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Abstract: In this paper, we consider the problem of robust H-infinity Control for a class
of uncertain nonlinear systems. We derive LMI conditions for analyzing regional robust
stability and performance based on Lyapunov functions which are polynomial functions
of the state and uncertain parameters. More specifically, we provide an energy bound on
the input disturbance which guarantees that the state of the system stays inside a given
region. For the given bound on the input disturbance, we also minimize the L2-gain of the
input/output operator. Through an iterative algorithm, the proposed technique is applied to
control synthesis. Numerical examples are presented to illustrate our results.
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1. INTRODUCTION searchers have proposed different solutions to non-
linear robust#, control problems, e.g. (Sasaki and
During the past ten years many researchers have gentchida, 1997).
eralized the linear robust control theory to deal with
the Lp-gain of nonlinear systems (Lu and Doyle,
1995). Unfortunately, the nonline&t, problem needs
the solution of Hamilton-Jacob Inequalities (HJI, or

In this paper, we also address the nonlingarcontrol
problem using the LMI framework. We consider a
class of nonlinear systems which are subject to both

equations - HJE) which are difficult to solve. Some al- parameter uncertainties in the system model and an

ternative approaches have been developed (Huang anﬁﬁme input disturbance. The system matrices are al-

Lu, 1996) to solve HJI (or HJE) indirectly by reducing oyved to be rational fgnctlons of the _s_tate and uncer-
o s . tain parameters. We first study conditions for analyz-
the problem to algebraic inequalities (or equations),

i ing regional robust stability and performance of the
but these methods are only applicable to problems . . . )
. . ) system. More precisely, we consider a given polytopic
with low dimension.

region in the state space and study two problems: 1)
On the other hand, the so-called linear matrix inequal- Determine an energy bound on the input disturbance
ity (LMI) approach has been used widely to solve which guarantees that the state trajectory stays inside
problems in linear robust control, gain-scheduling and the given polytopic region, assuming zero initial con-
multi-objective control (Boydkt al,, 1994). Since the  ditions; 2) Minimize theL,-gain of the system, assum-
work (El Ghaoui and Scorletti, 1996) that showed ing that the state trajectory stays in the given polytopic
a solution to the nonlinear problem using LMIs, re- region. Both problems are solved in terms of LMIs.
We then extend these results to a synthesis problem,
i.e., we want to design a state feedback control law that

1 This work was partially supported by ‘CAPES’, Brazil, under minimizes theLz-gain of the system while guarantee-
grant BEX 0784/00-1.




ing thatthestatestaysin agivenpolytopicregion.The
synthesids doneusingan iterative schemeWe point
outthatour approachs basedn Lyapuna functions
which are polynomialfunctionsof the stateand un-
certainparametersWe will alsoshow via examples
thatthis type of Lyapunw functionsyield muchless
consenrativeresultscomparedo functionswith aLya-
punov matrix which is constantbor affinely dependent
onthestateanduncertairparameters.

The rest of the paperis structuredas follows. Sec-
tions 2 and 3 studythe analysisproblems.Section4

discusseshe synthesigproblemandproposeaniter-

ative designscheme Numericalexamplesare given
in section5. Some conclusionsare dravn in sec-
tion 6. The notationusedin this paperis standard.
For a real matrix S, S denotesits transposeS >

0 meansthat S is symmetricand positive-definite,
and He(S) = S+ S. Matrix and vector dimensions
are omitted wheneer they can be inferred from the
contt. In this paper the proofs of theoremsand
somereferencesare omitted from the original work

becauseof spacelimitation. For further details, the
readeris referredto the full version of this paper
(Coutinho et al., 2001) (available for download at
ftp://warhol.nwcastleedu.aipuUanoris/EEOlO45.ps.§z

2. REGIONAL STABILITY ANALYSIS

Considerthe uncertainnonlinearsystemdescribedas
follows:

X = A(X,0)X+ Bw(x,d)w, x(0)=0 1)

wherex € R" denoteshe state,d € R the uncertain
parametersand w € R™ the disturbanceinput. We
assumehat:

Al. Theuncertainparametersepresentetly thevec-
tor 6 andits time-derizative & lie in a given polytope
$5, i.e. (6 6) S $5,

A2. The system$ matricesA(x,5) and By(x,d) are
boundedfor all (8,0) € Bs and x € By, where B¢
represents givenpolytopicregion of statecontaining
theorigin.

The problemof concernin this sectionis to analyze
the regional stability of the system(1) for a givenset
of input disturbancesTo this end, we will usethe
following definitionof regionalstability.

Definition1. Considethenonlineamuncertairsystem
in (1), satisfyingthe assumptionsA1 and A2, and
a given set of input disturbances?. The system
is called regionally stable (with respectto W and
By) if x(t) € Bc forallt >0 andall we W. The
correspondinget? is calledasetof admissiblénput
disturbances

Hereaftey we describethe classof admissibleinput
disturbancessfollows:

WA{ /w

wherep > 0 controlsthe“size” of W/.

dt<1} )

In this paperwe will representhe polytopeBy by its
verticesor by usinga setof inequalitiesj.e.,

B = {x JC)

where ax are given vectorsassociatedwith the ne
edgeof thepolytopes.

: ai(x <1, k=1,...,ne

The key idea involved in the study of admissible
input disturbancess to overboundhe statetrajectory
generatedyy aninput disturbanceaisinga level setof
a Lyapuna function, which in turn is overbounded
by B«. More precisely we considerthe following
Lyapunar matrix candidate:

"”f(x’a):[e<lea)]lpf[e<lea)] )

whereP, is afixedsymmetricmatrixto bedetermined
and ©(x,0) € R™" is an affine matrix function of
(x,0) that we will specify later The corresponding
Lyapuna functioncandidatés givenby

Vi (%,0) = x".Pr(x,é)x.
Theoverboundindevel setis givenby

Re = {x: r(%,8) < L,V (3,5) € Bs}

Supposey; (x,d) satisfieghefollowing conditionsfor

all xe By, (8,0) € By andw € W:
Vi (%,0) >0 ©)
Vr(%,8) <pTHW (t)w(t), vt >0 (6)
Integratingbothsidesof (6) fromO0to T forary T >0
yields
<|,1_1/\/\/ Hat<1, (7)
\7’(6,6) € Bs, W(t) € W

Hencethetrajectoryx(t) drivenby w(t) € W belongs
to By if thecondition®, C By is satisfied.

In order to make the above conditionstestablevia
LMIs, we rewrite the system(1) asfollows:

x6Tr.+Z)B (x,8)& 8)

OMQ

= A(X,8)TT+ B(x,8)€

with t=[1 - 14,1 E€=[&, --- & and
A(Xa ) [ (Xaé) Aq(x7 )]
B(X,3) =[Bo(x,9) --- Bg(x,3)]



In addition,theauxiliary vectorstandg arenonlinear
functionsof (x,d) satisfying

Q(x,0)t=0; A(x,0)¢ =

for somenon-zeramatrixfunctionsQ(x, d) andA(x, d).
Also, T, T and§p arechoserasty = X, Ty = O(X, 0)X
and&p = w(t), where®(x,d) is the samematrix
usedto definethe Lyapuna matrixin (4). Moreover,

A(x,8) € R™(@+n B(x §) € R™(@+DM Q(x, 3) and

A(x,0) are affine funct|onsof x and d. To simplify
the notation,we may usethe auxiliary matricesand
vectorswithout explicitly mentioningtheir respectie
dependencenx, d,w andt.

With theabovediscussionywe modify AssumptionA2
to thefollowing:

A2'. ThematricesA(x,d) andB(x,9d) in (8) areaffine
functionsof x andd andareboundedor x € B, and
(8,0) € Bs.

By definitionof the Lyapuna matrixin (4), it should
be notedthat the matrix ©(x,d) is an affine function
of x andd. Hencewe canrepresenit by

Ox0) = S Tix + ZU io +V (9

.mM=

]

wherex;j,d; are j-th entriesof the vectorsx and 9,
respectiely, and Tj, U; andV are constantmatrices
with the samedimensionsof ©(x,d). The analysis
above leadsto thefollowing result.

Theoem?2. Let B,, Bs and W in (2) be given.Con-
sider the system(1), the associatedsystem(8), the
assumptioné&1 andA2’ andthefollowing notation:

ZTJXSJ Lz

N=[In O], E=

|(2n) 0J;

In

[—<e<x,6)+é(x)> IO]

F= | (60 01)7% = Lopxe) )’

Xp —X1 0 .- 0
M=|0 % "

: . . .0

o - 0 Xn —Xn_1

0 Q(x9) 0

0 [WaO] 0
Yy = _E E [B()S,B):|

0 o A(x,8)

wheres; is the j-th row of the identity matrix In,
N € R@V* @+ gndN ¢ R™(@+1m,

Supposéhereexist matrices?, Ly, andLy, thatsolve
thefollowing LMIs constructedat all verticesof B =

Q%XxfBé:

Pr+Laqua+llJ’Lf,i,>O P=PR,
Y(Pr, 1~ )+Lb,ka+th ;<0

1 [ak 0 (10)
|:ak:| (Pr+Laqua) 20’ vk
0 +WoLL,
where
0 PN 0
YP,u =[NP 0 0 (11)
0 0 —p_1N’N]

Then,thedisturbedsystem(1) is regionally stableand
the set 7/ is an admissiblesetof input disturbances
(with respecto By). m|

The proof of above theoremwas omitted becauseof
spacdimitation andcanbeobtainedn thefull version
of this paper(Coutinhoetal., 2001).

3. L,-GAIN PERFORMANCE

Considethattheuncertaimonlinearsystemn (1) has
thefollowing performanceutput:

Z = Cy(X,0)X+ Dzn(X,0)W (12)
whereze R'.

For theabove outputvector we assumehat:

A3. The matrix functionsC;(x,8) and Du(X,0) are
boundedor all (3,08) € Bs andx € By.

In thissectionwe areinterestedn the performancef
thenonlinearsystem(1) and(12). To thisend,we will
usethefollowing definitionof L>-gain.

Definition3. Considethenonlineamuncertainsystem
(1) and (12), satisfying assumptionsA1-A3, and a
given setof input disturbancegi. The (worst-case)
Lp-gainof theinput/outputoperatordenotedoy Gy,

of system(1) and(12) is givenby

00 if thesystemis not
regionally stable

(1Gwl | =
" ”2”2 otherwise

0O#we W [Iwll2
v(3,8) € Bs

With the abore assumptiongnd definitions,we can
statetheproblemof concernin this section.

Problem4. Giventwo polytopesBx and Bs andthe
set W, the problemof concernin this sectionis to
find anupperboundon the £L>-gainof the system(1)
and(12).

To solve theabove problemin termsof LMIs, we will
considerthe following Lyapuna function candidate

v(x,8) = X P(x,8)x, where®P(x,d) is givenby



P(x,5) = [@(')25)]}[@(')25)] (13)

andP = P’ is aconstantmatrix to be determined.

To testif the £,-gainis boundedby agiveny > 0, we
requirethatthe following inequalitiesaresatisfiedfor
all (x,6,0) € B, we W andt > 0:

v(x,0) >0
V(X,8) +ZZ— W (t)w(t) <0

(14)
(15)

which is a well-known resultin the literature,seefor
instancgBoyd etal., 1994).

In the sameway of Section2, we rewrite the perfor
manceoutput(12) asfollows:

q g
z= i;)Q (x,®)Th + J;Dj(X,?S)EJ (16)

or, equivalently, in the conciseform z = C(x,d)Tt+
D(x,0)¢, with C(x,8) = [Co(x,0) --- Cq(X,0) ] and
D(x,8) = [ Do(x,8) -+ Dg(x,8)].

Hereafter we modify AssumptionA3 to the follow-
ing:

A3'. The matricesC(x,8) € R™*(4D" andD(x,3) €
R <(@+Dm iy (16) areaffine functionsof x and3 and
areboundedor x € B; andd € B;.

With the above analysiswe canstatethe mainresult
of this paperasfollows.

Theoemb5. Let B, andBs; and W begiven.Consider
thesystem(1) and(12), the associatedystem(8) and
(16), theassumption®\1, A2’ andA3’ andthe nota-
tion of Theorem2. Supposehe given W is admissi-
ble. Then,the £>-gainof the systemis boundedby v,
wherey is the solution of the following optimization
problem,with the decisionvariablesP, L,, Ly, andy,
andthe LMIs constructedat all verticesof B = B x
35:

miny subject to:
P+ LaLIJa+ LI',’al_’a > O, P = P’
0
(") |emdr || o an
oo D(x,3)’
[0 C(x,3) D(x,9) ] —Iy
whereY{(P)y) is givenby (11).

Moreover, the origin of the unforcedsystem(w = 0)
is locally exponentiallystable. O

The proof of abose theoremwas omitted because
of spacelimitation. See(Coutinhoet al., 2001) for
furtherdetails.

REMARK: For linear time-invariant (LTI) systems
with no uncertainparametersthe optimizationprob-
lem in Theorem5 leadsto a necessanandsufiicient

condition. To illustrate this point, let us considerthe
following LTI system:

X = Ax+Byw and z=C,x+ Dzw.
Definethe multipliersLy = 0 andL, = [F' G H'].
From (17), we get the following: min y subject to:
P>0(P=P)and

0

/

ARF,GH,Y) | C,
[D’ZW] <0y

[O CZ DZW:| —I
wherethematrix A(P,F,G,H,y) is givenby
[ —(F+F') P+FA-G

GBy+AH'
HA+B,G HBy+B,H —yl

P+AF —G GA+AG

B,F —H

Now, applying the Schur complementto (18) and
definingk =0, G= P andH = 0, we get

FBy—H' ]

AP+ PA+CLC, PBy+C,Dy

BuP+D7uCz  DouDzw—Vl
recoveringthe classicalresultfor LTI systemqBoyd
et al., 1994). Note that the secondLMI of (18) has
multipliers which the classicalresult (19) doesnot
have. The use of multipliers allows us to deal with
nonlinearitiesand uncertain parametersThe same
idea has beenusedto solve analysisand synthesis
problemsof uncertain(continuousanddiscretetime)
linear systemssee,e.g.(de Oliveiraetal., 1999; Ap-
karianetal., 2000).

<0 (19

4. CONTROL DESIGN

Considetthe uncertaimonlinearsystemasfollows:

x = A(X,0)Xx+ Bu(X,d)u+ By(x,d)w

2= Cy(% 8)X+ Dur(%, 8)u+ Dus(x, )W 20

wherex(0) =0, (3,8) € Bs, u € RP denotesghecontrol
input, and By(x,0) and Dy(x,0) are affine matrix
functionsof x andd with appropriatedimensions.

In this sectionwe are concerneavith the problemof
determininga controllaw to improvethe performance
of the closed-loopsystem.In particulay we use a
control law u = K(x,8)x, where the control matrix
is givenby K (x,8) = 37 ,KiTg, the auxiliary vectors
T, are as definedin section3 and K;j € RPX" are
fixed matrix gainsto be determined.Note that this
control law canrepresent gain schedulemr a non-
fragile controller For simplicity, we assumethat the
stateinformation is available for feedbackand the
parameter®; areknown on-lineto the controller

Theorems2 and5 provide the foundationfor solving
our synthesigproblem.To analyzethe closed-loojre-
gionalstability for givenadmissiblenput disturbance
W andcontrol-gain¥; (i =0,...,q), we canreplace



the matricesA(x,d) andC(x,d) thatareusedin (10)
and(17)with thefollowing:

A=[Ao+BuKop --- Ag+ Bqu]
C= [CO+DuzKO Cq+ Duqu]
and apply Theorem?2 to verify the regional stability

and Theorem5 to determinean upperboundon the
Lp-gain.

(21)

To extendthis resultto the designcase,we obsere
that the matrix inequalitiesin (10) and (17) will be
bilinear matrix inequalities(BMIs). BMI problems
appearcommonlyin robust control design.In order
to avoid this technicaldifficulty, we usean iterative

algorithm,similarto analgorithmproposedy (Feron
etal., 1996),in which the BMI problemis solvedvia

two LMI sub-problemdlt is well-known thatiterative

algorithmsmay provide a locally optimal solutionfor

BMI problems.Neverthelesseachiteration tendsto

improve the closed-loopperformance so the tech-
niqueis ofteneffective.

Algorithm1. Considetthe system(20)with given 3y,
Bs, W, and Theorems2 and 5 with the matrices
A(x,0) andC(x,8) asdefinedin (21).

STEP1 Determinea stabilizing controller suchthat
W is admissible;

STEP2 For a given controller and taking into ac-
count(21),solvethelLMls in (10) andtheoptimiza-
tion problem(17) to obtainthe matricesLy,, andLp
respectiely.

STEP 3 For givenmatriceslLy,, andLy, solverespec-
tively (10) and (17) to obtainthe new control pa-
rametersKo, - -- ,Kq. Note that the inequalitiesin
(10) and (17) are affine in all variablesincluding
Ko, ,Kg-

STEP4 lterateover steps2 and3 until corvergence
or satishctionof a pre-defined.,-gain.

At eachiterationi, notethat Algorithm 1 guarantees
the regional stability of the closed-loopsystemand
Yi <Yi-1)- As aresult, this algorithm corvergeson
alocalminimum.To overcomethe problemof finding
aninitial stabilizingcontroller(STEP1), we propose
thefollowing result.

4.1 StabilizingContmoller

Considetthe differentialequationof system(20), i.e.
X = A(X,0)X+ By(x,0)u+By(x,d)w  (22)

We assumdor above systemthat:

A4. The systemmatrix A(x,8) can be rewritten as
A(x,8) = N(x,8)A(x,5) wherethe matrix A(x,d) is
an affine function of (x,6) and(x,d) is a nonlinear
function of (x,0) that satisfy the following: (1) the
matrix A(X, 0) is boundedor x € By andd € Bs; (2)

thereexistsanon-zeramatrix Qn (x, 8) affinefunction
of (x,0) suchthatl(x,d) Qn(x,8) = 0; and(3) there
existsa constanmatrix N suchthat(x,8)Nn = Ip.

A5. The systemmatrix By (x,0) canbe rewritten as
Bw(x,3) = ®(x,3)B(x,d), wherethe matrix B(x,3) is
an affine function of (x,0) and ®(x,d) is a nonlinear
function of (x,8) that satisfy the following: (1) the
matrix B(x,3) is boundedior x € B, andd € Bs; (2)
thereexistsanon-zeramatrix Ag (X, d) affine function
of (x,0) suchthat®(x,0) Ae(x,0) = 0; and(3) there
existsa constanmatrix No suchthat®(x,d)Ne = Im.

Then, we can proposethe following statefeedback
controllaw thatassuresheregionalstability of system
(22) for agivenconstant.

Theoem6. Let B, Bs and be given. Considerthe
system(22) and AssumptionsAl, A4 and A5. Sup-
posethere exist matricesX, Y andL that solve the
following LMIs constructedtall verticesof B = By x
Bs.

X>0, X=X

1-aXa >0, vk

He (r(x,Y, u) + [QO” /\O¢

wherel (X,Y,u1) is givenby

(23)

L) <o

N XA+ NnB,Y 0
NoB' —0.51 "N Ng,

Then, the system (22) with u = YM(x,8) X~x is
regionally stableand the set W definedby p is an
admissiblesetof inputdisturbances. O

The proof of abose theoremwas omitted because
of spacelimitation. See (Coutinhoet al., 2001) for
furtherdetails.

5. NUMERICAL RESULTS

To illustrate the potentialof the proposedechnique,
we analyzetwo numericalexamples.In thefirst one,
we computean upperboundon the £p-gain of the
system.In the secondexample,we designa nonlin-

earcontrollerthatminimizesthe £,-gain. In both ex-

amples,we assumehat the setsof admissibleinput
disturbancesregiven.

Example 1: considerthe following uncertainsystem
whichis basedntheVanderPolequationEl Ghaoui
andScorletti,1996):

‘e 0o -1 Xt 0 W

T l1e(é-1) 1
with z=[1 0]x+w, w e W (for somep > 0), and
the nonlineardumpingfactor € is constantand ap-

proximatelyknown, i.e. € € [eg — A€, g0 + Ag], where
€9 =0.8andAs =0.2.

(24)

Our objectivein this exampleis to determinea bound
ontheoutputenegy aswell asestimatehesizeof set



W usingdifferentLyapunao matricegconstantaffine
and quadratic).To this end, let B; be the polytope
definedby thefollowing set{x1,x2 : |xi| < a, i =1, 2},
wherea is agivenscalar
Now, considerthat the matrix P is partitioned as
followsP = [ g‘,’ Pl] . With this partition,we obtained
1 P2
thefollowing Lyapuna matrices{i) P, P1 andP;, are
free, i.e the matrix P(x,d) is quadraticin (x,0); (ii)
Po andP; arefreeandP, = 0, i.e the matrix (X, d) is
affinein (x,d); and(iii) PL =0, P, = 0 andPy is free,
i.e.thematrix P(x,d) is constant.

Tablel shaws the estimatedipperboundson the £,-
gainof theinput/outputoperatotandsizesof theinput
disturbancedor the proposedapproachusing Theo-
rems?2 and5 with differentLyapuna matrices.For
all the solutions,a = 0.7 is used.As expectedthe

Lyapune Matrix
U bound - -
pperbounds Constant| Affine | Quadratic
y 84.5 84.4 10.7
1] 0.10 0.11 0.30

Tablel. £p-gainandsizeof W

polynomial Lyapun function (quadraticLyapunw
matrix) achieved lessconsenrative results,thusjusti-
fying therequiredextra computatiorandshaving the
potentialof our approach.

Example 2: considerthe following nonlinearsystem
which is basedon the benchmarkexampleproposed
in (Kokotovit etal., 1991).

01X3 0 0
X=]1001|x+|0ju+|0|w (25
000 1 1

with z=x; andw € {w: [2wwdt < 0.1}.

Theobjectivein thisexampleis to stabilizethesystem
in a ., senseusing a static state-feedbacKu =

Kox).To thisend,let B, bethepolytopedefinedby the
following boundson the state-spaceariables:|x;| <

1, %] < 1and|xs| < 1.

Notethatsystem(25)is open-loopunstableThen,us-
ing theorenB we obtainedo = [ —2.0 —3.8 —2.2] x
10° that stabilizesregionally the closed-loopsystem
with y = 58.

After 2 iterationsof algorithm1, we obtainedy = 0.1
for thecontrolgainKo = [ —3.8 —6.4 —3.8] x 10°.

6. CONCLUDING REMARKS

In this paper we have proposeda new techniqueto
analyzethe regional stability and computean upper
boundonthe £,-gainfor aclassof uncertaimonlinear
systemausingtheLMI framework. To ascertairthero-
bustnesandperformancef thenonlinearsystemwe
useLyapunw functionswhich are polynomial func-
tions of the stateand uncertainparametersThrough

an iterative algorithm, this techniqueis extendedto
the synthesigproblem.The numericalexamplesshon
the potential of our approachwhen comparedwith
techniquesusing quadraticand affine quadraticLya-
punor functions.Futureresearchmay concentraten
devising a betteralgorithmfor the synthesigproblem.
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