
1286 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 42, NO. 9, SEPTEMBER 1997

disturbances; however, dynamic SMC accommodates unmatched
disturbances. Future research will involve the chattering elimination
and discrete realization of the designed SMC’s as well. The developed
approach will be extended to a nonminimal phase nonlinear output
tracking. Preliminary results look promising.

REFERENCES

[1] V. I. Utkin, Sliding Modes in Control Optimization.Berlin, Germany:
Springer-Verlag, 1992.

[2] R. DeCarlo, S. H. Zak, and G. P. Matthews, “Variable structure control
of nonlinear multivariable systems: A tutorial,”Proc. IEEE, vol. 76,
pp. 212–232, 1988.

[3] G. C. Vergese, B. Fernandez, and J. K. Hedrick, “Stable, robust tracking
by sliding mode control,”Syst. Contr. Lett.,vol. 10, pp. 27–34, 1988.

[4] H. Elmali and N. Olgac, “Robust output tracking control of nonlinear
MIMO systems via sliding mode technique,”Automatica,vol. 28, no.
1, pp. 145–151, 1992.

[5] S. L. Campbell and C. D. Meyer,Generalized Inverses of Linear
Transformations. New York: Dover, 1991.

[6] Y. Shtessel, “Nonlinear sliding manifolds in nonlinear output tracking
problem,” inProc. Amer. Contr. Conf.,Seattle, WA, June 21–23, 1995,
pp. 1026–1027.

[7] P. V. Kokotovic and H. J. Sussmann, “A positive real condition for
global stabilization of nonlinear systems,”Syst. Contr. Lett.,vol. 13, pp.
125–133, 1989.

[8] H. Sira-Ramires, “A dynamical variable structure control strategy in
asymptotic output tracking problem,”IEEE Trans. Automat. Contr.,vol.
38, pp. 615–620, 1993.

[9] K. D. Young andÜ. Özg̈uner, “Frequency shaping compensator design
for sliding mode,”Int. J. Contr.,vol. 57, pp. 1005–1019, 1993.

The Real Structured Singular
Value is Hardly Approximable

Minyue Fu

Abstract—This paper investigates the problem of approximating the
real structured singular value (real�). A negative result is provided which
shows that the problem of checking if� = 0 is NP-hard. This result is
much more negative than the known NP-hard result for the problem
of checking if � < 1. One implication of our result is that � is hardly
approximable in the following sense: there does not exist an algorithm,
polynomial in the sizen of the � problem, which can produce an upper
bound� for � with the guarantee that� � � � K(n)� for any K(n) > 0
(even exponential functions ofn), unless NP = P. A similar statement
holds for the lower bound of �. Our result strengthens a recent result
by Toker, which demonstrates that obtaining a sublinear approximation
for � is NP-hard.

Index Terms—Computational complexity, robust stability, robustness,
structured singular value.

I. MAIN RESULTS

The problem of real structured singular value (real�) arises in
many robust control problems where the control system is subject to
uncertain parameters; see, e.g., [2], [3], and [9]–[11] for motivations
and references.

Manuscript received May 1, 1996; revised September 5, 1996. This work
was supported by the Australian Research Council.

The author is with the Department of Electrical and Computer Engineering,
The University of Newcastle, Newcastle, Callaghan, NSW 2308, Australia.

Publisher Item Identifier S 0018-9286(97)05959-X.

Given a matrixM 2 C
n�n and a set� described by

� = f� = diagf�1Ik ; � � � ; �mIk gj�i 2 Rg

ki > 0;

m

i=1

ki = n (1)

the real� problem is to compute the value of��(M). This value
is defined to be zero ifIn � �M is nonsingular for all� 2 �,
or otherwise

��(M) = (inf f� > 0jdet (In ��M) = 0

� 2 �B(�)g)�1 (2)

where

B(�) = f� 2�j�i 2 [�1; 1]; i = 1; � � � ; mg: (3)

For notational simplicity, we denote��(M) by � which now has
double meanings (the� problem and the� value). Note thatn is the
data size of the problem.

It is known that the� problem is NP-hard; see Poljak and Rohn
[4], Braatzet al. [1], and Coxson and DeMarco [2]. More specifically,
these papers show that checking if� < 1 is NP-hard. This negative
result means that finding an algorithm for computing� is very
unlikely if the algorithm is required to run in polynomial time. See
the Appendix for a brief explanation on computational complexity.

The next logical step is to see how we can approximate�. We
want to know how hard it is to obtain a good approximation for�.
Put in another way, the question is how good an estimate of� can
be obtained using a polynomial algorithm (polynomial inn). To this
end, a result in Coxson and DeMarco [2] shows that approximation
of � with arbitrarily small relative error is also an NP-hard problem,
following a well-known result on the inapproximability of the so-
called maxcut problem. Recently, Toker [5] offers a more negative
answer. Toker’s result shows that computing an upper bound� with
the guarantee that� � � � Cn1���(M) for some (very large)
constantC > 0 and (very small)" > 0 is an NP-hard problem. This
implies that any polynomial time algorithm for computing� must
yield a relative gap between� and� at leastO(n1�"), unless P=
NP (which is a very unlikely event; see [7]). Note that these negative
results refer to the worst case.

The purpose of this paper is to strengthen the negative results
above. Our main result is simply stated as follows (with the proof
deferred to Section II).

Theorem I.1: The problem of determining if� = 0 is NP-hard.
This result, while looking similar to Poljak and Rohn [4], Braatz

et al. [1], and Coxson and DeMarco [2], is actually a much more
negative one. We show that the implication of this result is that� is
hardly approximable. The precise result is given below (see Section II
for proof).

Theorem I.2: Assume P 6= NP. Then, there does not exist a
polynomial algorithm which can produce an upper bound� for �
with the guarantee that� � � � K(n)� for any (arbitrarily large)
K(n) > 0. Similarly, no polynomial algorithm exists which can
produce a lower bound� for � with the guarantee thatK(n)� �
� � � for any (arbitrarily small)K(n) > 0.

The result above certainly strengthens that by Toker because in
[5] K(n) = n1�", while in our case,K(n) is allowed to be, for
example, an exponential function ofn. A similar comment applies
to the lower bound approximation.

The rest of this paper is devoted to the proof of Theorems I.1 and
I.2.

0018–9286/97$10.00 1997 IEEE

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 42, NO. 9, SEPTEMBER 1997 1287

II. PROOF OF THEOREMS 1 AND 2

As in almost all NP-hardness analysis cases, our basic idea is
to polynomially transform a known NP-complete problem to the
problem of determining if� = 0. Polynomial transformation means
that the resulting problem is obtained in polynomial time, and the
size of the resulting problem is polynomial of the size of the original
problem. We will use the following NP-complete problem.

Problem I–3-SAT Problem:The instance of this problem consists
of n, the number of Boolean variablesx = (x1; x2; � � � ; xn), and
a CNF formulaF (x) = C1 ^ C2 ^ � � � ^ Cm, with each clause
Ci = zi _zi _zi with zi being either one of thexk or its Boolean
negations. For example,C2 = x3 _x6 _x8. The decision is whether
or not there exists a Boolean assignment forx such thatF (x) is
satisfied, i.e.,F (x) is true. Since each clause contains three variables
(or their negations), this problem is called a 3-SATISFIABILITY
problem, or 3-SAT, for short. Note that the number of clausesm is
at mostC3

2n (i.e., 2n-choose-3), thus polynomial inn.
It is well-known that the 3-SAT problem is NP-complete; see, e.g.,

Papadimitroiu and Steiglitz [8].
The polynomial transformation from the 3-SAT problem to the

� = 0 problem takes two steps. First, we transform it to a problem
of testing if a specially constructed multivariate polynomial has a zero
solution. We then show that the latter problem can be transformed
into a � = 0 problem. In the sequel, we assume that a Boolean
variable takes values zero (for “false”) or one (for “true”).

Problem II—Multivariate Polynomial Problem:The instance of
this problem is the same as the 3-SAT problem with the restriction
that F (0) is not satisfied. For each clauseCi of a given instance,
we convert each negated variablexk to 1 � xk but leave the other
variables alone. We then defineyi to be their sum. For example, for
C2 = x3 _ x6 _ x8, the correspondingy2 = x3 + (1 � x6) + x8.
Then define the following multivariate polynomial:

f0(x) = f1(x) + f2(x) (4)

where

f1(x) =

n

i=1

x
2

i (xi � 1)
2 (5)

and

f2(x) =

m

i=1

(1� yi)
2

1�
yi

2

2

1�
yi

3

2

: (6)

Then normalizef0(x) to give

f(x) = f0(x)=f0(0): (7)

Note thatf0(0) 6= 0 is guaranteed whenF (0) is not satisfied (see
proof of the lemma below). The corresponding decision problem is
to find if there exists a rationalx 2 Rn such thatf(x) = 0 for each
given instance.

We have the following result.
Lemma II.1: Problem II defined above is NP-complete.

Proof: First, it is obvious that the 3-SAT problem with the
restriction thatF (0) is not satisfied is still NP-complete because
checking ifF (0) is satisfied takes only polynomial time. Secondly, it
follows from the construction off0(�) that, for each given instance,
f0(x) = 0 if and only if all xi takes either zero or one andf2(x) = 0.
Observe that, if allxi takes either zero or one, then eachyi takes
only zero, one, two, or three. The corresponding clauseCi is satisfied
if and only if yi = 1; 2; or 3. That is,Ci is satisfied if and only if
(1 � yi)(1 � yi=2)(1 � yi=3) = 0. Subsequently,f0(x) = 0 has
a solution if and only ifF (x) is satisfied for some assignmentx.
The assumption thatF (0) is not satisfied implies thatf0(0) 6= 0.
So f(x) is well defined. Since the 3-SAT problem is NP-complete,
so is Problem II.

Lemma II.2: Consider any multivariate polynomialf(x): Rn
!

R with degreel with f(0) 6= 0. There exists a polynomialp(n)
(denoted byp only), a matrixM 2 R

np�np such that

f(x) = det (I ��M) (8)
where

� = diag fx1Ip; x2Ip; � � � ; xnIpg: (9)

Further, such anM can be constructed in polynomial time.
Proof: We simply give a procedure for constructing such an

M and show that its size is polynomial inn and that it takes only
polynomial time to construct it.

Procedure:

Step 1) Setp = 1; Ap(x) = f(x) (a matrix function of size
p � p).

Step 2) If all entries ofAp(x) have degree less than or equal to
one, go to Step 4).

Step 3) Take any entryaij(x) of Ap(x) with degree higher than
one. Denote its highest order term (or one of them) by
�ij(x)xk for somexk (it can always be written this way)
and the rest ofaij(x) by �ij(x). That is

aij(x) = xk�ij(x) + �ij(x): (10)

Define ~Ap(x) to be the matrix function identical toAp(x)

except that theijth entry is replaced by�ij(x). Let a(x)
be thep-column vector withith element equal to�ij(x)
and zero elsewhere. Similarly, letb(x) be thep-row vector
with jth element equal toxk and zero elsewhere. Then,
define

Ap+1(x) =
~Ap(x) �a(x)

b(x) 1
(11)

and updatep := p + 1. Return to 2).
Step 4) SinceAp(x) is affine inx now, expressAp(x) = A0 +

n

i=1
xiAi. Define

M =

A1

A2

� � �

An

[�A
�1

0 �A
�1

0 � � � �A
�1

0]: (12)

It is simple to see that each step takes a polynomial time and that
the procedure terminates in a polynomial number of steps because
f(x) hasn variables and degreel. So the construction ofM takes
only polynomial time, andp is a polynomial inn. It remains to show
(8). To see this, we note that the update ofAp+1(x) in (11) ensures
that det Ap+1(x) = Ap(x) due to the following equation:

det
X11 X12

X21 I
= det (X11 �X12X21):

It follows that the finalAp(x) has determinant equal tof(x). In
particular, we havedet Ap(0) = f(0) = 1. (Recall thatf(x) is
normalized.) Also note the following equation:

det (I �XY) = det (I � Y X)

for any matricesX andY as long as bothXY andY X are square.
Taking the matrixM defined in (12) and� defined in (9), we have

det (I ��M) = det I + A
�1

0

n

i=1

xiAi

= det A
�1

0 det A0 +

n

i=1

xiAi

= det Ap(x)

= f(x):

1288 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 42, NO. 9, SEPTEMBER 1997

Proof of Theorem I.1:Lemma II.1 shows that Problem II is NP-
complete. It follows from Lemma II.2 that solving Problem II is the
same as findingx 2 Rn such thatdet (I � �M) = 0, where�
andM are constructed from the given instance of Problem II. From
the definition of the�, we know that solving Problem II is the same
as checking if� = 0 for this particularly constructed� problem.
Hence, the� = 0 problem is NP-hard.

Proof of Theorem I.2:We first prove the result for� by con-
tradiction. Suppose there existsK(n) > 0 and a polynomial time
algorithm which produces a� with the guarantee that� � � �

K(n)�. Then,� = 0 if and only if � = 0. Hence, this algorithm
will be able to solve the� = 0 problem in polynomial time. Using
Theorem 1, the above will imply that NP= P, contradicting our
assumption that NP6= P.

The same argument works for the lower bound becauseK(n)� �

� � � with K(n) > 0 implies that� = 0, if and only if � = 0.

III. CONCLUSION

The negative results in Theorems I.1 and I.2 imply that any
algorithm attempting to give a good approximation for the real�

is expected to be exponential time, or equivalently, any polynomial
algorithm is expected to behave very badly in the worst case as the
problem size grows unless P= NP. However, these negative results
should not be viewed as the end of searching for efficient algorithms.
For example, we may aim at small-to-medium sized problems. We
may simplify the� problem by exploiting structural information or
by reformulating the� problem and looking for a different robustness
measure. Some recent attempts for improving the standardD � G

scaling upper bound by Fanet al. [11] are given in Fu and Barabanov
[3] and Meinsmaet al. [9]. Further, we may attempt to search for
algorithms which are nonpolynomial but perform well “in practice.”

In contrast to the real� problem, the approximability of the
complex� problem is easier. In fact, checking if the complex� < 1

is proved to be NP-hard [6]. But theD-scaling method [10] for
computing an upper bound� of the complex� is a polynomial
algorithm and is known to give a guaranteed linear approximation
[12], i.e., � � O(n)� for some linear functionO(n). Finally, we
note that the 3-SAT problem is not only NP-complete, butstrongly
NP-complete. For this type of problem, it is known that not only
do no polynomial algorithms exist there, but also there exist no
pseudo-polynomial algorithms either, unless P= NP. The class of
pseudo-polynomials is much larger than the class of polynomials,
including functions such as2log n for any constantc > 0; see details
on strong NP-completeness and pseudo polynomial algorithms in [8].
Hence, the results in Theorems I.1 and I.2 can all be strengthened
accordingly.

APPENDIX

BASICS OF COMPUTATIONAL COMPLEXITY

The complexity class P denotes a class of decision problems (prob-
lems giving binary answers) which can be solved by a deterministic
Turing machine in polynomial time. The class NP denotes a class of
decision problems which can be solved by a nondeterministic Turing
machine in polynomial time, including P as a subclass. The exact
definitions of these two classes are involved and can be found in
Garey and Johnson [7] and Papadimitroiu and Steiglitz [8]. Roughly
speaking, every P problem has a deterministic polynomial time
algorithm, and every NP problem has a deterministic exponential time
algorithm. Examples of NP problems which are not known to be P
include the traveling salesman problem, the maximum cut problem,
the 3-SAT problem used in this paper, [7], [8], and the decision
problem for� (i.e, is� > 1?) [1], [2], [4], [6]. It is generally believed

that NP 6= P, although it has been a great challenge in combinatoric
optimization for the last several decades to prove or disprove it. A
decision problem is called NP-complete if it lies in NP and every NP
problem can be transformed in polynomial time into this problem.
All the examples above are NP-complete. A problem (decision or
nondecision) is called NP-hard if an NP-complete problem can be
reduced to this problem in polynomial time. For example, computing
� is known to be NP-hard, in all real, mixed, and complex cases [1],
[4], [6]. So, NP-hard problems are at least as “hard” as NP-complete
problems, which in turn are the hardest in NP. The term polynomial
algorithm means an algorithm which is deterministic and requires
only polynomial time and polynomial storage to execute on a Turing
machine.

The data (called instance) of an optimization problem are assumed
to be rational to avoid the complexity issues for real numbers.
However, no assumption is made for the optimal value to be rational
because we are only interested in approximating the value. The
computational complexity is analyzed with respect to the size of the
data (n in the � problem).

ACKNOWLEDGMENT

The author wishes to thank the anonymous reviewers for their
comments on the paper.

REFERENCES

[1] R. P. Braatzet al., “Computational complexity of� calculation,”IEEE
Trans. Automat. Contr.,vol. 39, pp. 1000–1002, May 1994.

[2] G. E. Coxson and C. L. DeMarco, “The computational complexity of
approximating the minimal perturbation scaling to achieve instability
in an interval matrix,”Math. Contr. Signals Syst.,vol. 7, no. 4, pp.
279–292, 1994.

[3] M. Fu and N. E. Barabanov, “Improved upper bounds for mixed�,” in
Proc. 34th Conf. Decision Contr.,New Orleans, LA, Dec. 1995.

[4] S. Poljak and J. Rohn, “Checking robust nonsingularity is NP-hard,”
Math. Contr. Signals Syst.,vol. 6, pp. 1–9, 1993.

[5] O. Toker, “On the conservatism of upper bound tests for structured
singular value analysis,” to be published.

[6] O. Toker and H. Ozbay, “On the NP-hardness of the purely com-
plex � computation, analysis/synthesis and some related problems in
multidimensional systems,” to be published.

[7] M. R. Garey and D. S. Johnson,Computers and Intractability: A Guide
to NP-Completeness.New York: W. H. Freeman, 1983.

[8] C. H. Papadimitriou and K. Steglitz,Combinatorial Optimization: Al-
gorithms and Complexity. Englewood Cliffs, NJ: Prentice-Hall, 1982.

[9] G. Meinsma, V. Shrivastava, and M. Fu, “Some properties of an upper
bound of�,” IEEE Trans. Automat. Contr.,1995.

[10] J. C. Doyle, “Analysis of feedback systems with structured uncertain-
ties,” Proc. Inst. Elec. Eng.,vol. 129, pt. D, pp. 240–250, 1982.

[11] M. K. H. Fan, A. L. Tits, and J. C. Doyle, “Robustness in the presence of
mixed parametric uncertainty and unmodeled dynamics,”IEEE Trans.
Automat. Contr.,vol. 36, pp. 25–38, Jan. 1991.

[12] A. Megretski, “On the gap between structured singular values and their
upper bounds,” inProc. 32nd Conf. Decision Contr.,San Antonio, TX,
Dec. 1993.

