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Guaranteed Cost Control of Uncertain Nonlinear Systems
Via Polynomial Lyapunov Functions

Daniel Coutinho, Alexandre Trofino, and Minyue Fu

Abstract—In this note, we consider the problem of guaranteed cost con-
trol for a class of uncertain nonlinear systems. We derive linear matrix in-
equality conditions for the regional robust stability and performance prob-
lems based on Lyapunov functions which are polynomial functions of the
state and uncertain parameters. The performance index is calculated over
a set of initial conditions. Also, we discuss the synthesis problem for a class
of affine control systems. Numerical examples illustrate our method.

Index Terms—Convex optimization, guaranteed cost control, uncertain
nonlinear systems.

I. INTRODUCTION

The development of robustness and performance analysis, as well
as design techniques for nonlinear systems, is an important field of
research. Despite the existence of powerful techniques to cope with
these problems in the context of uncertain linear systems, the gen-
eralization to the nonlinear case is a difficult task that has motivated
many researchers to study these problems. To deal with nonlinear sys-
tems, many control design methods use linear control methodologies
applied to quasi-linear parameter varying (LPV) representations [1],
or by means of polytopic differential inclusions [2]. For instance, the
works of [1] and [3] consider LPV techniques (gain-scheduling), and
[4] and [5] use robust controllers. However, these approaches may lead
to conservativeness since the nonlinearities of the system are not taken
into account and they only consider quadratic Lyapunov functions [6].
Moreover, there are some shortcomings related with the quasi-LPV
form that may lead to an infinite-dimensional problem [7] or to the
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instability of the nonlinear closed-loop system [8]. On the other hand,
it is well known that the nonlinear optimal control due to difficulties in
the solution of the Hamilton–Jacob equation is not a practical approach
[9].

Since the work [10] that showed a solution for rational systems in
terms of linear matrix inequalities (LMIs) and based on quadratic Lya-
punov functions, some authors have proposed more sophisticated Lya-
punov functions to derive less conservative conditions using the LMI
framework for uncertain nonlinear systems [11], [6]. The advantage
of these techniques over the quasi-LPV or polytopic modeling is that
they allow the use of polynomial Lyapunov functions by only requiring
that the state and parameter vectors belong to a polytopic set instead of
all (state and parameter) nonlinearity. As a result, the number of LMI
tests is finite overcoming the problems associated with the quasi-LPV
(and/or polytopic) methods for uncertain nonlinear systems.

In this note, we derive LMI conditions for the guaranteed cost con-
trol problem for a class of uncertain nonlinear systems. These condi-
tions assure the regional stability of the unforced system and deter-
mine a bound on the energy of output signal for a given set of initial
conditions. Via an iterative algorithm, this approach is extended to the
synthesis problem. The main contributions of this technical note are
two fold. First, we consider a polynomial Lyapunov function of the
typev(x; �) = x0P(x; �)x, whereP(x; �) is a quadratic function of
the statex and uncertain parameters�, that may result in less conser-
vative conditions. Second, the nonlinear system is modeled in an aug-
mented space in which all nonlinearities are taken into account by using
scaling matrices associated with them leading to a convex optimization
problem in terms of LMI constraints.

The structure of this note is as follows. We state the problem of con-
cern and derive an upper bound on the two-norm of the output perfor-
mance for a set of initial conditions in Section II. Section III presents
an application of the derived method to the guaranteed cost control
problem. Section IV presents some concluding remarks.

The notation used in this work is standard. For a real matrixS, S0

denotes its transpose,S > 0 means thatS is symmetric and posi-
tive–definite, and He(S) = S + S0. The constant matricesIn, 0n�m
and0n denoten� n identity matrix,n�m andn� n zero matrices
respectively. The time derivative of a functionr(t) will be denoted by
_r(t) and the argument(t) is often omitted. For two polytopesBx � n

andB� � l, the notationBx�B� represents that(Bx�B�) � (n+l)

is a metapolytope obtained by the Cartesian product. The matrix and
vector dimensions are omitted whenever they can be determined from
the context.

II. ROBUSTNESS ANDPERFORMANCE OFNONLINEAR SYSTEMS

Consider the uncertain nonlinear system

_x =f(x; �) = A(x; �)x; x(0) = x0

z =h(x; �) = C(x; �)x (1)

wherex 2 n denotes the state vector,� 2 l denotes the uncertain
parameters andz 2 r denotes the output performance vector.

With respect to the system (1), we consider the following assump-
tions:

A1) uncertain parameter vector�, and its time-derivative_� lie in a
given polytopeB� , with known vertices, i.e.,(�; _�) 2 B� ;

A2) origin x = 0 of the system is an equilibrium point;
A3) right-hand side of the differential equation is bounded for all

values ofx; �; _� of interest;
A4) Bx is a given polytope specifying a desired neighborhood of

the equilibrium pointx = 0 of the system.

0018-9286/02$17.00 © 2002 IEEE
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The problem of concern in this work is to compute a boundc on the
two-norm of the performance output signal, i.e.,kzk22 < c that holds
for all values of(�; _�) 2 B� and anyx0 2 Rc whereRc is an invariant
subset ofBx. To this end, we shall define the output energy as

kzk22 = lim
T!1

T

0

z0zdt x0 2 Rc � Bx: (2)

In order to obtain a solution to the problem of concern in terms of LMIs,
let us suppose that (1) can be decomposed as

_x =A1(x; �)x+ A2(x; �)�

z =C1(x; �)x+ C2(x; �)�

0 =
1(x; �)x+ 
2(x; �)� (3)

where the vector� 2 m is a nonlinear function of(x; �) and the
matricesA1(x; �) 2

n�n, A2(x; �) 2
n�m, C1(x; �) 2 r�n,

C2(x; �) 2
r�m, 
1(x; �) 2

q�n, and
2(x; �) 2
q�m are

affine functions of(x; �).
Note that the system representation (3) is based on an auxiliary state

� and the relationship between� and(x; �) is defined by means of the
constraint
1(x; �)x+ 
2(x; �)� = 0. Then, we assume for (3) that

A5) the representations (3) and (1) are equivalent, i.e., if the auxil-
iary state� is replaced by its corresponding function of(x; �)
we recover the original system representation (1).

To illustrate the aforementioned nonlinear decomposition, let us con-
sider the following example borrowed from [10].

Example 1: Consider the following uncertain system:

_x =
0 �1

1 �(x21 � 1)
x x =

x1
x2

; x 2 Bx (4)

with the performance variablez = [ 1 0 ] x and suppose that the non-
linear damping factor� is constant, approximately known and repre-
sented by� = �0 + �1� where�0 = 0:8, �1 = 0:2 and the unknown
term� satisfyingj�j � 1.

For convenience, we rewrite the previous system as follows:

_x =
0 �1

1 �0(x
2
1 � 1)

x+
0 0

0 �1(x
2
1 � 1)

�x

where� is the uncertain time invariant parameter bounded byB� =
f� : j�j � 1g. Note that in this case we have_� = 0. The aforemen-
tioned system may be represented in terms of (3) as follows:

_x =
0 �1

1 �0:8
x+

0 0 0 0

�0:2 0 0:8 0:2
�

z = [ 1 0 ] x

� =

�x2
x1x2
x21x2
�x21x2


1(x; �) =

0 �

x2 0

0 x1
0 0

0 0


2(x; �) =

�1 0 0 0

0 �1 0 0

0 �1 0 0

0 x1 �1 0

0 0 � �1

:

Remark 1: The representation (1) of nonlinear systems and its non-
linear decomposition (3) are not unique and, until now, there is no a
systematic way to compute them. As a result, a particular choice of
A(x; �) may provide a poor performance. However, for a represen-
tation f(x) = A0(x)x and some continuous matrix-valued function
A0 : n 7! n�n, any representation off(x) can be parameter-
ized asA(x) = A0(x) + M(x), whereM : n 7! n�n satisfies
M(x)x = 0 [12]. Hence, we can use this parameterization to reduce
the conservatism of choosingA(x; �) via Finsler’s lemma [2]. In par-
ticular, we apply this technique in Theorem 1 adding multipliers as-
sociated to the equality constraints, for further details see the proof of
Theorem 1 and [11]. A similar technique was proposed in [13] for the
H1 control of nonlinear systems with quasi-LPV representation.

To analyze the stability of [3] and estimate its output energy, we use
in this note a Lyapunov function which is more complex than those
ones based on quadratic stability methods. With a more complex Lya-
punov function we have more degrees of freedom to be exploited and
the results are probably less conservative than the ones obtained from
the usual quadratic stability notion such as the LFR modeling [10],
gain-scheduling [1], and polytopic differential inclusions [4]. In the se-
quel, we define the class of Lyapunov functions to be considered in this
note.

Lyapunov Function Candidate:Consider the following Lyapunov
function candidate:

v(x; �) = x0P(x; �)x P(x; �) =
�(x; �)

In

0

P
�(x; �)

In
(5)

where the matrix�(x; �) 2 n �n is a given affine function of(x; �)
andP is symmetric matrix to be determined. For convenience, let us
introduce the auxiliary vector� defined as follows:

� =
�(x; �)

In
x; � 2 n+n : (6)

With the aforementioned notation, it follows thatv(x; �) =
x0P(x; �)x may be represented asv(�) = �0P�. Then, the
time-derivative ofv(x; �) is given by _v(x; �) = _x0P(x; �)x +
x0P(x; �) _x + x0 _P(x; �)x = _�0P� + �0P _�. To compute the
term _P(x; �) or, equivalently, _�, observe thatd=dt(�(x; �)x) =
_�(x; �)x + �(x; �) _x.

From the definition of the Lyapunov matrix in (5), the matrix�(x; �)
is an affine matrix function of(x; �). Then, we can represent it as
�(x; �) = n

j=1
Tjxj +

l

j=1
Uj�j +V , wherexi, �i are the entries

of the vectorsx and� respectively, andTj ,Uj ,V are constant matrices
of structure having the same dimensions of�(x; �).

Consequently, we can rewrite the term_�(x; �)x as follows:

_�(x; �)x =

n

j=1

Tj _xj +

l

j=1

Uj
_�j

=

n

j=1

Tjxsj _x+

l

j=1

Uj
_�jx = ~�(x) _x+ �̂( _�)x (7)

wheresj is thejth row of the identity matrixIn, ~�(x) = n

j=1
Tjxsj

and�̂( _�) = l

j=1
Uj

_�j .
From [2, Sec. 6.2] and [14], we can determine an upper-bound on

the output energy of (1) by requiring that

�1(kxk) � v(x; �) � �2(kxk)

and

_v(x; �) < �z0z;8 x 2 Bx; (�; _�) 2 B� (8)
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where�i(�), for i = 1; 2, are classK functions. In fact, these conditions
imply thatkzk22 < v(x0; �(0)). Since�(0) may take any value inB� ,
we getkzk22 < v(x0; �); 8 (�; _�) 2 B� . Moreover,x0 has to belong
to an invariant subsetRc of Bx. To characterize the regionRc, let us
define

Rc := fx : v(x; �) � c 8 � 2 B�; 0 � c � c
�g (9)

wherec� is a positive scalar given by

c
� = max c such thatRc � Bx: (10)

Observe that the inclusionRc � Bx in (10) jointly with (8) imply
the regionRc is positively invariant. In addition, the upper bound on
kzk22 will depend on the size of the particular invariant subsetRc to be
considered. For this reason, in this note, we will consider the problem
of estimating the upper bound for the largest possibleRc, i.e., withc
being as close as possible toc�.

Now, with these definitions, we can state the main result of this work
as follows.

Theorem 1: Consider that system (3) satisfies A1)–A5). LetBx and
B� be polytopes with given vertices. Let�(x; �) be a given affine ma-
trix function of(x; �). Consider the definition of~�(x) and�̂( _�) in (7)
further defineG = [ 0q�n 
1(x; �) ] and

E =
In �(~�(x) + �(x; �))

0 In

N =
0 M

In ��(x; �)

H =
0

A2(x; �)

F =
0 �̂( _�)

0 A1(x; �)

M =

x2 �x1 0 � � � 0

0 x3 �x2
. . .

...
...

. . .
. . .

. . . 0

0 � � � 0 xn �xn�1

:

Suppose there exist matricesP = P 0, R, andLij (for i; j = 1; 2; 3)
that solve the optimization problem, shown in (11) and (12) at the
bottom of the page, where the LMIs are satisfied at all vertices of
Bx � B� . Then,v(x; �) in (5) is a Lyapunov function for the system
and the two-norm of the output signal satisfies

kzk22 < v(x0; �) � c
� 8 x0 2 Rc and (�; _�) 2 B� (13)

whereRc andc� are defined in (9) and (10), respectively.
By zeroing appropriate partitions ofP , Theorem 1 can recover the

results from quadratic stability [10]. However, we will increase the con-
servativeness. To illustrate this point, let us consider the following ex-
ample.

TABLE I
DIFFERENT ESTIMATES OF THE

UPPER-BOUND ON kzk FOR (4)

Example 2: Consider Example (1). LetBx be defined asfx : jxij �
0:8; i = 1; 2g. Define the Lyapunov function candidate by consid-
ering�(x; �) = [ x1I x2I ]

0. Consequently,̂�( _�) = 0 and ~�(x) =
x 0

0 x
.

Now, consider the following partition of the constant matrixP =
P2 P 0

1

P1 P0
, with P1 2 2�4. Three different cases will be consid-

ered: i)P0, P1, andP2 free,P(x; �) is quadratic in(x; �); ii) P0,
P1 free, andP2 = 0, P(x; �) is affine in (x; �); and iii) P1 = 0,
P2 = 0, andP0 is free,P(x; �) is a fixed matrix characterizing the
quadratic stability. Table I shows estimated upper bounds onkzk2 ob-
tained with Theorem 1 and (10) for three types of Lyapunov functions.
As expected, more complex Lyapunov functions achieve less conser-
vative results, thus justifying the required extra computation.

Until now, we proposed a methodology for robust stability and per-
formance analysis for a class of uncertain nonlinear systems. In Sec-
tion III, we will consider the synthesis problem for a class of affine
control systems.

III. CONTROL

Consider the uncertain nonlinear system

_x =A(x; �)x+B(x; �)u; x(0) = x0

z =C(x; �)x+D(x; �)u (14)

whereu 2 p denotes the control input andB(x; �) andD(x; �) are
affine matrix functions of(x; �) with appropriate dimensions.

In this section, we are concerned with the problem of determining a
control law of the type

u = K(x; �)x = K1x+K2� (15)

where the matricesK1 2
p�n andK2 2

p�m are fixed gains to be
determined in order to minimize an upper bound on the output energy
of (14) (guaranteed cost control).

To use Theorem 1 for synthesis purposes, we can replaceAi(x; �)
(for i = 1; 2) by their corresponding closed-loop form given by
Ai(x; �) + B(x; �)Ki. As a consequence, the control gainsKi will
appear only in the LMI (12) multiplying the scaling variablesLj2

(for j = 1; 2; 3). Based on this property, we propose an iterative
design procedure in which the gainsKi appear explicitly as decision
variables in a convex LMI subproblem to be solved. More details
about this design procedure will be given later in this section. Now, let
us draw some remarks concerning the structure of the gainsKi.

min trace(P + RN +N0R0) subject to:

P +RN +N
0
R
0
> 0 (11)

He

�L12E L11G+ L12F + L13N L11
2(x; �) + L12H 0

P � L22E L21G+ L22F + L23N L21
2(x; �) + L22H 0

�L32E L31G+ L32F + L33N L31
2(x; �) + L32H 0

0 [ 0r�n C1(x; �) ] C2(x; �) �0:5Ir

< 0 (12)
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TABLE II
UPPER-BOUNDS ON THECOSTFUNCTION FORALGORITHM 1 WITH x(0) = x

Notice that the auxiliary state� is a vector function containing non-
linear terms in(x; �). Let us consider the situation in which some of the
states are not available for feedback and the system has some uncertain
parameters. In this case, the control gains corresponding to the entries
of � depending on these unavailable states and uncertain parameters
must be zeroed to remove them from the control law. In addition, we
may consider the control law (15) as parameter dependent if the param-
eters are available online as in LPV control [7]. Theorem (1) provides
the foundation for our synthesis framework. Suppose thatK1 andK2

are given and consider the notation

AK1(x; �) =A1(x; �) +B(x; �)K1

AK2(x; �) =A2(x; �) +B(x; �)K2

CK1(x; �) =C1(x; �) +D(x; �)K1

CK2(x; �) =C2(x; �) +D(x; �)K2: (16)

As a first step, apply Theorem 1 for closed-loop stability analysis
to obtain the upper bound on the output energy (guaranteed cost)
for we given control gains. Next, with the scaling matricesLj2 (for
j = 1; 2; 3) fixed obtained in the previous step, use again Theorem 1
to improve the guaranteed cost by recomputing these control gains and
remaining free decision variables. The idea of the design procedure
is to iterate on these two above steps until the convergence to a local
optimum or to the achievement of an acceptable guaranteed cost.
Notice that each step consists of solving convex LMI problems.
Based on this observation, even if the design procedure is not globally
convex1 the convergence to local optimum is guaranteed. This type of
design procedure is not new from the literature, see, for instance, [16].
In the following, we summarize the design algorithm.

Algorithm 1:

Step 1) Determine a local stabilizing
controller for the nominal system
(14) with any standard stabiliza-
tion technique.

Step 2) Replace the matrices
in

Theorem 1 by their corresponding
closed loop form in (16). Compute
the guaranteed cost (13) by
solving Theorem 1 for suitable
polytopes and .

Step 3) For fixed matrices , , and
obtained from the previous

step, consider the control gains
and as decision variables.

Then, recompute the control gains
and the guaranteed cost by solving
the optimization problem in The-
orem 1.

Step 4) Iterate over Steps 2) and 3)
until convergence or the achieve-

1Notice that the matrix inequality in (11), for the design case, is indeed a
bilinear matrix inequality (BMI) [15].

Fig. 1. (a) LQR (plus sign). (b) Proposed controller (solid line).

ment of a satisfactory guaranteed
cost.

At each step of the previous algorithm, the regional stability of the
closed-loop system and the nonincreasing of the guaranteed cost are as-
sured. As previously mentioned, this algorithm will always converge to
a local minimum. To overcome the problem of finding an initial stabi-
lizing controller [Step 1)], we may use the classical LQR technique [2]
applied to the linearized model of the nominal nonlinear system. Then,
in the next step, we use Theorem 1 to estimate the polytopesBx;B�
for the uncertain nonlinear system.

Let us illustrate the aforementioned design algorithm through a nu-
merical example where we consider the cost function for a given initial
conditionx(0) = x0 and a linear state feedback.

Example 3: Consider the following uncertain nonlinear system:

_x =
0 1

�1 (0:8 + 0:2�)(1� x21)
x+

0

1
u

x =
x1

x2
2 Bx

z =
1 0

0 0
x +

0

1
u

x0 =
1

�1
j�j � 1 (17)

where� is a time-invariant parameter andBx = fx : jxij � 5; i =
1; 2g.

Also, consider the following nonlinear decomposition of (17):

_x = A1(�)x+ A2(�)� +Bu z = C1x+Du (18)
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where the matrices and vectors are given byB = [ 0 1 ]0, D =
[ 0 1 ]0, and

A1(�) =
0 1

�1 (0:8 + 0:2�)

A2(�) =
0 0

0 �(0:8 + 0:2�)

C1 =
1 0

0 0
� =

x1x2

x21x2
:

To stabilize (18), we used LMI-LQR techniques from [2] applied to
the linearized model of the nominal system(� = 0) yielding K =
[�0:4 �2:1 ]. Then, this state-feedback is used as starting point
of Algorithm 1. Table II shows the value ofv(x0) for each iteration of

algorithm 1, by considering�(x) =

x1 0

0 x1

0 x2

.

After three iterations, we obtainedK1 = [�0:8 �3:5 ] in which
v(x0) = 2:26. For comparison purposes, Fig. 1 shows the trajectories
x1(t) andx2(t) for the following controllers: a) LQR (obtained from
the linearized model) and b) proposed method.

IV. CONCLUDING REMARKS

The purpose of this note was to show that by using polynomial Lya-
punov functions we get less conservative LMI conditions for analysis
and design of guaranteed cost control. To ascertain the system stability
and performance criterion, we used Lyapunov functions of the type
v(x; �) = x0P(x; �)x, where the matrixP(x; �) is a quadratic func-
tion ofx and�. Based on the analysis results, an iterative technique for
the synthesis problem was also presented. An interesting point of the
design technique is that it can be used to determine different types of
control laws, such that nonfragile, gain-scheduling and output feedback
controllers. Numerical examples showed the potential of this approach
as well as a comparative study among constant, affine and quadratic
Lyapunov matrices demonstrating that more complex Lyapunov func-
tions can lead to less conservative results. Future research will be con-
centrated on the design problem in order to obtain globally convex LMI
conditions.

APPENDIX

A. Proof of Theorem 1

Suppose that the (11) and (12) have a solution at all vertices ofBx�
B� . Then, by convexity, it is also satisfied8 x 2 Bx and8 (�; _�) 2 B� .
For readability, this proof is divided in the following steps.

Step 1) Consider LMI (11). Define a matrixS = [ 0 In ].
For a sufficient small-positive scalar�1, it is pos-
sible to add �1S

0S to (11) without changing its
signal, i.e.,P + RN + N 0R0 � �1S

0S. Pre- and
post-multiplying it by �0 and its transpose, respec-
tively, we getv(x; �) = v(�) = �0P� � �1x

0x for
all x 2 Bx and � 2 B� , sinceN� = 0 by con-
struction. From Assumption A3), the entries ofN are
bounded. Then, there exists a sufficient large positive
scalar �2 such that�2In+n � P + RN + N 0R0.
Thus, multiplying it by �0 and �, respectively, yields
�2(x

0x + x0�(x; �)0�(x; �)x) � �0P�. Keeping in mind
that x and � belong to polytopes, there exists a positive
scalar �3 such that�3In � �(x; �)0�(x; �). Hence,
v(x; �) = �0P� � �2(1 + �3)x

0x for all x 2 Bx and
� 2 B� .

Step 2) Applying theSchurcomplement on (12), we can rewrite it
as follows:

0 P 0

P
0 0

0 C 01C1

0

C 01C2
0 [0 C 02C1] C 02C2

+He [Lij ]i;j=1;2;3

0 G 
2

�E F H

0 N 0

< 0:

Pre- and postmultiplying the aforementioned LMI by
[ _�0 �0 �0 ] and its transpose, respectively, leads to

_�

�

�

0 0 P 0

P
0 0

0 C 01C1

0

C 01C2
0 [0 C 02C1] C 02C2

_�

�

�

< 0

8 (x; �; _�) 2 Bx � B� :
�E _� + F� +H� = 0

N� = 0


1x+ 
2� = 0

(19)

Consider the following partition of the vector
� = [ �0a �0b ]

0, where�a = �x and �b = x. Taking
the time derivative of�a yields _�a = �̂x + (~� + �) _x.
It is easy to verify that the above equality has the
following compact form�E _� + F� + H� = 0.
Then, it is possible to write (19) as follows:
_�0P� + �0P _� < �(x0C 01C1x+ 2x0C 01C2� + �0C 02C2�),
8 (x; �; _�) 2 Bx � B� . Sincez = C1x + C2�, the above
expression is equivalent to_v(x; �) = x0 (A(x; �)0P(x; �) ,

+P(x; �)A(x; �) + _P(x; �) x < �z0z, 8 (x; �; _�) 2

Bx � B� .
Step 3) From the previous analysis and [14], (1) is locally exponen-

tially stable andv(x; �) = x0P(x; �)x is a Lyapunov func-
tion for the origin. Keep in mind that�ax0x � v(x; �) �
�bx

0x and _v(x; �) < �z0z for all x 2 Bx and(�; _�) 2 B� .
Moreover, from (9) and (10),Rc is a positively invariant
set. In other words, for allx0 2 Rc , x(t) approaches the
origin ast ! 1.

Step 4) Integrating_v(x; �) < �z0z from 0 to T , we have
v(x(T ); �(T ))� v(x(0); �(0)) < �

T

0
z0z dt, 8 T > 0

andx0 2 Rc . As T ! 1, the previous expression leads
to kzk22 = lim

T!1

T

0
z0z dt < v(x0; �) � c�, 8 x0 2 Rc

and(�; _�) 2 B� .
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Task-Space Adaptive Control of Robotic Manipulators
With Uncertainties in Gravity Regressor

Matrix and Kinematics

H. Yazarel and C. C. Cheah

Abstract—Thus far, most research in adaptive control of robotic manip-
ulators has assumed that models of regressor matrix and kinematics are
known exactly. To overcome these drawbacks, we propose in this note a
task-space adaptive law for setpoint control of robots with uncertainties
in gravity regressor matrix and kinematics. In addition, we investigate the
stability problem when an estimated task-space velocity is used in the feed-
back loop. Sufficient conditions for choosing the feedback gains, gravity
regressor, and Jacobian matrix are presented to guarantee the stability.

Index Terms—Setpoint control, stability, task space, uncertain kine-
matics, uncertain regressor.

I. INTRODUCTION

In most applications of robots, a desired path of the end effector is
usually specified in task coordinates. However, a majority of the robot
controllers in the literature were joint-space controllers [1]–[10]. In
order to control the robot with these controllers, an inverse kinematics
problem should be solved to generate a desired path in joint coordi-
nates.
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A more effective control strategy without using the inverse kine-
matics is the task-space control method [1], [11]–[18]. In this method,
a task oriented information is used directly in the feedback control law.
Takegaki and Arimoto [1] proposed a transposed Jacobian controller
for setpoint control in Cartesian coordinates. Later, this study is ana-
lyzed further by Kellyet al. [11]–[14]. A local feedback control law
with imperfect Jacobian matrix from Cartesian space to visual space is
proposed by Miyazaki and Masutani [15]. In these controllers [1]–[15],
an exact knowledge of the robot kinematics from joint space to task
space is required. However, since the robot is interacting with its en-
vironment, its kinematics changes for different tasks when it picks up
different objects. To overcome the problem of uncertain kinematics,
Cheahet al. [16]–[18] proposed task-space feedback laws with uncer-
tain kinematics and Jacobian matrix from joint space to task space.

In most of the setpoint controllers, an exact knowledge of a gravi-
tational force is used in the controllers. When the gravitational force
is uncertain, several adaptive control laws [2], [3], [6], [10], [16], [17]
using a gravity regressor are proposed for compensating the gravita-
tional force. However, the exact knowledge of the gravity regressor
matrix is assumed to be known in these controllers. Unfortunately, no
model can be obtained precisely. In addition, the gravity regressor also
changes when the robot picks up different objects.

In this note, we propose a task-space adaptive law for setpoint con-
trol of robot with uncertainties in both the gravity regressor matrix and
kinematics. In addition, we investigate the stability problem when an
estimated task-space velocity is used in the feedback loop. To the best
of our knowledge, such problem has not been studied before. There-
fore, it is unknown whether the stability of the robot’s motion can still
be guaranteed in the presence of such uncertainties. We shall present
sufficient conditions for choosing the feedback gains, gravity regressor,
and Jacobian matrix to guarantee the stability.

II. PROBLEM FORMULATION

We consider a class of robotic manipulators with all revolute joints.
These are sometimes said to be articulated robots since their configu-
ration of links and joints corresponds to that of a human arm. In most
applications, a desired path for the robot end effector is specified in task
space such as visual space or Cartesian space. LetX 2 Rm represents
a task-space vector [16]

X = h(q) (1)

wherem � n andh(�) 2 Rn ! Rm is generally a nonlinear transfor-
mation describing the relation between the joint space and task space.
The task-space velocity_X is related to joint-space velocity_q as [16]

_X = J(q) _q (2)

whereJ(q) is a Jacobian matrix of the mapping from joint space to
task space. Note thath(q) andJ(q) are trigonometric functions ofq.

The equation of motion for the robotic manipulator is given in joint
space as [6]

M(q)�q + B0 +
1

2
_M(q) + S(q; _q) _q + g(q) = � (3)

whereq 2 Rn denotes joint angles,n denotes degrees of freedom
of the robot,M(q) 2 Rn�n is an inertia matrix,B0 2 Rn�n de-
notes a diagonal viscous friction matrix,S(q; _q) _q = (1=2) _M(q) _q �
(1=2)f(@=@q) _qTM(q) _qgT , g(q) = (@P (q)=@q)T 2 Rn is a gravita-
tional force,� 2 Rn denotes control inputs, andP (q) is the potential
energy due to gravitational force. The gravitational force can be com-
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