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Asymptotic Properties of Subband Identification
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Abstract—The purpose of this paper is to study the asymptotic
properties (i.e., strong convergence and asymptotic convergence
rate) of the subband identification method in every subband and
in the overall method. The study of strong convergence aims to an-
swer the question whether the “best possible” model is retrieved,
on the limit, with probability one. The study of the asymptotic con-
vergence rate aims to give an expression that quantifies how fast the
model approaches the “best possible” value as the number of sam-
ples goes to infinity. To do this, we need to generalize existing re-
sults for fullband identification. In the process of doing so, we come
up with a new notion of ergodicity, which we call strong ergodicity.
Strongly ergodic signals not only satisfy the assumptions required
for our analysis but also enjoy an interesting property, which is that
strong ergodicity is invariant under a number of transformations.
In particular, the subband components of a strongly ergodic signal
are guaranteed to be strongly ergodic, therefore, ergodic, which is
not true for an ergodic signal in general.

Index Terms—Ergodicity, multirate signal processing, subband
adaptive filtering, subband signal processing, system identification.

I. INTRODUCTION

T HE theory of linear system identification is well devel-
oped. Many references are available on the subject; see,

e.g., [1] and [2]. The setting of the identification problem is il-
lustrated in Fig. 1, where is the input signal, is the
output of the system, is the measured output, is the
process noise, [ is the forward shift operator (i.e.,

)] is the transfer function of the system, is the
model of the system, and is the prediction error, where

represents the parameters of the model. In most signal
processing applications, is chosen to be a finite im-
pulse response (FIR) model. Identification algorithms based on
the least-squares technique are commonly employed in practice,
and their behaviors are well understood. However, the direct use
of these algorithms may not be most suitable for real-time appli-
cations where high-order FIR models are required (e.g., speech
echo cancellation and channel equalization).

To alleviate the computational problem, the so-called sub-
band identification technique has been proposed; see, e.g., [3]
and [4]. Loosely speaking, the subband approach divides the
input and output signals into a number of subbands using anal-
ysis filterbanks. Each analysis filterbank consists of a bank of

filters whose output is downsampled by a factor of(i.e.,
one out of samples is kept). Then, for each subband channel,
a subband model is identified. These subband models can be
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Fig. 1. Fullband identification block diagram.

combined to give a fullband model. In many applications, the
subband models are used directly to estimate certain subband
signals that are combined using a synthesis filterbank to form a
required signal estimate.

An example of such applications is speech echo cancellation.
The reverberation model for a typical video conferencing room
requires a tap size in the order of 500–1000 or more. A training
signal is often available for estimating the reveberation model.
Estimating a fullband model may be very computationally in-
volved, not to mention the numerical stability issues. In this
case, subband models of reverberations can be estimated using
a more numerically efficient subband identification algorithm.
These models can then be used to give an estimate of the source
signal (i.e., the speech signal without reverberation) in each sub-
band. Finally, these subband signals are combined to give an es-
timate of the (fullband) source signal.

Another application where the subband identification tech-
nique can be used is broadband wireless channel equalization.
Orthogonal frequency division multiplexing is a preferred mod-
ulation technique. This involves using a possibly large number
of equally-spaced subcarriers to modulate transmit signals. The
communication channel involves many (slowly time-varying)
multipaths. One main difficulty with broadband wireless equal-
ization is that the multipath channel model may require a large
tap size, mainly due to the high data rate. Again, subband iden-
tification can be used to solve this problem. There is an extra
advantage of the subband technique in this application because
the subband signals (i.e., the subcarrier signals) are readily avail-
able at the receiver. This advantage yields a major computational
saving [5].

The purpose of this paper is to study the asymptotic properties
of the subband identification method in every subband and in the
overall method. The asymptotic properties include strong con-
vergence and asymptotic convergence rate. The study of strong
convergence aims to answer the question whether the “best pos-
sible” model is retrieved, on the limit, with probability one. The
study of the asymptotic convergence rate aims to give an ex-
pression that quantifies how fast the model approaches the “best
possible” value as the number of samples goes to infinity.

These properties have been studied in detail in [1] and [6].
In [1], the study is done in terms of the parameters (i.e., coeffi-
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cients) in the system model, whereas in [6], the transfer function
of the system model is used. However, these approaches turn out
to be inadequate for the subband case since the subband models
are typically used directly for reconstructing a particular signal
(as in the example of echo cancellation) rather than used for
forming a fullband model. Motivated by this point, we choose
to consider the power of the prediction error as a measure of the
performance of the identification. That is, we establish condi-
tions that give satisfactory asymptotic properties for this power.

The technical assumptions on the signals required in [6] is
that the signals and are assumed to be deterministic
signals that do not need to be related in any particular way,
and is a random process. In [1] instead, the signals ,

, and are random processes, as required for our
approach. However, the signal needs to be generated
by a combination of white noise and a deterministic signal,
filtered by linear time-variant systems, and needs to be
generated by through another linear filter. The stumbling
block in generalizing the work of [1] to subband identification
is that this required assumption is not preserved after subband
decomposition. Hence, we cannot apply the results of [1]
directly to subband identification. The approach we take in
this paper is to determine the conditions on the signals,

, and such that their subband components will satisfy
the conditions compatible with those used in [1]. In the process
of doing so, we come up with a new notion of ergodicity that
we call strong ergodicity. Roughly speaking, we require the
fullband signals , , and to be strongly ergodic.
This guarantees that their subband components satisfy the
assumption required to carry out the asymptotic analysis for
each subband. An interesting property of strong ergodicity
is that it is invariant under a number of transformations. In
particular, the subband components of a strongly ergodic signal
are guaranteed to be strongly ergodic, and therefore ergodic,
which is not true for an ergodic signal in general. The bulk of
this paper is devoted to the study of strong ergodicity because
its analysis is quite involved mathematically.

The rest of the paper is organized as follows: In Section II,
we introduce the notion of strong ergodicity and its key prop-
erties. In Section III, we study the asymptotic properties of the
fullband method in terms of the power of the prediction error. In
Section IV, we study the asymptotic properties of the subband
method in each subband and in the overall method.

II. STRONGLY ERGODIC RANDOM PROCESSES

Given a collection of random processes, we can generate
another collection by filtering, downsampling, upsampling, and
additions of the random processes of the generating collection.
We would like that if the generating collection is made of ergodic
(in the second-order) random processes, then the generated
random processes were also ergodic. This turns out to be
not true, but it is true under a stronger condition on the
generating random processes, which implies ergodicity. We
call this condition strong ergodicity (in the second order).

However, first we need to review the notions of ergodicity and
stationarity.

A. Ergodicity and Stationarity

Convention 1: All the random variables, random processes,
and linear systems considered are assumed to be scalar and
complex, unless explicitly specified. The superscriptdenotes
complex conjugate. denotes the set of integers, anddenotes
the set of natural numbers (i.e., integers greater or equal to
one).

Definition 1: Let and be two random
processes. They are jointly ergodic if, for every

(1)
Definition 2: Let and be two random

process. They are jointly quasistationary if we have the fol-
lowing.

1) They have uniformly bounded second moments (i.e.,

there exists such that

and equivalently for ).
2) For all , the following limit exists:

(2)

If they further satisfy that, for all and , the
following limit exists:

then, they are jointly quasistationary by phases. If they further
satisfy that for all and

then they are almost stationary. Finally, if they further satisfy
that for all

then they are stationary.
We will extend definitions 1 and 2 to a single random process

and to a finite collection of random processes as follows:
Definition 3: A random process is ergodic (or quasista-

tionary, etc.) if it is jointly ergodic (or jointly quasistationary,
etc.) with itself. In addition, a collection of random processes is
ergodic (or quasistationary, etc.) if every two random processes
in the collection (including a random process with itself) are
jointly ergodic (or jointly quasistationary, etc.).
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For a quasistationary random process, it make sense to define.
Definition 4: Let be a quasistationary random

process. The auto-correlation of is defined by

(3)

The power of is defined by

(4)

and the power spectra of is defined by

(5)

provided the infinite sum exists.

B. Strong Ergodicity

As stated previously, the ergodicity property can be lost after
one of the transformations mentioned. To illustrate this point,
we introduce two examples. The following example shows that
ergodicity can be lost after downsampling.

Example 1: Consider the probability space
, where denotes the Borel -algebra on the set

[ , 1/2], and denotes the Lebesgue measure. Define
the random process as

follows:
sign is even
sign is odd

, where

sign . Let

(6)
Then

sign is even

is odd
as

so that is ergodic. Let
sign . Then

sign

so that is not ergodic.
The following example shows that ergodicity can be lost after

filtering with a time-invariant IIR linear filter.
Example 2: Consider the probability space

. Define the random process
by

sign . Define as in (6); then

sign as

Let be given by , and

define . Then

sign

as

and therefore, is not ergodic.
Now, we are ready to introduce the notion of strong ergod-

icity.
Definition 5: Let , and let and
be two random processes. They are strongly ergodic ofth

order if the following holds.

1) They have uniformly bounded th moments.
2) For any , there exists such that

(7)

where , denotes the expectation
operator, and

(8)

This definition extends to a single random process and to a
set in a way that is similar to Definition 3.

The following proposition states that strong ergodicity im-
plies ergodicity.

Proposition 1: If the collection of random process
, is strongly ergodic of andth

order, then it is ergodic.
Proof: See Appendix A.

Now, we want to explain what signals can form a strongly
ergodic collection. In Proposition 2, we introduce a strongly er-
godic collection of random processes, and in Theorem 1, we
show how it can be transformed to generate other strongly er-
godic collections. In Lemmas 1–4, we introduce four possible
transformations on the collection that preserve the strong er-
godicity property. They are intermediate steps in the Proof of
Theorem 1. Proposition 2 and Theorem 1 together show that the
usual signals of interest (signals generated from white noise and
deterministic bounded signals) are strongly ergodic.

Proposition 2: Let , be a col-
lection of random processes with uniformly boundedth
moments, where , such that the set of random vari-
ables is independent, for any distinct

. Let ,
be a uniformly bounded collection of sequences

of linear time-variant systems (i.e., there exists
such that , for all , ). If the
collection is generated as follows:

then, is strongly ergodic of th order.
Proof: See Appendix A.
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Remark 1: Note that Proposition 2 includes the possibility
that one or more of the signals are a deterministic signal in

.
Lemma 1: Let , be strongly

ergodic of th order, and let be a time-invariant
linear system. If, for some

then , is strongly ergodic of th order.
Proof: See Appendix A.

Lemma 2: Let , be strongly
ergodic of th order, and let . If, for some

then , is strongly ergodic of th order.
Proof: See Appendix A.

Lemma 3: Let , be strongly
ergodic of th order, and let . If, for some

then , is strongly ergodic of th order.
Proof: See Appendix A.

Lemma 4: Let , be strongly
ergodic of th order. If, for some

then , is strongly ergodic of th order.
Proof: See Appendix A.

By combining Lemmas 1–4, we can prove the following the-
orem, which we state without proof.

Theorem 1: Let , be a th-order
strongly ergodic collection of random processes . If ,

is another collection generated from
by filtering with time-invariant linear filters, downsampling, up-
sampling and additions, then is strongly ergodic of th
order.

III. FULLBAND IDENTIFICATION

In this section, we study the asymptotic properties of fullband
identification. The system configuration is depicted in Fig. 1.
As explained earlier, our approach is similar to [1] and [6], but
we focus on the power of the prediction error rather than the
parameters or the transfer function of the model. Two results are
presented on this section: one on the probability of convergence
of the power of the prediction error to its optimal value and one
on the rate of the convergence. The results of this section will be
used in the analysis of subband identification in the next section.

A. Strong Convergence

Theorem 2 states that the power of the prediction error con-
verges, with probability one, to its optimal value. This result is
a generalization of [1, Th. 8.2], stated in terms of the power of
the prediction error instead of the set of parameters. That the-
orem was proved under the assumption that the signal
is generated by a combination of white noise and a determin-
istic signal, filtered by uniformly bounded linear systems, and

is generated by through another linear filter (see
[1, Assumption D1]). Our result is derived under a different set
of assumption on the signals, i.e., Assumption 1. Indeed, our re-
quirement on the signals , , and is weaker
than [1, Assumption D1].

Two assumption are required for this result.
Assumption 1:The signals , , and sat-

isfy the following.

1) the collection formed by the signals , , and
is strongly ergodic of first order and quasista-

tionary.
2) is independent of and .
Assumption 2:The model is a parametric

linear model. The set of parameters is assumed to satisfy
, where is assumed to be compact (i.e.,

close and bounded). There exists such that
, for all and all , and there exists

, such that , for all ,
and for , where is the th component of
the vector . The identification
method is the prediction error method, i.e., the optimal vector
of parameters up to time (which is denoted by ) is chosen
as follows:

(9)

(note that is a set), where

(10)

(Note that is well defined since is a
continuous function, and is compact).

Notation 1: Define the prediction error signal by
, and denote its power by . Let

Theorem 2: Consider the fullband identification method of
Fig. 1, together with Assumptions 1 and 2. Then

(11)

Proof: See Appendix B.

B. Asymptotic Convergence Rate

The following theorem gives a measure on how fast the power
of the prediction error goes to its optimal value. Asymptotic
convergence rate studies have been done in [1] and [6]. In [1],
the convergence study is done in terms of the speed at which
the vector of parameters goes to its optimal value when
goes to infinity. The assumption on the signals is the same as
mentioned above, i.e., random processes related as in [1, As-
sumption D1]. The model is a quite generic one (uniformly
stable linear model as defined in [1]). In [6], the convergence
study is carried out by analyzing the speed at which the iden-
tified transfer function goes to its expected value,
instead of its optimal value, as and go to infinity. The sig-
nals and are assumed to be deterministic signals,
and they do not need to be related in any particular way. The
model is assumed to be FIR, and the wayand go to infinity
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Fig. 2. Subband identification scheme.

is quite general (see [6, Assumption D1]). Our result states the
asymptotic convergence rate in terms of the speed at which the
power goes to its optimal value, as and go to in-
finity. This approach includes the convergence of the vector of
parameters and the identified transfer function as intermediate
steps. The analysis is a generalization in the sense that the sig-
nals are assumed to be random processes that do not need to be
related in any particular way. On the other hand, our assump-
tions on the system (FIR) and the way and go to infinity
( ) are slightly more restrictive. However, the
later can be generalized following the technique used in [6].

In addition to Assumptions 1 and 2, we also require the fol-
lowing.

Assumption 3:The signals , , and sat-
isfy the following.

1) The collection formed by the signals , , and
is strongly ergodic of second order.

2) is stationary and has zero mean (i.e.,
).

3) .
4) There exists such that .

Remark 2: Note that Assumption 3.3 is satisfied if the signals
and are generated by white noise filtered by a

uniformly bounded sequence of rational stable linear filters.
Assumption 4:The model is a parametric FIR

model of tap size . The set satisfies

int (12)

where int denotes the interior (i.e., excluding the boundary)
of . The optimal parameters are solved using the least-squares
(LS) algorithm, i.e., is calculated as follows:

where

(13)

(14)

The superscript denotes transpose conjugate.

Theorem 3: Consider the fullband identification method of
Fig. 1, together with Assumptions 1–4. Then

(15)

where denotes the power of the signal
, is the power of the noise signal ,

and

(16)

(17)

(18)

(19)

(20)

Proof: See Appendix B.
Remark 3: The residual term in (15) depends on

. It has a complicated expression. However, this term
can be neglected if is negligible compared with the noise
power . Define .
Then, informally, (15) can be interpreted as follows: For large

and and for small

(21)

Remark 4: Note that in (15), we consider the limit when
goes to infinity first, and then, we makego to infinity. If we do
not make go to infinity, then the asymptotic convergence rate
has a more complicated expression. It can be easily derived by
following the steps of the proof without considering the limit on

. However, the result in (15) is not restrictive since the subband
method is used mainly in applications whereis large, which
is the case when the subband approach has advantages over the
fullband method.

IV. SUBBAND IDENTIFICATION

The subband identification scheme is depicted in Fig. 2.
As we mentioned in introduction, the idea of sub-

band identification is to split both signals and
into subbands using two analysis filterbanks
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and . These
subband signals are downsampled, and the results are de-
noted by two vector signals
and . The subband parametric
model is identified in order to
reconstruct , which
is the subband equivalent of . The prediction error

is then formed. Finally,
a synthesis filterbank is used to
reconstruct .

For analysis purposes, we denote the downsampled version
of by . We define

and
denote by the signal obtained by upsampling
and then filtering it with . We also denote the downsampled
version of by .

The simplest configuration of this method uses critical sam-
pling (i.e., ) and a diagonal subband model .
It was shown [7], [8] that the filterbanks required for this con-
figuration need to be composed by nonoverlapping filters. In
practice, this means that the filters will have very narrow tran-
sition bands and, therefore, require a large tap size. There are
two approaches to relax the design of the filters. The first uses
off-diagonal terms in , as studied in [3]. The second ap-
proach uses oversampling ( ). In both approaches, the
filters are allowed to be overlapping and, thus, require a low tap
size. In this paper, we will study the first case (Assumption 7).

A. Strong Convergence

Theorem 4 studies the strong convergence in every subband,
whereas Theorem 5 studies that of the overall prediction error.
For Theorem 4, three assumptions are required.

Assumption 5:The signals , , and sat-
isfy the following.

1) The collection formed by the signals , , and
is strongly ergodic of first order and quasista-

tionary by phases.
2) is independent of and .

Remark 5: Note that Assumption 5 is satisfied if the collec-
tion formed by and is strongly ergodic of first
order and quasistationary by phases, and is generated
from through a linear system whose impulse re-
sponse satisfies .

Assumption 6:The analysis filterbanks and are
such that and for all .

Assumption 7:The subband model is a diagonal matrix
diag , where

and all the set of parameters
, have the same order. Each

satisfies Assumption 2 , i.e., for each , the
model is a parametric linear model. The set of
parameters is assumed to satisfy , where is
assumed to be compact. There exists such that

for all and all , and there
exists such that for all

, and for , where is the th

component of the vector .

The identification method is the prediction error method,
i.e., the optimal vector of parameters up to time(which is
denoted by ) is chosen as follows:

where

Notation 2: For each subband, we define the power of the
prediction error signal by . Then, we de-
note

Theorem 4: Consider the subband identification scheme of
Fig. 2, together with Assumptions 5–7. Then, for

Proof: See Appendix C.
In every subband, the sequence of random variables

, converges, with probability one to the deter-
ministic constant , which is the global minimum of

. The overall error also converges, with
probability one, to a deterministic constant . The fol-
lowing theorem states this fact formally. One extra assumption
is required.

Assumption 8:In every subband, the set
has only one element.

Remark 6: Note that Assumption 8 is satisfied if Assump-
tions 9.4, 9.5, 10, and 11 below, are satisfied.

Theorem 5: Consider the subband identification scheme of
Fig. 2, together with Assumptions 5–8. Then, there exists a de-
terministic constant such that

Proof: See Appendix C.
The constant is not equal to in general. How-

ever, a modification in the identification method, which was in-
troduced in [9], guarantees that . In addition,
with this modification, Assumption 8 is not needed for strong
convergence.

B. Asymptotic Convergence Rate

As with the study of strong convergence, we have a theorem
for the asymptotic convergence rate in every subband (Theorem
6) and a theorem for the overall asymptotic convergence rate
(Theorem 7). For Theorem 6, in addition to Assumptions 5–7,
we also require the following.

Assumption 9:The signals , , and sat-
isfy the following.

1) The collection formed by the signals , , and
is strongly ergodic of second order.

2) is stationary and has zero mean.
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3) .
4) There exists such that .
5) The signal is almost stationary.
Remark 7: Note that Assumption 9.1 is satisfied if the collec-

tion formed by , and is strongly ergodic of second
order and quasistationary by phases, and is generated
from through a linear system whose impulse re-
sponse satisfies .

Assumption 10:The analysis filterbanks and are
such that and , for . There
exists such that

where .
Assumption 11:Each satisfies Assumption 4,

i.e., for each , the model is a
parametric FIR model of tap size. The set satisfies

int

The optimal parameters are solved using the least-squares (LS)
algorithm, i.e., is calculated as follows:

where

Theorem 6: Consider the subband identification scheme of
Fig. 2, together with Assumptions 5–11. Then, for each

, for large and , and for small

(22)

where , and is the
power of the noise signal .

Proof: See Appendix C.
Notation 3: Consider the subband identification scheme of

Fig. 2. Let . We define the following
linear maps:

and

where denotes the adjoint of some operator. We denote
their induced norms by

and in a similar way.

The following result gives a bound for the norms of and
.
Proposition 3: Consider the subband identification scheme

in Fig. 2. Then

with equality if , , , where

, and

. The norm of is bounded in the same way.
Proof: See Appendix C.

Theorem 7: Consider the subband identification scheme of
Fig. 2, together with Assumptions 5–11. Then, for largeand

, and for small

where , and is the power of
the noise signal .

Proof: See Appendix C.

V. CONCLUSIONS

We have studied the asymptotic properties of the subband
identification method. The study was done in terms of the power
of the prediction error and was carried in every subband and in
the overall method. In the process of doing this, we came up
with a new notion of ergodicity called strong ergodicity. The
key properties of strongly ergodic signals is that they are in-
variant under a number of transformations, i.e., filtering, down-
sampling, upsampling, and addition. Using the notion of strong
ergodicity, the well-known asymptotic properties of the fullband
identification method are generalized to subband identification.

In a companion paper [10], we will give a rigorous study of
the performance of the subband identification method to explain
where the advantages of the method come from and how to op-
timize the performance of the method.

APPENDIX A
PROOFS OFSECTION II

Lemma 5: Let be a sequence of random vari-
ables with uniformly boundedth moments, and let
be the bound of theth moments. Let be a uniformly
bounded linear system bounded by . If is defined
by , then the th moments of

are uniformly bounded by .
Proof: We can interpret theth moment of as a norm

operation, i.e., . Then
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Notation 4: Let and be two random
processes and . The random process

is defined by

(23)

The following proof is based on the technique used in the
proof of the Strong Law of Large Numbers [11, Th. 5.1.2].

Proof of Proposition 1: Let . Let
be the probability space on which the stochastic

process is defined. We split the proof into three steps.

1) From (7) and Lyapunov’s inequality, we have that

(24)

In addition, from Chevychev’s inequality [11, pp. 48]

(25)

Then, from (24) and (25)

(26)

By the Borel–Cantelli lemma [11, Th. 4.2.1], (26) implies
that

which, in turn, by [11, Th. 4.2.2], implies that

(27)

2) Using the notation (23), let

Then

We can interpret the operation as a norm oper-
ation; then

where is the bound of the fourth moments of ;
then, , and there-
fore, there exists , such that

Now, following the same reasoning as in step 1, we have
that

(28)

3) For every , we have that
, where is the

largest integer such that . Then, from (27) and
(28)

which implies (1).

Proof of Proposition 2: We consider the case where .
To prove the case where is similar.

To simplify the notation, let , and let
, , , ,

, and . Using the notation
(23), we can write

where
. Then, we have the first equation

shown at the bottom of the next page, where the exchange of
the expectation with the infinite sums, in the second inequality,
is valid in view of Fubini’s Theorem since and are
uniformly bounded, and the random processes have uniformly
bounded fourth moments. It can be easily verified that

if
if

where is the bound of the fourth moments of . Then
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Proof of Lemma 1:We consider the case where to
prove the case where is similar.

Let , and . Using
the notation (23), we have that

where
. Then, we have the second equation shown at the

bottom of the page, where the exchange of the expectation,
in the second equality, is valid in view of Fubini’s Theorem
since , and the random processes have uniformly
bounded fourth moments. Then

To prove that has uniformly bounded fourth moments,
we apply Lemma 5.

Proof of Lemma 2:Let , ,
and . We have that

and the rest of the proof is straightforward.
Proof of Lemma 3:This proof is similar to the proof of

Proposition 2.

Proof of Lemma 4:Let , ,
, and . We have that

and therefore

and the rest of the proof is straightforward.

APPENDIX B
PROOFS OFSECTION III

Proof of Theorem 2:We split the proof into four steps.

1) Let

(29)

From Assumption 1 and Theorem 1, we have that
is ergodic for all ; then

(30)

Since , , and form a quasistationary
collection, and is an FIR filter,



MARELLI AND FU: ASYMPTOTIC PROPERTIES OF SUBBAND IDENTIFICATION 3137

is quasistationary for all . It follows
that the following limit exists:

(31)

From (30) and (31)

(32)

2) Let ; then

(33)

where

Consider the th component of the gradient of

Therefore

Now

where, for the last inequality, we applied Lemma
5. Therefore, for any and any , if

, then from (33), for all

and taking the limit as goes to infinity

which shows that is continuous for all .
Following the same steps, it is straightforward to show
that is also continuous. Then, sinceis compact,
the convergence in (32) is uniform on .

3) Let , which is well defined
and compact since is continuous and is compact.
Since the limit in (32) is uniform on , then

(34)

Note that the operation is well defined since
is compact. To show (34), let be the under-
lying probability space of , , and . Let

be the set where (34) holds. Consider a particular
. Suppose that there exists a sequencesuch

that

(35)

Define the set

(36)

which is obviously compact. From (35) and (36), there
exists such that

(37)

Define , which is well de-
fined since is compact, and define

. Since the convergence in (32) is
uniform on , then, there exists , such that

(38)

From (9), (37), and (38), for all and

which is impossible in view of (38). Finally, from (34),
and since is continuous, it follows that

(39)

4) Now, since and
and are independent, then

hence, from (39)
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To prove Theorem 3, we need the following lemma.
Lemma 6: Consider the fullband identification method of

Fig. 1. Let the collection formed by the signals and
be quasistationary, and satisfy Assumptions 3.2–3.4. Let

(40)

where is given by (14). Then

where

(41)

Further

where and are given by (19) and (20), respectively.
Proof: This proof follows the steps of the [6, proof of th.

4.1], in spite of the fact that we have different assumptions.
Proof of Theorem 3:We split the proof into six steps.

1) From Assumption 2, the set of parameters , which
is a compact set of . In this proof, we will allow that

. The result obtained will not be affected by this
fact in view of (12) in Assumption 4.

2) From (10), it is straightforward to prove that

where

and

Then

(42)

with

3) Now, due to Assumption 3.1, we have that there exists
such that

(43)

In addition, by following an argument similar to [1, App.
9B], there exists such that

(44)

In turn, (44) implies that there exists such that

(45)

4) Let . Since ,
is independent of and has zero mean,

we have that

(46)

where and are given by (40) and (18), respec-
tively.

5) We have that

Since and are Toeplitz matrices, then,
from (41) and [12, (6), p. 64], we have that, for all

and

Assumption 3.3 guarantees that ;
then, there exists such that

(47)

6) We have that

(48)

where the exchange of the expectation is justified
by Tonelli’s theorem since the integrand is posi-
tive. Now, the model can be expressed as

, where is given by
(20). Then, we have (49), shown at the bottom of the next
page. From (45), it follows that the integrand in (49) is
bounded, and we can apply the Lebesgue’s dominated
convergence theorem (LDCT) to exchange the limit on

with the integral. In addition, from (44) and [11, th.
4.5.2], we can exchange this limit with the expectation.
Now, from (42) and since is ergodic

Then, we have (50), shown at the bottom of the next page.
Now, we can write
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and from (43) and [11, th. 4.5.2], we can exchange the
limit with the expectation in (50). Then, we have (51),
shown at the bottom of the page, where the last equality
follows from (16) and (46). In addition, by (47), the
LDCT allows us to exchange the limit on with the
integral; then, we have (52), shown at the bottom of the
page, and by Lemma 6

(52)

APPENDIX C
PROOFS OFSECTION IV

Lemma 7: Let . If and
, then .
Proof: We have the last equation at the bottom of the page,

which is straightforward to verify that is finite.

Proof of Theorem 4:We need to verify that the condition
in Assumption 1 holds in every subband. Then, the result fol-
lows from Assumption 7 and Theorem 2. Fix .

Assumption 1.1:The fact that the collection formed by the
signals , , and is strongly ergodic
follows from Theorem 1.

We will prove that the same collection is quasistationary by
phases. This implies that it is also quasistationary. To be rig-
orous, we should follow the steps of the proof of Theorem 1,
i.e., show that a quasistationary by phases collection is invariant
under the transformations under consideration. Instead, we will
give a sketch of the idea in the following.

1) We have that the collection is
quasistationary by phases (Assumption 5).

2) The operations of filtering by a time-invariant
filter and downsampling preserve the quasista-
tionary by phases property. Then, it follows that

is quasistationary by
phases.

(48) (49)

(49) (50)

(50)

(51)

(51) (52)



3140 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 12, DECEMBER 2003

Assumption 1.2:The fact that is independent of
and follows since is independent of

and .
Proof of Theorem 5:In view of Assumption 8, in every

subband, is unique. Let and
. Then

where the exchange of the limit is valid since is a
continuous function.

Proof of Theorem 6:We need to verify that the condition
in Assumption 3 holds in every subband. Then, the result fol-
lows from Assumption 11 and (21). Fix .

Assumption 3.1:This assumption follows immediately from
Lemma 5.

Assumption 3.2:We have that
. Then, has zero-mean because has

zero-mean. In addition

and therefore, does not depend on, and
it follows that is stationary.

Assumption 3.3:Let . It is easy to verify
that . Two applications
of Lemma 7 gives that . Now, since is
almost stationary (Assumption 9), so is ; then

(53)

from where it is straightforward to verify that
.

Assumption 3.4:We have that
. From [13, eq. (4.1.4), p. 102], (53), and Assumption

10, we have the equation at the bottom of the page, where
denotes the Fourier transform.

Proof of Proposition 3: The map
is given by

where denotes the th component of the vector, and
denotes the inner product on . Then, the result can be

reached following the proof of [14, Sect. 3.3.2, p. 67].

For the norm of , we have that
is given by

From [14, Sect. 3.2, p. 57, (3.2.3)], it follows that
is given by

and therefore, the result follows since .

Lemma 8: Let be
an array of quasistationary random processes, and let

, , satisfying . Let
be generated from by

upsampling by a factor of . Let
be defined by (i.e., is
generated from by filtering followed by downsampling
by a factor ). Let , and
let be generated from in the same way as
is generated from . If there exists such that

, where , then

where . Further, if ,
then .

Proof: Let ;
then

(54)

Without details, we will say that the exchange of the expecta-
tion with the infinite sums is valid in view of Fubini’s Theorem
since has uniformly bounded second moments (recall
the definition of quasistationary), and the exchange of the limit
with the infinite sums is valid in view of Lebesgue’s dominated
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(54)

convergence theorem since . Now, define the
sequence of truncations as follows:

otherwise

and let and be generated from in the
same way as and are generated from . It
is quite straightforward to show that for all

Then, we have the equation at the top of the page, where the
exchange of the limit with the infinite sums is valid for the same
argument given above.

Now, let be the underlying probability space of
. We have that for every , ,

and . Then

To prove the last part, replace the inequality with an equality.
Proof of Theorem 7:Let denote the power of

the signal , and for each
, let , denote the power of the signal

. We have that
. Then, from Lemma 8

(55)

From (22), we have that, in every subband

(56)

From (55), (56) and Lemma 8

(55) (57)
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