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Abstract: The problem of computing the frequency response of 
linear systems with parametric perturbation is addressed. Un- 
der the assumption that the coefficients of the system transfer 
function depend on the perturbation parameters in a linear 
manner, we provide results for plotting the frequency response 
of the perturbed transfer function. These results are useful in 
determining the H~ norm, gain margin and phase margin and 
in improving the diagonal dominance of multi-input multi-out- 
put uncertain systems. An illustrative example is provided to 
demonstrate the results. 

Keywords: Frequency response; parametric perturbation; un- 
certain system; robustness. 

1. Introduction and problem formulation 

The classical frequency response methods de- 
veloped by Nyquist [1], Bode [2] and Nichols [3] 
have been extensively used in the synthesis and 
analysis of feedback control systems. They pro- 
vide a good graphical means for investigating a 
system's stability and performance. They have also 
been proven to be very useful in the control design 
of uncertain systems. For example, Horowitz's 
Quantitative Feedback Theory (see, e.g., [4,5,6]) is 
based on the value sets (templates) of the uncer- 
tain transfer function on the Nichol's chart at 
various frequencies of interest. Once these value 
sets are determined, a systematic approach can be 
applied to design a feedback compensator and a 
prefilter such that the closed loop system satisfies 
the desired stability margin, robustness and per- 
formance. Another approach for control design of 
systems with structured perturbation is proposed 
by Sideris and Safonov [7] which uses conformal 
mapping to convert the value sets onto the unit 
disk so that the structured perturbation problem 
becomes an unstructured one. The resulting un- 

structured perturbation problem can be solved 
using the H ~ theory or Nevanlinna-Pick interpo- 
lation methods. In contrast to [7], Iftar and 
Ozguner [8] show that a class of unstructured 
uncertainties can be modelled by parametric vari- 
ations. In every approach mentioned above, the 
determination of the frequency response of an 
uncertain system is crucial. Unfortunately, the 
computation of the value sets is very tedious in 
general, and little attention has been paid to this 
issue. 

The aim of this paper is to address the compu- 
tation of the frequency response of a transfer 
function with parametric perturbation described 
by 

l 

No(s ) + y" qiNi(s) 
P(s,  q) N(s ,  q) i=1 

D ( s , q )  l , 
Do(s) + E q,O,(s) 

i=0 

q ~ Q, (1) 

where No(s ) and Do(s ) are nominal polynomials or 
nominal quasipolynomials in the case when the 
system contains delay terms; N,(s), Di(s), i = 
1 2 . . . . .  l are perturbation polynomials or perturba- 
tion quasipolynomials; q= [ql, q2 . . . . .  ql] T is the 
perturbation parameter vector belonging to a 
bounding set Q c R  t. We assume that Q is a 
hyperrectangle; i.e., 

Q = ( q : q T < q < q + , i = l , 2  . . . . .  l} .  (2) 

For further engineering motivation of this type of 
parametric perturbation, the reader is referred to, 
among numerous papers and books, [9,10,11] and 
the references thereof. 

The problem of plotting the frequency response 
of the perturbed transfer function (1) is as follows: 
Given a finite sequence of (radian) frequencies 
( ¢o k }, determine the value sets 

P(j¢o k, Q):= (P(j~o k, q): q ~  Q} (3) 

in the complex plane. 
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The most related work to this paper are the 
recent results by Bailey and Panzer [12], Bailey, 
Panzer and Gu [13], and Bailey and Hui [14] 
where two special cases of P(s, q) in (1) are 
considered. In [12] and [13], P(s, q) is required to 
satisfy an interval structure, i.e., 

n 

P(s,  q) = ~ a,s ' /  Y'~ b,s' 
i = 0  i = 0  

where a~ and b i are bounded by intervals [a~-, ai +] 
and [b 7 , bi + ], respectively. An algorithm is given 
in [12] and [13] using the fact that the value sets of 
the numerator and the denominator of P(j~0, Q) 
at each fixed w are independent rectangles. In 
[14], it is assumed that the perturbation parame- 
ters for the numerator of P(s, q) and those for 
the denominator are independent. Another al- 
gorithm is established by these authors using the 
fact that the value sets mentioned above are inde- 
pendent convex polygons. However, these ap- 
proaches are difficult to extend to the case where 
the numerator and the denominator of P(s, q) are 
correlated to each other. 

In this paper, we consider the computation of 
the frequency response of the perturbed transfer 
function P(s, q) in (1) and show the following 
results: 

(1) At each fixed frequency ~0, the boundary of 
the value set P(j~0, Q) on the Nyquist plot is 
composed of a number of arcs or line segments 
mapped from the edges of Q. 

(2) Each arc or line segment above can be 
simply determined by using the values of P(j~0, q) 
at the two end points and the midpoint of the 
corresponding edge of Q. 

Consequently, a simple algorithm is created for 
plotting the frequency response of the perturbed 
transfer function. An illustrative example is pro- 
vided to demonstrate the algorithm. Some applica- 
tions of the results are displayed which include the 
computation of the maximal Ha-norm, gain and 
phase margins and diagonal dominance improve- 
ment of uncertain transfer matrices for multi-in- 
put multi-output systems. 

In order to guarantee that the value sets (3) are 
bounded, we assume D(.jto k, q) ~ 0 for all q ~ Q 
and every member of { ~% }. Note that this condi- 
tion can be simply tested. Indeed, it can be shown 
that for any fixed complex number s, D(s, Q) 
contains zero if and only if the following condi- 

tions hold [15]: for each 1 < k < l. 

[Re(do(s))  I m ( d k ( s ) ) -  l m ( d o ( s ) ) R e ( d k ( s ) ) ]  

l 

+ ~_, q°[Re(di(s))  Im(dk(s) )  
i = l  

- I m ( d i ( s ) )  Re(dk(s) )  ] <0 ,  (4) 

[Re(do(s))  Im(dk(s ) )  - Im(do(s) )  Re(dk(s))]  

l 

+ ~_, q)[Re(di(s)) Im(dk(s ) )  
i = 1  

where 

(qO, 

- I m ( d i ( s ) )  Re(dk(S)) ] > 0 ,  (5) 

(qT, q?)  

(q,.+, q,.-) 

if Re(d , ( s ) )  Im(dk(s ) )  

- I m ( d , ( s ) )  Re(dk(s) )  > 0 ,  

otherwise. 

It is easily examined that this test requires at most 
(4 /+  1)/ multiplications and (3/+ 1)l additions. 

The bounding set Q has 12 t- 1 edges given by 

{(ql* . . . . .  qi*-l, q,, q,*l . . . . .  q,*): 

qiE[q[- ,q+]} ,  

i =  1, 2 . . . . .  l, (6) 

where q j* is equal to either qi- or q], j 4: i. 

2. Main results 

In this section, we show that the boundary of 
the value set P(j~0, Q) in (3) (at each fixed ~0) is 
mapped from the edges of Q (Theorem 2.1) and 
that the value set corresponding to each edge of Q 
is an arc or a line segment which can be easily 
determined (Theorem 2.2). Based on these dis- 
coveries, a simple algorithm for plotting the 
frequency response of P(s, Q) is created. In the 
sequel, E(Q) denotes the edges of Q. 

Theorem 2.1. Let o~ be an arbitrary frequency and 
suppose P(j~0, Q) is bounded. Then, 

0P(jo~, Q) c P(jw, E(Q)) ,  

where 0 denotes the boundary. 
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Proof. By the continuity of P(jto, q) with respect 
to q and the closedness of Q, we know that 
OP(jto, Q)ce( j to ,  Q). Given an arbitrary ~ 
0P(jto, Q), we need to show that ~ ~ P(jto, E(Q)). 
For any given complex number z, we define 

f(jto, q, z):= N(j6o, q ) -  zD(jto, q) 

and 

V(jto, Q, z ) : =  ( f(jto, q, z) :  q ~  Q}.  

It is obvious that z ~ P(jto, Q) if and only if 
0 ~ F(jo~, Q, z). In particular, 0 ~ Ffjto, Q, ~). Let 
(z  i ) be a convergent sequence in the complement 
of P(jto, Q) such that zi ~ ~ as i ~ oo. This im- 
plies that O~F(jto, Q, zi) for all z i. Since 
f(jto, q, z) is a continuous function with respect 
to z, the distance between F(j~0, Q, z) and the 
origin varies continuously with respect to z. 
Therefore, 0 ~ 0F(jto, Q, ~). Note that f(jto, q, z) 
is an affine function with respect to q and that Q 
is a polytope. Consequently, every point on the 
edges (boundary) of F(jto, Q, ~) has at least one 
preimage on the edges of Q (see, e.g., [16]). That 
is, 

OF(jto, Q, ~ ) c  F(jto, E(Q) ,  ~), 

Now we conclude that O~F(jto, E(Q), ~) or 
equivalently, 

e P(jto, E(Q)) .  [] 

Theorem 2.2. Let to be a fixed frequency and E be a 
line segment in R t with the end points denoted by qL 
and qR and the midpoint by qU. Suppose P(jto, q) 
is bounded for all q ~  E. Then, the value set 
P(jto, E) is an arc or a line segment 1 in the 
complex plane which starts from PL := P(Jto, qL), 
passes through PM := P(Jto, qM), and ends at PR '= 
p(jto, qR). More specifically, the center of the circle 
is given by the intersection of the following two 
linear lines: 

L l (a  ) := PM + PL + j a ( P M _  PL), 
2 

L L/J}--2'--" :=  P R  + P M  2 +Jfl(PR--PM)'  

a ~ R ,  (7) 

f l ~ R ,  

(8) 

We may consider a line segment an arc with its radius equal 
to infinity. 

and the radius is equal to the distance from the 
center to any one of PL, PM or PR" In the case 
when the two lines above are in parallel, P(jto, E)  
becomes a line segment from PL to PR. 

Proof. Let q ~ E. We need to show that P(jto, q) 
is an arc. Since E is a line segment, we can write 

q=qL + • [qR__ qL] 

for some ~, ~ [0, 1]. Using the fact that the coeffi- 
cients of N(s, q) and D(s, q) are affine functions 
of q, we have 

P (jto, q) 

N(jto, qL) + X[N(j¢0, q R ) _  N(jto, qL)] 

= D(jto, q L ) +  X[D(jto,  q R ) _  D(jto, qL)]"  

(9) 

That is, the mapping from E to P(jto, E)  is 
bilinear. Hence, P(jto, E)  at each fixed to is either 
an arc or a line segment with its endpoints and 
some internal point corresponding to the end- 
points and the midpoint of E. 

Given three points PL, PM and PR on the arc, 
the determination of the center and the radius is 
straightforward. [] 

Remark 2.3. In Theorem 2.2, once the values of 
p(jto, qL), p(jto, qM) and P(jto, qR) are calcu- 
lated, the arc P(jto, E)  can be determined geomet- 
rically. This is illustrated in Figure 1. 

Based on Theorem 2.1 and 2.2, we establish the 
following algorithm for plotting the frequency re- 
sponse of P(s, Q): 

Algorithm 2.4. For each tok in { to k ): 
Step 1: Use (4)-(5) to confirm that P(Jtok, Q) is 
bounded. 

Pt 

Fig. 1. Determining an arc geometrically. 

PR 
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Step 2: For each edge E of Q, 
Step 2.1: calculate P(jo~ k, q) for q equal to the 

two end points and the midpoint of E; 
Step 2.2: determine the center and radius of the 

arc P(jw~, E~) either numerically or geometrically 
and plot the arc (or a line segment in the case 
when these three points are lined up). 
Step 3: Determine the outer bound of the arcs. 
This outer bound is the boundary of the value set 
P(jwk, Q). 

To conclude this section, we now examine the 
computational complexity of the algorithm above. 
For simplicity, we assume N,(s) and Di(s ) are 
polynomials in the form of 

n 

f ( s )  = E ak sk 
k 0 

and denote their degrees by n i and d~, respec- 
tively, i = 0, 1 . . . .  , l. As pointed out before, Step 1 
requires ( 4 /+  1)/multiplications and (3l + 1 ) /ad-  
ditions. The evaluation of the polynomial f ( s )  
above at s=j~0 can be shown to require only 
2 n -  1 (real) multiplications and n -  1 (real) ad- 
ditions. This implies that the evaluation of 
P(jw, q) requires 2l - 2 + 2 ~ l i = o ( n i  + di) multipli- 
cations, 2 1 -  2 + El,=0(ni + d,) additions and a 
complex division which is equal to 6 multiplica- 
tions, 3 additions and 2 divisions. Since there are 
2 / vertices and 12 z-1 edges for Q, Step 2.1 takes 
(2 / + 12/-1)(21 + 4 + 2Eli=o(ni + d~)) multiplica- 
tions, (2 l + 12/-1)(2l + 1 + Eli=0(ni + d i )  ) ad- 
ditions, and 2(2 / + 12 z- 1) divisions. It is estimated 
that computing the center and radius of an arc by 
using the method given in Theorem 2.2 takes 14 
multiplications, 18 additions, 2 divisions and 1 
square-root operation. Multiplying these numbers 
by 12 l- 1 gives the amount of computation needed 
for finding all the centers and radii in Step 2.2. 
Overall, for each value set it takes about 

(2 l+12 / 1)(21+ 

+ (4 /+  1)/ 

multiplications, 

(2 l+12  l 1 ) (2 /+  

+ (3 /+  1)l 

,) 4 + 2 i= --~1 (n, + d i + 1412 l-1 

) 1 +  Y'~ (n~+di) +1812 t-I  
i = O  

additions, 2(2/+ 12 t i ) +  212 l ~ divisions, 12 ~ ~ 
square-root operations, and plotting 12/ ~ arcs. 

3. An illustrative example 

Consider the following transfer function of an 
uncertain system: 

P(s,  q) = { s 2 + ( 4 + O . 4 q , + O . 2 q 2 ) s  

+(20  + q l - q 3 ) }  

× {s 4 + (9.5 + 0.5ql - 0.5q2 + 0 . 5 q 3 ) s  3 

+(27  + 2ql + q 2 ) s  2 

+(22.5 - ql + q3) s } -I 

where 

( ql, q2, q3) ~ Q = { (q~, q2, q3): 
- 3 < q i <  3, i = 1 , 2 ,  3}. 

The sequence of radian frequencies { w k } is cho- 
sen to be {0.2, 1, 3}. It is straightforward to verify 
(by using (4)-(5)) that all P(jw k, Q) are bounded. 
Now for each % and each of the 12 edges of Q, 
we evaluate P(jw k, q) for q being the two end 
points and the midpoint of the edge. The values 
for % = 1 are given in Table 1. The resulting 
value sets are given in Figures 2-4. Figure 5 hooks 
these value sets together with the frequency re- 
sponse of the nominal transfer function. 

4. Some applications 

A number of applications of the results in 
Section 2 can be simply observed. For example, 

T a b l e  1 

V a l u e s  o f  P ( j ~ ,  q )  in Sec t i on  3 fo r  o~ = 1 

E d g e  P( jw ,  q)  

qi : q Y  : 3 qi : qM : 0 qi : q L : _ 3  

(3 ,3 ,q3)  - 0 . 4 4 -  0.31j - 0 . 5 4 -  0.32j - 0 . 6 4 -  0.32j 

( - 3 , 3 , q 3 )  - 0 . 2 4 - 0 . 3 6 j  - 0 . 3 4 - 0 . 4 3 j  - 0 . 4 5 - 0 . 4 9 j  

( - 3 , - 3 , q 3 )  - 0 . 3 1 - 0 . 4 5 j  - 0 . 4 3 - 0 . 5 4 j  - 0 . 5 8 - 0 . 6 3 j  

( 3 , -  3,q3 ) - 0 . 5 6 -  0.32j  - 0 . 6 8 -  0.32j  - 0 . 8 0 -  0.31j 

(3 ,q2 ,3)  - 0 . 4 4 - 0 . 3 1 j  - 0 . 4 9 - 0 . 3 2 j  - 0 . 5 6 - 0 . 3 2 j  

( - 3 ,q2 ,3  ) - 0 . 2 4 -  0.36j  - 0 . 2 7 -  0.40j  - 0.31 - 0.45j 

( -  3 , q 2 , -  3 ) - 0 .45 - 0.49j  - 0 . 5 1 - 0 . 5 5 j  - 0 .58 - 0.63j 

( 3 , q 2 , -  3 ) - 0 . 6 4 -  0.32j - 0 . 7 1 - 0 . 3 2 j  - 0 . 8 0 -  0.31j 

( q l , 3 ,3 )  - 0 . 4 4 -  0.31j - 0 . 3 6 -  0.36j  - 0 . 2 4 -  0.36j 

( q l , -  3,3) - 0 . 5 6 -  0.32j  - 0 . 4 6 -  0.41j  - 0 . 3 1  - 0.45j 

( q l , -  3 , - 3 )  - 0 . 8 0 -  0.31j  - 0.75 - 0.47j  - 0 . 5 8 -  0.63j 

( q l , 3 , -  3) - 0 . 6 4 -  0.32j  - 0 . 5 7 -  0.42j  - 0 . 4 5 -  0.49j 
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~D 

-7 

-8 
-4 -3 -2 -1 0 

REAL 

Fig. 2. The value set of P(j~0, Q) in Section 3 for to = 0.2. 

the (worst) gain margin and phase margin can be 
trivially obtained from the Nyquist plot; the 
Nyquist plot can be easily converted to the Bode 
plot or magnitude vs. phase plot on the Nichol's 

chart by mapping the boundary of value sets at 
various frequencies. Below, we address the follow- 
ing two issues: (1) computation of maximal Ho~- 
norm, and (2) diagonal dominance improvement 

-0.2 

-0.3 

-0.4 

-0.5 

< 

-0.6 

-0.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  i . . . . . . . . . . . . .  

-0.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

-0.8 -0.7 -0.6 REAL -0.5 -0.4 -0.3 - 0 . 2  

Fig. 3. The value set of P(jto, Q) in Section 3 for to =1. 
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Fig. 4. The value set of P(jto, Q)  in  Sect ion 3 for ~o = 3. 
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of multi-input and multi-output uncertain sys- 
tems. 

Maximal H~-norm of uncertain transfer functions. 
Given the family of transfer functions (1), (2) 
which are stable, the maximal Hoo-norm of the 
transfer functions can be calculated in two differ- 
ent ways. Using Theorem 2.1, we have 

max( l iP(s ,  q) I1~: q ~ O }  

= m a x (  l iP(s ,  q)I1~: q ~ E ( Q ) } ,  (10) 

o r ,  

max( l iP(s ,  Q) Iloo: q ~ Q }  

= max{ I P(jto, E(Q)) I: to > 0}. (11) 

Equation (10) is effective when the number of 
edges of Q is relatively small. Note that the bisec- 
tion algorithm given in [17] can be called for 
calculating the H~-norm of each fixed transfer 
function. Reference [18] provides an algorithm for 
computing the the maximal H~-norm of a one-di- 
mensional set of transfer functions. Equation (11) 
will require less computation when the number of 
edges of Q becomes large. 

The minimal H~-norm can be calculated in a 
similar manner. 

Diagonal dominance improvement of uncertain 
transfer matrices: Many control design methods 
for multi-input multi-output systems require diag- 
onal dominance of the system transfer matrix. If 
the given system transfer matrix is not diagonally 
dominant, a post-compensating matrix is often 
applied to improve the diagonal dominance. This 
is described as follows [19]. Consider an uncertain 
n x n transfer matrix G(s, q) = { gu(s, q)}, q 
Q, where each element gu(s, q) is in the form of 
(1). The objective is to choose a constant diagonal 
post-compensating matrix K = diag{ k i } such that 
at some given complex number So (usually at 
certain frequency), the matrix KG(s o, q) is diago- 
nally dominant for all q ~ Q, i.e., 

Ig, j(So, q)kjl < Ik,g,(so, q)I, 
j@i 

i = 1 , 2  . . . . .  n; q ~ Q .  (12) 

Define 

T(s, q) = { I gij(s, q ) /g . ( s ,  q ) l }  (13) 

and assume that T(s, q) is primitive 2 for every 

2 A non-nega t ive  ma t r ix  M is cal led p r imi t ive  if M r  is a 

pos i t ive  ma t r ix  for some in teger  r > 0. This  cond i t ion  is 
ra ther  technica l  and  is gene t ica l ly  satisfied. 
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I I I 
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0.5 

Fig. 5. The hooked value sets of P(jo~, Q) in Section 3. 

q ~ Q. For each fixed q ~ Q, it is shown by Mees 
[19] that KG(s o, q) can be made diagonally domi- 
nant if and only if the Perron-Frobenius eigen- 
value of T(s o, q) is less than 2. In addition, the 
post-compensating matrix K(q) = diag( ui(q)}, 
where [ua(q),. . . ,  un(q)] x is the left Perron- 
Frobenius eigenvector. Since the post-compensat- 
ing matrix needs to be independent of q, we now 
define 

T(s)=(maxlgi j (s ,  q)/gii(s, q) l} (14) 
q~Q 

and assume that T(so) is primitive. Note that the 
Perron-Frobenius eigenvalue of T(So) is greater 
than or equal to that of any T(so, q). We con- 
clude that the diagonal dominance of G(s o, Q) is 
possible if the Perron-Frobenius eigenvalue of 
T(so) is less than 2 and the associated K can be 
chosen using the left Perron-Frobenius eigenvec- 
tor of T(so) as mentioned above. 

From the computational point of view, now the 
stumbling block is the calculation of T(s), or 
equivalently, 

t i j ( S  ) =max{ ] g i j ( S ,  q)/gii(S, q)12 q ~  O}. 

This problem can be solved by directly applying 
Theorem 2.1. Consequently, 

tij(s ) =max{ Igij(s, q)/g,(s,  q)l: q~ E(Q) ). 

As a final remark, we note that if the diagonal 
dominance is required on a range of frequencies S 
instead of a single point s 0, we can simply replace 
the matrix T(so) by 

T= {maxti,(s)~, 
s~S  J ) 

as suggested in [19]. 

5. Conclusion 

In this paper, we have considered the problem 
of plotting the frequency response of the transfer 
function with parametric perturbation in (1). Use- 
ful results have been obtained (Theorems 2.1 and 
2.2). Some applications of the results are displayed 
which include the computation of the maximal 
Ho~-norm, gain and phase margins and diagonal 
dominance improvement of uncertain transfer 
matrices for multi-input multi-output systems. 
Note that our results apply not only to continuous 
systems but also to time-delay systems and dis- 
crete systems. 
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