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disturbances; however, dynamic SMC accommodates unmatcheiven a matrixM € C"*" and a setA described by
disturbances. Future research will involve the chattering elimination .

and discrete realization of the designed SMC'’s as well. The developed A= {A: diag{ifu,. . bl }6: € R}
approach will be extended to a nonminimal phase nonlinear output k>0 ZI‘ - 1
tracking. Preliminary results look promising. e
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Il. PROOF OF THEOREMS 1 AND 2 Lemma 11.2: Consider any multivariate polynomigl(z): R" —
As in almost all NP-hardness analysis cases, our basic idea/NsWith degreel with f(0) # 0. There exists a polynomigl(n)
to polynomially transform a known NP-complete problem to thédenoted byp only), a matrix3/ € R™**"* such that
problem of determining if: = 0. Polynomial transformation means fz) =det (I — AM) (8)
that the resulting problem is obtained in polynomial time, and thghere
size of the resulting problem is polynomial of the size of the original A = dive oI aodor e oI 9
problem. We will use the following NP-complete problem. A = diag {ailp. walp, oo wndp}. ©)
Problem I-3-SAT ProblemThe instance of this problem consistsFurther, such ard/ can be constructed in polynomial time.
of n, the number of Boolean variables= (z1, z2, ---, z,,), and Proof: We simply give a procedure for constructing such an
a CNF formulaF(z) = C1 A Cy A --- A Cy, With each clause M and show that its size is polynomial in and that it takes only
Ci = z;, Vzi, V zig With z;, being either one of they, or its Boolean polynomial time to construct it.
negations. For exampl€, = x3 V T V 5. The decision is whether  Procedure:

or not there exists a Boolean assignment fosuch thatF(x) is Step 1) Setp = 1, A,(x) = f(x) (a matrix function of size

satisfied, i.e.F'(«) is true. Since each clause contains three variables p X p).

problem, or 3-SAT, for short. Note that the number of clausess one, go to Step 4).

at mostCs, (i.e., 2n-choose-3), thus polynomial in. Step 3) Take any entry;;(x) of 4,(x) with degree higher than
Itis well-known that the 3-SAT problem is NP-complete; see, e.g., one. Denote its highest order term (or one of them) by

Papadimitroiu and Steiglitz [8]. «ij(x)xy, for somer,, (it can always be written this way)
The polynomial transformation from the 3-SAT problem to the and the rest ofi;;(x) by 3i;(x). That is

1 = 0 problem takes two steps. First, we transform it to a problem

of testing if a specially constructed multivariate polynomial has a zero @i () = o (0) + Bi (). (10)

solution. We then show that the latter problem can be transformed Define A, () to be the matrix function identical td,, ()

into a ¢ = 0 problem. In the sequel, we assume that a Boolean except that théjth entry is replaced by, ;(x). Let a(x)

variable takes values zero (for “false”) or one (for “true”). be thep-column vector with:th element equal te;; (x)
Problem Il—Multivariate Polynomial ProblemThe instance of and zero elsewhere. Similarly, let:) be thep-row vector

this problem is the same as the 3-SAT problem with the restriction with jth element equal tor;, and zero elsewhere. Then,

that F(0) is not satisfied. For each claugsg of a given instance, define

we convert each negated variahlge to 1 — z;, but leave the other Ap(_r) —a(z)

variables alone. We then defige to be their sum. For example, for Apti(2) = { b(x) 1 } (11)

Cy = 23 V T6 V xs, the corresponding. = w3 + (1 — x¢) + 5.

Then define the following multivariate polynomial: and update := p + 1. Retum to 2).

Step 4) Sinced,(x) is affine inz now, expressd, (z) = Ao +

fo(z) = fi(x) + fo(x) (4) > x;A;. Define
where Ay
filz) = Z .r?(;vi — 1)2 (5) M= 42 [—140_1 —Ao_1 _A()_]]- (12)
=1
and An
) yi\2 yi\2 It is simple to see that each step takes a polynomial time and that
fa(x) = Z(l = Yi) (1 - 5) (1 - E) . (6)  the procedure terminates in a polynomial number of steps because
=1 f(x) hasn variables and degrele So the construction olf takes
Then normalizefy () to give only polynomial time, ang is a polynomial inn. It remains to show
R (8). To see this, we note that the updatedpf;; (x) in (11) ensures
@)= fo(x)/ fo(0)- ) that det Apy1(x) = Ay(x) due to the following equation:
Note thatfo(0) # 0 is guaranteed wheti’'(0) is not satisfied (see X1 Xio
proof of the lemma below). The corresponding decision problem is det |:X21 T } = det (X11 — X12X01).

to find if there exists a rational € R™ such thatf (=) = 0 for each
given instance.
We have the following result.
Lemma II.1: Problem Il defined above is NP-complete.
Proof: First, it is obvious that the 3-SAT problem with the det(I — XY)=det (I —YX)
restriction thatF(0) is not satisfied is still NP-complete becausir

It follows that the finalA,(x) has determinant equal tf(x). In
particular, we havelet A,(0) = f(0) = 1. (Recall thatf(x) is
normalized.) Also note the following equation:

checking if F(0) is satisfied takes only polynomial time. Secondly, i
follows from the construction of,(-) that, for each given instance,

or any matricesY andY as long as bothl{'Y andY X are square.
aking the matrix}/ defined in (12) and\ defined in (9), we have

fo(z) = 0if and only if all ;; takes either zero or one arfel(x) = 0. , / e

Observe that, if allz; takes either zero or one, then eaghtakes det (I — AM) = det <I +4 Z wiA")

only zero, one, two, or three. The corresponding clalises satisfied = "

if and only if y; = 1,2, or 3. That is,(; is satisfied if and only if = det A;" det <Ao + Z JTiJ‘L')
(1 —yi)(1—wi/2)(1 —y;/3) = 0. Subsequentlyfy(x) = 0 has ~

a solution if and only ifF'(x) is satisfied for some assignment = det Ap(x)

The assumption thaf’(0) is not satisfied implies thafo(0) # 0. = f(a)
So f(x) is well defined. Since the 3-SAT problem is NP-complete, = f@).
so is Problem II. n
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Proof of Theorem I.1:Lemma Il.1 shows that Problem Il is NP-that NP# P, although it has been a great challenge in combinatoric
complete. It follows from Lemma 11.2 that solving Problem Il is theoptimization for the last several decades to prove or disprove it. A
same as finding: € R"™ such thatdet (I — AM) = 0, whereA  decision problem is called NP-complete if it lies in NP and every NP
and M are constructed from the given instance of Problem Il. Froproblem can be transformed in polynomial time into this problem.
the definition of theu, we know that solving Problem Il is the sameAll the examples above are NP-complete. A problem (decision or

as checking ify = 0 for this particularly constructeg problem.
Hence, thex = 0 problem is NP-hard.

Proof of Theorem 1.2:We first prove the result for by con-
tradiction. Suppose there exisf§(n) > 0 and a polynomial time
algorithm which produces @ with the guarantee that < 7 <
K(n)p. Then,u = 0 if and only if @ = 0. Hence, this algorithm
will be able to solve thg: = 0 problem in polynomial time. Using
Theorem 1, the above will imply that NB P, contradicting our
assumption that NE£ P.

The same argument works for the lower bound becduse); <
p < powith K(n) > 0 implies thaty = 0, if and only if 2 = 0.

I1Il. CONCLUSION

nondecision) is called NP-hard if an NP-complete problem can be
reduced to this problem in polynomial time. For example, computing
1 is known to be NP-hard, in all real, mixed, and complex cases [1],
[4], [6]. So, NP-hard problems are at least as “hard” as NP-complete
problems, which in turn are the hardest in NP. The term polynomial
algorithm means an algorithm which is deterministic and requires
only polynomial time and polynomial storage to execute on a Turing
machine.

The data (called instance) of an optimization problem are assumed
to be rational to avoid the complexity issues for real numbers.
However, no assumption is made for the optimal value to be rational
because we are only interested in approximating the value. The
computational complexity is analyzed with respect to the size of the

data ¢ in the . problem).

The negative results in Theorems .1 and [.2 imply that any
algorithm attempting to give a good approximation for the real
is expected to be exponential time, or equivalently, any polynomial
algorithm is expected to behave very badly in the worst case as the
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problem size grows unless NP. However, these negative results The author wishes to thank the anonymous reviewers for their
should not be viewed as the end of searching for efficient algorithné@mments on the paper.

For example, we may aim at small-to-medium sized problems. We
may simplify theu problem by exploiting structural information or
by reformulating the: problem and looking for a different robustness
measure. Some recent attempts for improving the stanBard G
scaling upper bound by Faat al.[11] are given in Fu and Barabanov
[3] and Meinsmaet al. [9]. Further, we may attempt to search for [2]
algorithms which are nonpolynomial but perform well “in practice.”
In contrast to the real. problem, the approximability of the
complexu problem is easier. In fact, checking if the compjex 1 [3]
is proved to be NP-hard [6]. But th®-scaling method [10] for
computing an upper boung of the complexy is a polynomial 4]
algorithm and is known to give a guaranteed linear approximatiorﬂs]
[12], i.e., @ < O(n)u for some linear functiorD(n). Finally, we
note that the 3-SAT problem is not only NP-complete, subngly
NP-complete. For this type of problem, it is known that not only
do no polynomial algorithms exist there, but also there exist n(T?]
pseudo-polynomial algorithms either, unless=PNP. The class of
pseudo-polynomials is much larger than the class of polynomialgg]
including functions such a&°¢" ™ for any constant > 0; see details
on strong NP-completeness and pseudo polynomial algorithms in [8°]
Hence, the results in Theorems I.1 and 1.2 can all be strengtherﬁgJ
accordingly.

(1]

(6]
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APPENDIX
Basics oF COMPUTATIONAL COMPLEXITY [12]

The complexity class P denotes a class of decision problems (prob-
lems giving binary answers) which can be solved by a deterministic
Turing machine in polynomial time. The class NP denotes a class of
decision problems which can be solved by a nondeterministic Turing
machine in polynomial time, including P as a subclass. The exact
definitions of these two classes are involved and can be found in
Garey and Johnson [7] and Papadimitroiu and Steiglitz [8]. Roughly
speaking, every P problem has a deterministic polynomial time
algorithm, and every NP problem has a deterministic exponential time
algorithm. Examples of NP problems which are not known to be P
include the traveling salesman problem, the maximum cut problem,
the 3-SAT problem used in this paper, [7], [8], and the decision
problem foru (i.e, isp > 1?) [1], [2], [4], [6]. It is generally believed
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