exist8/ > 0 such that

v(@)]le < 003

lim PRIR" Q. (™) < M

Vn eN, Yw € [-m,7w]. (47)

6) We have that

lim —5 {S”( )}
o

—T

oo N—oo

lim —

LOR)=g(e™, 055 [P @ (w) duw
(48)

where the exchange of the expectation is justified
by Tonelli's theorem since the integrand is posi-
tive. Now, the modelg(e“,#™) can be expressed as
g(e™,6m) = Qf(e™)f”, where Q¥ (') is given by
(20). Then, we have (49), shown at the bottom of the next
page. From (45), it follows that the integrand in (49) is
bounded, and we can apply the Lebesgue’s dominated
convergence theorem (LDCT) to exchange the limit on
N with the integral. In addition, from (44) and [11, th.
4.5.2], we can exchange this limit with the expectation.
Now, from (42) and sincgu(t)} is ergodic

dim N (O3 = ) (05 = 0i)”
= Jlim [RR]™ QR [RR)™
=[R"] ! A}im QMR wp.l.

Then, we have (50), shown at the bottom of the next page.
Now, we can write

Qk = [VN 1] [VN ]
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and from (43) and [11, th. 4.5.2], we can exchange the
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Proof of Theorem 4:We need to verify that the condition

limit with the expectation in (50). Then, we have (51)in Assumption 1 holds in every subband. Then, the result fol-

shown at the bottom of the page, where the last equaligws from Assumption 7 and Theorem 2. Fixe {1,...,

M.

follows from (16) and (46). In addition, by (47), the Assumption 1.1:The fact that the collection formed by the

LDCT allows us to exchange the

limit om with the signals{U,,(t)}, {Vi.(t)}, and{W,,(t)} is strongly ergodic

integral; then, we have (52), shown at the bottom of tHellows from Theorem 1.

page, and by Lemma 6

1 [T d,(w)
52 = — —(bu d quj
®2)= 5 /,ﬂ By () Tu (@) +
APPENDIX C

PROOFS OFSECTION IV

Lemma7:Let f,g: Z — C.If tf(t) €
ll(Z), thent(f * g)(t) € ll(Z)

Proof: We have the last equation at the bottom of the page,

We will prove that the same collection is quasistationary by
phases. This implies that it is also quasistationary. To be rig-
orous, we should follow the steps of the proof of Theorem 1,
i.e., show that a quasistationary by phases collection is invariant
under the transformations under consideration. Instead, we will
give a sketch of the idea in the following.

1) We have that the collectiof{u(t)}, {w(t)}, {v(t)}} is
quasistationary by phases (Assumption 5).

2) The operations of filtering by a time-invariant
filter and downsampling preserve the quasista-
tionary by phases property. Then, it follows that
HUn ()}, AW ()}, {Vin(t)}} is quasistationary by

=8, +%Ys.

11(Z) andtg(t) €

which is straightforward to verify that is finite. [ | phases.
T 1 * LLA) n n
(48)—n11_1)10101\lgn o | —Q VE{N (0% — 00, (O — 0050)" } (") Dy (w) dew. (49)
(49) = lim i/ﬂ Lor ()R- 15{ lim n}[R"]—lﬂ (£™) Py (w)dw (50)
n—oo 27 J_xn N —oo N " " ’
(50)_ i i N lQ w Rn -1 li An Rn —IQ w 1) d
= Jlim oo [ COLERT tim QR [RY]0() Py (w)d
: 1 1 * (W ni—1 n n1—1 -
Jim oo [ R i PRRTT ()0 (@) + s (51)
6= 5- / lim —05(¢*) R Jim PRIR"]M (), (w)do + X (52)
i J_. n—oo n
Yot rDI= D0 1| Do flr)glt —7) Z Z [t f () llg(t = 7)l
t=—o0 t=—o0 T=—00 T=—00 t=—00
oo oo t
=[£(0)] E ltg(t) Yo F@RIO+ Y ||| =gt =)
t=—o0 7—__0077-7,50 t=— oottt T(t ’T)
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Assumption 1.2:The fact that{V,,(¢)} is independent of ~ For the norm of7}, we have that7} V(t,0) =
{Un(t)} and{Wp,(t)} follows since{v(t)} is Independent of [Vi(t,0),..., Valt, 0)] — B(t, ) is given by
{u(t)} and{w(t)}.
Proof of Theorem 5:In view of Assumption 8, in every M e
suMgbandﬂn” op 5 UNGUE TLeiﬂM” = 0in- O]t and G0 =TV (1,0) = S0 S Via(t,0) funlt — 7D).
eopt = [61 ,opty = Z\/[ opt] Then m=11=—00
Jim Sa(83") = S (Jim 6M") = Sa(03) = Saum  From[14, Sect.3.2,p.57, (3.2.3)] it follows thist : i(t.6)
V(t,0) is given by
where the exchange of the limit is valid sindg (/%) is a
continuous function. oy, (t,0) = [(Tro(t,0))(1)],,
Proof of Theorem 6:We need to verify that the condition
D —1)), =1,....M VA
in Assumption 3 holds in every subband. Then, the result fol- = (0(t,6), fuu(r B), ¥m=1,....M, 7€

lows from Assumption 11 and (21). Fix € {1,..., M}.

*
m

Assumption 3.1:This assumption follows |mmed|ately fromand therefore, the result follows sin#@}‘” = ||T%||- [ ]

Lemma 5. Lemma 8: Let {X(t) = [X1(¢),..., Xy (1)]T}, t € Z be
Assumption 3.2:We have thatV,.(t) = 3277 hwm(k)v  an array of quaS|stat|0nary random processes, anH (g =

(Dt—k). Then,{V,_n_(t)} has zero-mean becauge(t)} has [HL]( ), i,5 = 1,...,M, satisfying H;;(t) € [,(Z). Let

zero-mean. In addition X(t) = [X1(t),..., Xar()]" be generated fronf X (¢)} by

upsampling by a factor dff. LetY'(¢) = [Yi(t),..., Y (2 HE

E{VE)Vm(t+7)}= Z Z hE ( R,(Dr+k—1) bedefinedby (1) =322 _ H(k)X(Dt—k)(i.e.{Y(t)}is

k=—o00 l=—00 generated fron§ X (¢)} by filtering followed by downsampling

by a factorD). Letz(t) = [z1(t),...,za(t)]T € 1}1(Z), and
and thereforeg {V,,()Vi,.(t + 7)} does not depend oh and |et (¢) be generated from:(t) in the same way agy (t)}
it follows that{V,,(t)} is stationary. is generated fron{ X (¢)}. If there existsT > 0 such that
Assumption 3.3:Letu7, () = L. (q)u(t). Itis easy to verify |, 4|, < T [|z(t)||,, wherellz(t)]1? = SN, ||l (£)]|2, then
that R« (1) = (Im(t) * I7,(—¢) * u(t))(7). Two applications B
of Lemma 7 gives thatR « (1) € 11(Z). Now, since{u(t)} is

D
almost stationary (Assumptlon 9), sofis?, (t)}; then Sy < ETQSX
Ry (1) =R « (Dt 53 )
v, (7) utt (D7) (53) whereSx = Y M_ S . Further, if|[y(t)|l, = T|jz(t)]l,
— 2
from where it is straightforward to verify thatRy, (1) € thenSy = (D/U)T Sx- N
1,(Z). Proof: LetXy = imy_oo(1/N) D> i E{Y ()Y *(1)};
Assumption 3.4:We have that® . (w) |l () then

®,(w). From [13, eq. (4.1.4), p. 102] (53) and Assumption
10, we have the equation at the bottom of the page, wﬁér}a Yy
denotes the Fourier transform. o

Proof of Proposition 3: The mapT}, : y(t) — = = Z ZH hm ZS{ (Dt—k)X (Dt—l)}H*(l).
[Yi(t),...,Ym ()" is given by k=—00 I=—00
(54)
Yin(8) = [(Thy(6)(7)],y,
=(y(t),hy,(tD—1)), Ym=1,.... M, T €Z Without details, we will say that the exchange of the expecta-

tion with the infinite sums is valid in view of Fubini’'s Theorem
where[a],, denotes thenth component of the vectar, and since{X(¢)} has uniformly bounded second moments (recall
(-, ) denotes the inner product (7). Then, the result can be the definition of quasistationary), and the exchange of the limit

reached following the proof of [14, Sect. 3.3.2, p. 67]. with the infinite sums is valid in view of Lebesgue’s dominated
D—1
1 d
P (@) =FRu. (M= 5 3 g (2«5 + %)
1= d w
1 a Aw/D), 219 s _r,
D ‘l (Q% )| P 27TD+D>_Oé€/ Vw € [—m, 7]
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(54)=§ i i H (k) nlirrgog Z 5{ n Dt—k)X:(Dt—z)}H*(Z)

k=—oco l=—o0c0 t=—o00
D 1 ‘
=g 3 i)

convergence theorem sinég(t) € 177%™ (7). Now, define the From (22), we have that, in every subband
sequence of truncatiosX,,(¢)} as follows:

... N M
i Vel =S 6o

X(t), 1<t<n
X (t) = herwi
0, otherwise From (55), (56) and Lemma 8
M
and let{ X,,(t)} and{Y,,(t)} be generated froriX,, (¢)} in the (55)= % A7 D2 S, < VTP Tl S0 (57)

same way a$ X (t)} and{Y (¢)} are generated frofiX (¢)}. It
is quite straightforward to show that for &ll/ € Z

|
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