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Finite-Level Quantized Feedback
Control for Linear Systems

Minyue Fu and Lihua Xie

Abstract—This technical note studies quantized output feedback control
of discrete-time linear systems using a finite-level quantizer. The main ob-
jective is to find a quantization strategy which is easily implementable and
achieves asymptotic stabilization. Based on a known logarithmic quantiza-
tion scheme, we introduce a simple dynamic scaling method for the quan-
tizer. A suboptimal approach for the optimization of the number of quan-
tization levels and the design of a corresponding quantized dynamic output
feedback controller is given. The robustness of the dynamic quantization
scheme with respect to input disturbances is also examined.

Index Terms—Linear time-invariant (LTI), single-input single-output
(SISO).

I. INTRODUCTION

There has been a lot of new interest in quantized feedback control
where the feedback signal is quantized and coded for transmission [4],
[9]. A fundamental problem is how to design a feedback controller and
a quantizer jointly in order to achieve a given control objective.

The research on quantized feedback control can be categorized de-
pending on whether the quantizer is static or dynamic. A static quan-
tizer is a memoryless nonlinear function, whereas a dynamic quantizer
uses memory and thus can be much more complex and potentially more
powerful. Existing work using static quantizers includes, e.g., [1]–[3].
For quadratic stabilization of a linear system using state feedback, it
is shown in [1] that the coarsest quantizer is logarithmic. This result
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is generalized in [3] to a number of output feedback problems using a
sector bound approach.

When a dynamic quantizer is allowed, it is shown in [4] that sta-
bilization of a single-input single-output (SISO) linear time-invariant
(LTI) system (in some stochastic sense) can be achieved using only a
finite number of quantization levels, and the minimum number of quan-
tization levels (also known as the minimum feedback information rate)
is explicitly related to the unstable poles of the system. In this setting,
the dynamic quantizer effectively consists of two parts: an encoder at
the output end and a decoder at the input end. Although it is shown
in [4] that stabilization of a linear system can be achieved by feeding
back only a finite number of bits per sample and this number is typi-
cally very small, the encoder-decoder pair used for proving this result
is impractical and could be non-robust against noises.

Another type of dynamic quantizers uses dynamic scaling in con-
junction with a static quantizer. That is, the input signal is pre-scaled
so that its range is more suitable for quantization. The scaling param-
eter is dynamically adjusted (i.e., adjusted online). Noticeable work
along this line includes [5]–[9]. In [5], it is pointed out that if a system
is not excessively unstable, by employing a quantizer with various sen-
sitivity a feedback strategy can be designed to bring the closed-loop
state arbitrarily close to zero for an arbitrarily long time. This idea is
extended in [6] where it is shown that there exists a dynamic adjustment
of the quantizer sensitivity and a quantized state feedback that asymp-
totically stabilizes the system. In the case of output feedback, a local
(or semi-global) stabilization result is obtained. [7] studies the desta-
bilizing effect of a quantizer on closed-loop system stability. Given a
stabilizing state feedback controller designed under no quantization,
the state of the closed-loop system is shown to enter a set characterized
by the worst-case quantization error. The quantizer design problem is
then reduced to a so-called multicenter problem.

In this technical note, we propose a simple dynamic scaling method
for a logarithmic quantizer based output feedback controller. A dy-
namic scaling factor is simply adjusted up or down depending whether
the input signal to the quantizer is “too small” or “too large” in
magnitude. Using this dynamic scaling method, we show that a linear
system can be asymptotically stabilized using a logarithmic quantizer
with only a finite number of quantization bits. We also show that the
proposed scheme is robust in the sense it can tolerate additive noises in
the system effectively. Unlike [7], [8] where quantized state feedback
is considered, we investigate a quantized output feedback control
problem. In our work, we give a suboptimal approach for minimizing
the number of quantization levels of a logarithmic quantizer and the
design of a corresponding quantized output feedback controller for
stabilization.

II. FINITE-LEVEL QUANTIZED FEEDBACK STABILIZATION

Consider the following system:

���� ���� ���� (1)

�� ���� (2)

where �� � � is the state, �� � is the control input, �� � is the
measured output,� �

���,� �
��� and� �

��� are given. We
will denote the transfer function from �� to �� by ����. Without loss
of generality, we assume that� is unstable and ��	�	�� is a minimal
realization.

The quantized output feedback stabilization problem is to design the
quantizer, 
� � �����, and a feedback controller of the form

����� ������ ���
�	 ��� � � (3)

�� ������ ���
� (4)
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with ��� �
�, such that the closed-loop system is stable. It has

been shown in [1], [3] that under quadratic stability the quantizer that
achieves the coarsest quantization is logarithmic and is given by

���� �

����� if �
���

���� � � � �
���

����
�� if � � �

������� if � � �

(5)

where � � ��� ��, �� is a scaling constant, � � �������� � � �, and

	 �
�� �

� � �

 (6)

Note that a smaller � corresponds to a coarser quantization density and
the smallest � for which the system (1), (2) can be quadratically stabi-
lized via a quantized feedback controller (5), (3), (4) is given by [3]

���� �
�� 	��	
� � 	��	

(7)

	����	 � 	
�
�
��

��������������������
�

(8)

where ���� is the transfer function of the controller.
However, a logarithmic quantizer (5) has an infinite number of quan-

tization levels and is not implementable practically. One simple ap-
proach is to truncate the quantizer using a large saturator and a small
dead zone. That is, we use a �� -level logarithmic quantizer with quan-
tization density � � ����

���� �

����� if �
���

���� � � � �
���

����
� � � � � � �

������� if � � � � �
���

������
��� if � � �

���
��

������� if � � �.

(9)

This quantization scheme will allow the state of the system to converge
to a small neighborhood, provided that the initial state is within a known
bound.

Our main objective here is to show that it is possible to dynamically
scale the input-output signals of the quantizer so that asymptotic stabi-
lization can be achieved using a finite-level logarithmic quantizer, even
without knowing the bound for the initial state.

The basic idea of dynamic scaling is very simple: When the signal
�� is outside of the quantization range, we scale it back by a scaling
factor (or gain) �� � � before quantization. The quantized signal is
then scaled back by ���

�
. That is, we use

�� � ���
�
�������
 (10)

The key problem with dynamic scaling is how to design �� . The
main technical difficulty is that there is no separate feedback channel
to communicate the gain value. One approach is that both sides of the
feedback channel compute the same �� independently. This is possible
only when the gain �� can be computed using only the quantized signal
because this signal is available to both sides of the feedback channel,
assuming no packet losses and transmission errors. In the sequel, we
introduce a very simple dynamic scaling method.

The closed-loop system of (1), (2), (3), (4) and (10) is given by

���� � ���� � �����
�
���� ����� (11)

where � � �� ��� �
�

,

�� �
� ��	

� �	

� �� �
��	

�	

� �� � � ��
 (12)

For the moment, we assume that an infinite-level logarithmic quan-
tizer with density � � ���� is adopted. Then, �� has no effect. Fol-
lowing the sector bound approach [3], we can write (11) as

���� � �������� (13)

where ������ � ��� �������� �� and �� represents the quantization
error defined by ���� � ������ �� with �	 � �� � 	.

Because (13) is quadratically stable, we have a quadratic Lyapunov
function � ��� � ���� with � � � � � � such that [3]

������� ����� � �� � ��� � 	
 (14)

Using the continuity argument, the above is equivalent to

������� ����� � ��� ���� � ��� � 	 (15)

for some � � � � �.
We now assume that a �� -level logarithmic quantizer with the same

density � and dynamic scaling (9), (10) is applied instead. Let �� and
�� be two positive scaling factors such that � � �� � �,

�
�� � �

�� � �, and

��� ���� �� � ��� ���
 (16)

Note that (16) is always possible by taking �� sufficiently small.
We initialize �� to be any positive value and define ���� for any

� 	 � as follows:

���� �

����� if ��������� � ��
������ if ��������� � ������
��� otherwise.

(17)

Because of the flexibility in ��, we can normalize �� � � without loss
of generality. We will also denote � � ����. The choice of �� does not
affect stabilizability, but choosing it according to an estimate of 
��

helps improve the transient performance; see Example 2 in Section V.

Consider the scaled state defined by

�� � ���� (18)

and the associated Lyapunov function � ��� � ����. We have the
following result:

Lemma 2.1: Consider the closed-loop system (11) with a scaled
� -level logarithmic quantizer (9) and (17), where � in (9) is such that
� � ���� , and ��, �� and � are chosen according to (15), (16). Then,
for any initial state �� and any � 	 �

� ������ � ��� ��� ����� if � � �� ����� � �

��� ���� ���� � ���
�� if �� ����� � �

(19)
where

�� ��� ���� �� � � ���� �� (20)

�� � ���� �� � ���� ���� �� (21)

with � being any positive constant satisfying �� � �.
Proof: The result for the case of � � ��� ������ � � follows

directly from (13), (15) and ���� � �� . For the case of ��� ������ � �,
���� � ����. It follows that:

� ������ � ���� ���� � �����
�� � ���� � �����
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where �� � ����� �����. Denote

���� � ���� ���� 	 �����	 � ���� 	 ����


From (16), ��
� � �� � ��� ����. Since �� ������ � �, we have
�� � ��� for some 
 � � � �, where �� � �� 	 ��� ���� with
���� � � is the unsaturated output of the quantizer. Also from (15),
we get

����� � ����
�

�
������

�	 �������� � ������ ��� ����


Since ���� is quadratic and convex (because ������ when ��� �
�), it is clear that

� ������ � ����� � �� ���
�� ������ � ��� ��� ����


For the case of �� ������ � �, ���� � �����. From (9) and (13),
we can write

���� � �������� 	 ������ ��

where ���� � �. It follows that:

� ������ � ����
�������� 	 ����

�
	 �������� 	 ����

� ���� ��� ������
�	 ��������

	 ���� ��� ��
�	 �������� 	 ��� ��

�	 ��

� ���� �� 	 � ���� ������
�	 ��������

	 ���� �� 	 ������ ���	 ��

� ���� �� 	 � ���� ����� 	�� 	 ���
�

���� ���� ���� 	 ���
�


The above holds for any � � 
. Since
�
�� � � �� � �, we can

choose � sufficiently small to ensure �� � 
.
From Lemma 2.1, it is clear that � ���� converges to a bounded re-

gion. This bound can be computed by solving ����� 	 ���
� � 
,

which gives

�� � ���� ���
�
 (22)

Lemma 2.1 leads to the following result:
Corollary 2.1: Suppose the scaled �� -level logarithmic quantizer

(9), (10) and (17) is applied. Then, for any initial state ��, �� � ����
converges exponentially to the ellipsoid

�� � � � � 	 ��� � ��� � �� 
 (23)

From (22) and the corollary above, it is clear that we can choose �
to be sufficiently large so that, when � is sufficiently large, � �����
will no longer be saturated. This is achieved by choosing � such that

� ���� � �� 
��	� � ���� ���
������


Since ��� is a scalar, the above implies that

����� ��� � �� ��� � ���� ���
������	��


By substituting the second matrix inequality into the first one, we obtain
� � ��, where

�� � � 	
��� ���� ���� �� 	 ���� ���	 �� ��	�� ���

� ��������

 (24)

The analysis above yields the following main result:
Theorem 2.1: Suppose the scaled �� -level logarithmic quantizer

(9), (10) and (17) is applied with � � �� in (24). Then, the state ��
converges to zero asymptotically.

Proof: From Corollary 2.1, �� converges to �� exponentially.
This property and the choice of �� imply that � ����� will no longer
be saturated after a finite number of steps, say �� steps. This means that
�� will be non-decreasing for � � ��. Note that whenever ���� � �� ,
� ���� decreases exponentially. If this continues for enough number
of steps, � ����� will be less than �, forcing ���� to increase by factor
of ����. This means that �� cannot converge to a constant. Hence,
�� � � as � � �. Since �� is bounded for � � ��, we conclude
that �� � 
 as � ��.

Remark 2.1: A typical behavior of the system is as follows: If the ini-
tial state is very large, the feedback signal tends to be saturated, forcing
�� to decrease fast. This would result in a period of overshoot. Once ��
is sufficiently small, saturation will stop and the state decays exponen-
tially. When the state is sufficiently small, �� will increase gradually,
causing the quantizer to bounce back and forth between the dead zone
and logarithmic region. During this phase, the state also decays expo-
nentially, but at a lower rate.

III. NUMBER OF QUANTIZATION LEVELS

In this section, we try to analyze the number of quantization levels
needed for stabilization. Recall that for a given controller (3), (4)
with an infinite-level logarithmic quantizer with density � � ���	
that quadratically stabilizes the system (1), (2), a sufficient number of
quantization levels is given by �� of (24). However, this formula is
complicated because �� depends on a number of design parameters
(�, ��, �, 	 , � , and the controller). In the sequel, we consider how to
choose these parameters.

We first minimize �� of (24) with respect to � by assuming that
other parameters are fixed. From (24), it is clear that minimizing �� is
equivalent to

��
���

���� ���� �� 	 ���� (25)

where �� is given in (20). The solution to (25) is simply given by

� �
���
�� �

� �� �� � �� ���� �� � (26)

��
���

���� ���� �� 	 ���� � ��� � �� ���� (27)

Applying the above to (24) and noting �������� � � ������

�� � � 	
� ������ ���� ��� ���� ���	 �� ��	�� ��� �

� ������

 (28)

We next discuss the effect of �� on ��. Since �� � � is required,
it is clear from (28) that �� is minimized by taking �� very close to
1, which, however, makes �� increase very slowly, as seen from (17),
resulting in that �� converges to 0 very slowly. A good choice for ��
should balance the convergence rate of �� and the number of quantiza-
tion levels; see Example 1 in Section V.
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With �� � � chosen, we shall now minimize �� with respect to �,
�, the controller and its associated � . Observe from (28) that �� can
be reduced by increasing � and � (or decreasing �). However, we can
see from (15) that a larger � requires � to be small. Furthermore, the
choice of � and � affect � and the controller. This implies that � and �
need to be optimized jointly. To this end, we return to (15) and provide
the following relationship between � and �.

Theorem 3.1: For any given � � � � ����, � � � � � and�
�� � � �� � �, �� in (28) is minimized by solving the following

optimization problem:

���� � ��� ��	
����������� �� ��

�	�� (29)

subject to the following linear matrix inequalties:


� � ��	 � � � � �

� � ��
 
� � ��� � � � �
�	 �� ���	� �	 � � �

� ��� �� �
 �� � �
� � �


	 

 �
 �� �

�	 � � � � ����

�� (30)

�	 �
 �	

�
 �� �

�

	 


 �
 ��	
� �� �	 �


� �� (31)

where � � �
 , 	 � 	 
 � ���, � � ���, � � 	��,
� � ��	 and �	 and �� are scalars. The optimal �� is given by

�� � � �
 ���
�� ��

�� ��� ���
�����

 ���
��
(32)

and the optimal controller (3), (4) is given by the solution of �	 to-
gether with

�	 �
� ��	�	 ��
�
 (33)

	 ��
�	
� ���	� (34)

�	 ��
�	
����	 ���	�	 ��	�	 ���


��
�	
��	 (35)

where � and � are any nonsingular matrices solving

��
 � 
 ��	 (36)

with� being the free parameter determining the state space realization
of the controller.

Proof: First, we apply the S-Procedure [11] and standard tech-
nique of change of variables [10] to (15) to obtain (30). Then, observe
from (28) that for the given �, � and ��, minimizing �� with respect
to the controller and the matrix � is equivalent to minimizing �	��,
where �
� � � �	 and ����	 ��
 � ��, which is equivalent to (31),
following Schur complement and the above change of variables. The
detail is omitted due to space limit.

We now explain how to solve the optimization problem in Theorem
3.1. We assume that �� � � is pre-specified (say, e.g., �� � ���). Now,
given � and � (or �), (29) is bilinear in �	 and ��. Note that when
�	 � �, the first inequality in (31) is a part of (30). This means that
the minimum of �	�� is achieved at some � � �	 � �. Then, the

minimum of �� can be found by numerically searching over a three-
dimensional set � defined by

�� 
�� �� �	� � � � � � ����� �� �
�
� � � � �� � � �	 � �

and solving (29) for each chosen candidate in �. A simple brute force
method, which also works well, is to discretize � uniformly in each
dimension and solve (29) at each grid point. Since we only need an in-
teger solution for the number of bits �� � ����
���, the discretiza-
tion can typically be done coarsely.

IV. ROBUSTNESS AGAINST ADDITIVE NOISES

Next, we consider the scenario where the system (1), (2) is subject
to some bounded additive noise, i.e., we consider the following system
instead:

�
	 ��� �� � � (37)

� ��� (38)

where ��� � �� for some constant �� � �. The corresponding closed-
loop system becomes

�
	 � ��� � ���	 �
� ���� � �
� (39)

where �
 � �
 ��
 . Using the scaled state � � �� , (39) becomes

�
	 � �
�	

	�

��� � ��
 ���� � � �
� � (40)

In this case, we want to drive the state to a bounded region. To do so,
we first generalize Lemma 2.1 as follows:

Lemma 4.1: Consider the system (37), (38) and the dynamically
scaled logarithmic controller as given before. Then, the scaled state
� � �� is bounded as follows:

� 
�
	� �

� �  �
�� ���� 
��

�
� �  �	���		���
	 ���� if ! � �
 ���� � �


� �  ���	�

�
�� �� 
�� � 
� �  ���!

�

�
� �  �	���		���
	 ���� if �
 ���� � !

(41)

for any  � �, where �		 � �

� �
 .
Proof: The proof is simply extended from the proof of Lemma

2.1. The detail is omitted.
From Lemma 4.1, we see that, by choosing  sufficiently small, the

scaled state converges to a bounded set when � has an upper bound ��.
There are 2 steady state bounding sets for � 
�� from (41), associated
with the three cases of ��
 �����, and they are given by

"��	 � � � � 
�� � � �  �	

�� 
� �  �
�� ��
������ ��� (42)

"��� � � � � 
�� � 
� �  ���

�� 
� �  ���	�

�
�� �

!
�

�
� �  �	

�� 
� �  ���	�

�
�� �

������ ��� (43)
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It is straightforward to minimize ���� with respect to � and the result
is given by

���� � � � � ��� � �

����
�� ���

�������� ���
	 (44)

Noting that the overall minimization of ���� is difficult, we choose to
minimize the term associated with ��. It is easy to verify that the result
is given by

���� � � � � ��� � ���
�� ������

�� ���


�

�
�

����
�� ����

�������� ��� (45)

where � � �� � ����

�
�� �.

Theorem 4.1: Consider the system (37), (38) and the dynamically
scaled logarithmic controller as given before. We require�  �� with
�� given by (28) and modify the scaling factor �� by saturating it at
some ��. Then, both the closed-loop system state �� and the scaled state
�� � ���� are bounded when � � �.

Proof: The asymptotic boundedness of �� follows easily from
(44), (45). To show the asymptotic boundedness of �� , it suffices to
show that �� has some lower bound � asymptotically. To do so, we
define

���� � � � ���� � � ����� ��� ��� 	

It is easy to check that � ���� � � for all � � ����. Since �  ��, we
know that �� � ����� for some � � � � �, where �� is defined
in (23) and ����� � 	� � ���� � ����
.

Next, we note that if ���� � �, we can take � � ���� so that (41)
becomes (19). Using �� � �����, the above means that there exist
	� and ��, both positive and sufficiently small, such that, if ���� � 	�,
then

� ������ � ��� ���� ����� ��� �� ���� 
� � �����  
	 (46)

The exponential convergence rate above implies that there exists some
integer �  � such that for any initial �� � ���� in (45), it takes
at most � steps for �� to reach ����, provided that ���� can be kept
below 	� all the way. Once �� � ����, it will stay there until ��  	�
again. Since the exponential decay in (46) continues to happen as long
as � �����  
, �� will decay sufficiently to allow �� to grow back until
��  	�.

Now we define � � ����
� 	� and proceed to prove that ��  � asymp-

totically. We assume, on the contrary, that there exists an increasing se-
quence of ��, � � �� ��   , such that �� �� as ��� and �� � �

for all �. Since �� � ���� in (45) as � ��, we may assume that ��
is so large that �� �� � ����. From the definition of �, we know that
�� � 	� for all �� � � � � � ��. Hence, from our earlier discussion,
we know that �� � ���� and that �� will stop decaying when �  ��
and will eventually grow back to ��  	� while keeping �� � ����.
Once this happens, �� can not decay down to � again because as soon
as �� � 	� (but with ��  ��	�), it takes at most � steps for �� to
reach ���� again while keeping �� � 	�, and �� can not go below �

in � steps. This conclusion contradicts the assumption made on the se-
quence 	��
. Hence, ��  � asymptotically.

V. ILLUSTRATIVE EXAMPLES

In this section, we use two examples to illustrate the proposed dy-
namic scaling method.

Example 1: We consider a first order system

���� � ��� � ��� �� � �� (47)

Fig. 1. Bit rate comparison for a first order system.

where �  �. It turns out that we can have a relatively simple expres-
sion for ��. Indeed, to stabilize the system using a logarithmic quan-
tizer (5) with density �, the controller���� � �, where � is a constant,
because of full state feedback. The closed-loop system is given by

���� � ��� ��� � ������� ���� � �

where � relates to � as in (6). Since it is a first order system, we take
� ���� � ��� , which gives

� ������ � ��� ��� � ����
�
�
�
� � ���� ��� ������ ���

with the right-hand side being the worst-case value. Minimizing it gives
� � �� and � ������ � ����� ����. This gives the upper bound for
� to be ���.

Now, for any � � ���, � in (15) is given by � � ������. Applying
it to (28), we obtain

�� � � �
�
�����

�� � ��

�
���� ��� �
��� � ��
� � � �

�� (48)

which can be minimized numerically. The result is shown in Fig. 1,
where two curves for the required bit rate, one for �� � � and another
for �� � �	�, are compared with the minimum bit rate ��
������ given
in [4]. We see that the difference is only a few bits even when � is taken
up to 100.

Example 2: The second example we consider aims at demonstrating
the convergence rate and robustness of the dynamic scaling method.
Consider the system (1), (2) with

� �

�	� ��	�� �	���

� � �

� � �

� � �

�

�

�

� � �� � �	� �	���	

The system is unstable with two unstable open-loop poles at �	�� ��	�
but without unstable zero and the relative degree is 1. It follows from
[3] that

���� � ��	�� ��	���� � �	����� �	
� � �	����	

By applying the search mentioned in Section IV, we obtain the op-
timal values

� � �	���� � � �	���� �� � �	����� �� � �	����	



1170 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 54, NO. 5, MAY 2009

Fig. 2. Responses of � of the closed-loop system with � � �.

Fig. 3. Scaling factors � with � � �.

The optimal controller is given by

�� �

��������� �����	� �
�����

�
������ �


����� ��������	
���
����� ���	��� ����	���

�� �

���
��

�
��			�
���
�


�� � ��
����� � 
��	��� � �����
�

�� � � 
������

Since �� is lower bounded by
�

� � � 	�����, we choose �� �

	��. This gives �� � �. We try � � � (4 b). Note that the minimal bit
rate required for stabilizing this system is 1 bit [4].

Next, it can be easily verified that (16) is satisfied if �� � 	���. Thus,
we take �� � 	��. Let the initial state of the controller be �	� � �	 	 	�

and 
� � 
. The response of the first state variable of the closed-loop
system with the initial state 	� � ��	 � �	 	� , �� � 	�
 and � �
� is shown in Fig. 2 (solid line). Other state variables are not shown

since they are similar. If 	� is known, we may set �� � 
���	��. The
response of the first state variable under this situation is also given in
Fig. 2 (dash line) which as expected, shows a much reduced overshoot.
We also examine the robustness of the closed-loop system. Let � in
(37) be a saturated Gaussian white noise with zero mean, covariance
matrix �� � �� and � � 
		. For � � �, �� � 	�
, 
� � 
,
and �� � 	��, the response of the first state variable of the closed-loop
system with 	� � ��	 � �	 	� is also shown in Fig. 2 (dot line) for
comparison. The corresponding scaling gains �� for the above three
cases are compared in Fig. 3.

VI. CONCLUSION

We have presented a simple dynamic scaling method for quantized
output feedback control to achieve stabilization using a finite-level
quantizer. The proposed control scheme is easily implementable and
has nice convergence and robust properties. We emphasize that the
concept of dynamic scaling can be applied to a much wider range
of quantized feedback control problems, not just for the stabilization
problem.
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