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Abstract: In this paper, we consider the problem of robust H-infinity Control for a class
of uncertain nonlinear systems. We derive LMI conditions for analyzing regional robust
stability and performance based on Lyapunov functions which are polynomial functions
of the state and uncertain parameters. More specifically, we provide an energy bound on
the input disturbance which guarantees that the state of the system stays inside a given
region. For the given bound on the input disturbance, we also minimize the L2-gain of the
input/output operator. Through an iterative algorithm, the proposed technique is applied to
control synthesis. Numerical examples are presented to illustrate our results.
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1. INTRODUCTION

During the past ten years many researchers have gen-
eralized the linear robust control theory to deal with
the

�
2-gain of nonlinear systems (Lu and Doyle,

1995). Unfortunately, the nonlinear� ∞ problem needs
the solution of Hamilton-Jacob Inequalities (HJI, or
equations - HJE) which are difficult to solve. Some al-
ternative approaches have been developed (Huang and
Lu, 1996) to solve HJI (or HJE) indirectly by reducing
the problem to algebraic inequalities (or equations),
but these methods are only applicable to problems
with low dimension.

On the other hand, the so-called linear matrix inequal-
ity (LMI) approach has been used widely to solve
problems in linear robust control, gain-scheduling and
multi-objective control (Boydet al., 1994). Since the
work (El Ghaoui and Scorletti, 1996) that showed
a solution to the nonlinear problem using LMIs, re-

1 This work was partially supported by ‘CAPES’, Brazil, under
grant BEX 0784/00-1.

searchers have proposed different solutions to non-
linear robust� ∞ control problems, e.g. (Sasaki and
Uchida, 1997).

In this paper, we also address the nonlinear� ∞ control
problem using the LMI framework. We consider a
class of nonlinear systems which are subject to both
parameter uncertainties in the system model and an
affine input disturbance. The system matrices are al-
lowed to be rational functions of the state and uncer-
tain parameters. We first study conditions for analyz-
ing regional robust stability and performance of the
system. More precisely, we consider a given polytopic
region in the state space and study two problems: 1)
Determine an energy bound on the input disturbance
which guarantees that the state trajectory stays inside
the given polytopic region, assuming zero initial con-
ditions; 2) Minimize the

�
2-gain of the system, assum-

ing that the state trajectory stays in the given polytopic
region. Both problems are solved in terms of LMIs.
We then extend these results to a synthesis problem,
i.e., we want to design a state feedback control law that
minimizes the

�
2-gain of the system while guarantee-
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ing thatthestatestaysin agivenpolytopicregion.The
synthesisis doneusingan iterative scheme.We point
out thatour approachis basedon Lyapunov functions
which arepolynomial functionsof the stateandun-
certainparameters.We will also show via examples
that this type of Lyapunov functionsyield muchless
conservativeresultscomparedto functionswith aLya-
punov matrix which is constantor affinely dependent
on thestateanduncertainparameters.

The rest of the paperis structuredas follows. Sec-
tions 2 and3 studythe analysisproblems.Section4
discussesthesynthesisproblemandproposesaniter-
ative designscheme.Numericalexamplesare given
in section 5. Some conclusionsare drawn in sec-
tion 6. The notationusedin this paperis standard.
For a real matrix S, S� denotesits transpose,S �
0 meansthat S is symmetricand positive-definite,
and He 	 S
�� S 
 S� . Matrix and vector dimensions
are omitted whenever they can be inferred from the
context. In this paper, the proofs of theoremsand
somereferencesare omitted from the original work
becauseof spacelimitation. For further details, the
readeris referred to the full version of this paper
(Coutinho et al., 2001) (available for download at
ftp://warhol.newcastle.edu.au/pub/Reports/EE01045.ps.gz).

2. REGIONAL STABILITY ANALYSIS

Considertheuncertainnonlinearsystemdescribedas
follows:

ẋ � A 	 x � δ 
 x 
 Bw 	 x � δ 
 w , x 	 0
�� 0 (1)

wherex ��� n denotesthe state,δ ��� l the uncertain
parameters,and w ��� m the disturbanceinput. We
assumethat:

A1. Theuncertainparametersrepresentedby thevec-
tor δ andits time-derivative δ̇ lie in a givenpolytope�

δ, i.e., 	 δ � δ̇ 
�� � δ;

A2. The system’s matricesA 	 x � δ 
 and Bw 	 x � δ 
 are
boundedfor all 	 δ � δ̇ 
�� � δ and x � � x, where

�
x

representsagivenpolytopicregionof statecontaining
theorigin.

The problemof concernin this sectionis to analyze
theregionalstability of thesystem(1) for a givenset
of input disturbances.To this end, we will use the
following definitionof regionalstability.

Definition1. Considerthenonlinearuncertainsystem
in (1), satisfying the assumptionsA1 and A2, and
a given set of input disturbances� . The system
is called regionally stable (with respectto � and�

x) if x 	 t 
�� � x for all t � 0 and all w ��� . The
correspondingset � is calledasetofadmissibleinput
disturbances.

Hereafter, we describethe classof admissibleinput
disturbancesasfollows:��� � w 	 t 
 : µ� 1  ∞

0
w 	 t 
�! w 	 t 
 dt " 1 # (2)

whereµ � 0 controlsthe“size” of � .

In this paper, we will representthepolytope
�

x by its
verticesor by usinga setof inequalities,i.e.,�

x �%$ x : a�k x " 1 , k � 1 ��&�&�&'� ne ( (3)

where ak are given vectorsassociatedwith the ne

edgesof thepolytope
�

x.

The key idea involved in the study of admissible
input disturbancesis to overboundthestatetrajectory
generatedby aninput disturbanceusinga level setof
a Lyapunov function, which in turn is overbounded
by

�
x. More precisely, we consider the following

Lyapunov matrixcandidate:)
r 	 x � δ 
*�,+ In

Θ 	 x � δ 
.- ! Pr + In
Θ 	 x � δ 
.- (4)

wherePr is afixedsymmetricmatrix to bedetermined
and Θ 	 x � δ 
/�0� n 1 n is an affine matrix function of	 x � δ 
 that we will specify later. The corresponding
Lyapunov functioncandidateis givenby

vr 	 x � δ 
�� x� ) r 	 x � δ 
 x &
Theoverboundinglevel setis givenby2

r �43 x : vr 	 x � δ 
�" 1 �65�	 δ � δ̇ 
�� � δ 7
Supposevr 	 x � δ 
 satisfiesthefollowing conditionsfor
all x � � x, 	 δ � δ̇ 
8� � δ andw ��� :

vr 	 x � δ 
9� 0 (5)

v̇r 	 x � δ 
9" µ� 1w! 	 t 
 w 	 t 
:�;5 t � 0 (6)

Integratingbothsidesof (6) from 0 to T for any T � 0
yields

vr 	 x 	 T 
:� δ 
8" µ� 1  T

0
w! 	 t 
 w 	 t 
 dt " 1 � (7)5/	 δ � δ̇ 
�� � δ � w 	 t 
��<�

Hence,thetrajectoryx 	 t 
 drivenby w 	 t 
*�=� belongs
to
�

x if thecondition
2

r > � x is satisfied.

In order to make the above conditionstestablevia
LMIs, werewrite thesystem(1) asfollows:

ẋ � q

∑
i ? 0

Ai 	 x � δ 
 πi 
 q̃

∑
j ? 0

B j 	 x � δ 
 ξ j (8)� A 	 x � δ 
 π 
 B 	 x � δ 
 ξ
with π �A@ π �0 B�B�B π �q C � ; ξ �A@ ξ �0 B�B�B ξ �q̃ C � ; and

A 	 x � δ 
*�D@ A0 	 x � δ 
 B�B�B Aq 	 x � δ 
 C
B 	 x � δ 
*�D@ B0 	 x � δ 
 B�B�B Bq̃ 	 x � δ 
 C



In addition,theauxiliaryvectorsπ andξ arenonlinear
functionsof 	 x � δ 
 satisfying

Ω 	 x � δ 
 π � 0; Λ 	 x � δ 
 ξ � 0

for somenon-zeromatrixfunctionsΩ 	 x � δ 
 andΛ 	 x � δ 
 .
Also,π0, π1 andξ0 arechosenasπ0 � x, π1 � Θ 	 x � δ 
 x
and ξ0 � w 	 t 
 , where Θ 	 x � δ 
 is the samematrix
usedto definetheLyapunov matrix in (4). Moreover,
A 	 x � δ 
E�F� n 1HG qI 1J n, B 	 x � δ 
E�F� n 1HG q̃ I 1J m, Ω 	 x � δ 
 and
Λ 	 x � δ 
 are affine functionsof x and δ. To simplify
the notation,we may usethe auxiliary matricesand
vectorswithout explicitly mentioningtheir respective
dependenceonx � δ � w andt.

With theabovediscussion,wemodifyAssumptionA2
to thefollowing:

A2’. ThematricesA 	 x � δ 
 andB 	 x � δ 
 in (8) areaffine
functionsof x andδ andareboundedfor x � � x and	 δ � δ̇ 
�� � δ.

By definitionof theLyapunov matrix in (4), it should
be notedthat the matrix Θ 	 x � δ 
 is an affine function
of x andδ. Hence,wecanrepresentit by

Θ 	 x � δ 
=� n

∑
j ? 1

Tj x j 
 l

∑
j ? 1

U j δ j 
 V (9)

wherex j � δ j are j-th entriesof the vectorsx and δ,
respectively, andTj , U j andV areconstantmatrices
with the samedimensionsof Θ 	 x � δ 
 . The analysis
above leadsto thefollowing result.

Theorem2. Let
�

x,
�

δ and � in (2) be given.Con-
sider the system(1), the associatedsystem(8), the
assumptionsA1 andA2’ andthefollowing notation:

Θ̃ K xL'M n

∑
j N 1

Tj x sj ; Θ̂ K δ̇ LOM l

∑
j N 1

U j δ̇; N MQP I R 2nS 0 T ;
Ñ MFP Im 0 T ; E M�U In 0V K Θ K x W δ L:X Θ̃ K xLYL In Z ;

F M U A K xW δ L[
Θ̂ K δ̇ L 0 \ Z ; Ψa M U Mx 0

Θ K xW δ L V In Z ;

Mx M^]_____`
x2
V x1 0 ababa 0

0 x3
V x2

...
...

...
...

...
... 0

0 ababa 0 xn
V xn c 1

d eeeeef ;

Ψb M ]____` 0 Ω K x W δ L 0
0
[
Ψa 0 \ 0V E F U B K xW δ L

0 Z
0 0 Λ K xW δ L

d eeeef ;

where sj is the j-th row of the identity matrix In,
N ��� G 2nJg1HG qI 1J n andÑ ��� m 1HG q̃ I 1J m.

Supposethereexist matricesPr , Lar andLbr thatsolve
thefollowing LMIs constructedat all verticesof

� ��
x h � δ:

Pr 
 LarΨa 
 Ψ !aL !ar � 0 , P!r � Pr �
ϒ 	 Pr � µ� 1 
i
 LbrΨb 
 Ψ !bL !br j 0klm

1 n a�k 0 o+ ak

0 -qp Pr 
 LarΨa
 Ψ !aL !ar r
sutv � 0 , 5 k

(10)

where

ϒ 	 Pr � µ� 1 
9� km
0 PrN 0

N ! Pr 0 0
0 0 w µ� 1Ñ ! Ñ sv (11)

Then,thedisturbedsystem(1) is regionallystableand
the set � is an admissiblesetof input disturbances
(with respectto

�
x). x

The proof of above theoremwasomittedbecauseof
spacelimitationandcanbeobtainedin thefull version
of thispaper(Coutinhoetal., 2001).

3.
�

2-GAIN PERFORMANCE

Considerthattheuncertainnonlinearsystemin (1) has
thefollowing performanceoutput:

z � Cz 	 x � δ 
 x 
 Dzw 	 x � δ 
 w (12)

wherez �y� r .

For theaboveoutputvector, weassumethat:

A3. The matrix functionsCz 	 x � δ 
 and Dzw 	 x � δ 
 are
boundedfor all 	 δ � δ̇ 
E� � δ andx � � x.

In thissection,weareinterestedin theperformanceof
thenonlinearsystem(1) and(12).To thisend,wewill
usethefollowing definitionof

�
2-gain.

Definition3. Considerthenonlinearuncertainsystem
(1) and (12), satisfying assumptionsA1-A3, and a
given setof input disturbances� . The (worst-case)�

2-gainof theinput/outputoperator, denotedby Gwz,
of system(1) and(12) is givenbyz

Gwz
z

∞ M {|||||||} |||||||~
∞ if thesystemis not

regionallystable

sup
0 �� w �*����

δ � δ̇ ���9� δ

�
z
�
2�

w
�
2

otherwise

With the above assumptionsanddefinitions,we can
statetheproblemof concernin thissection.

Problem4. Given two polytopes
�

x and
�

δ and the
set � , the problemof concernin this sectionis to
find anupper-boundon the

�
2-gainof thesystem(1)

and(12).

To solve theaboveproblemin termsof LMIs, wewill
considerthe following Lyapunov function candidate
v 	 x � δ 
*� x� ) 	 x � δ 
 x, where

) 	 x � δ 
 is givenby



) 	 x � δ 
8� + In
Θ 	 x � δ 
 - � P + In

Θ 	 x � δ 
 - (13)

andP � P� is a constantmatrix to bedetermined.

To testif the
�

2-gainis boundedby a givenγ � 0, we
requirethatthefollowing inequalitiesaresatisfiedfor
all 	 x � δ � δ̇ 
8� � , w �<� andt � 0:

v 	 x � δ 
9� 0 (14)

v̇ 	 x � δ 
i
 z� z w γw� 	 t 
 w 	 t 
9" 0 (15)

which is a well-known resultin the literature,seefor
instance(Boyd etal., 1994).

In the sameway of Section2, we rewrite the perfor-
manceoutput(12)asfollows:

z � q

∑
i ? 0

Ci 	 x � δ 
 πi 
 q̃

∑
j ? 0

D j 	 x � δ 
 ξ j (16)

or, equivalently, in the conciseform z � C 	 x � δ 
 π 

D 	 x � δ 
 ξ, with C 	 x � δ 
��q@ C0 	 x � δ 
 B�B�B Cq 	 x � δ 
 C and
D 	 x � δ 
*�D@ D0 	 x � δ 
 B�B�B Dq̃ 	 x � δ 
 C .
Hereafter, we modify AssumptionA3 to the follow-
ing:

A3’. The matricesC 	 x � δ 
���� r 1HG qI 1J n andD 	 x � δ 
��� r 1iG q̃ I 1J m in (16) areaffine functionsof x andδ and
areboundedfor x � � x andδ � � δ.

With theabove analysis,we canstatethemainresult
of thispaperasfollows.

Theorem5. Let
�

x and
�

δ and � begiven.Consider
thesystem(1) and(12), theassociatedsystem(8) and
(16), theassumptionsA1, A2’ andA3’ andthenota-
tion of Theorem2. Supposethegiven � is admissi-
ble. Then,the

�
2-gainof thesystemis boundedby γ,

whereγ is the solutionof the following optimization
problem,with the decisionvariablesP, La, Lb andγ,
andtheLMIs constructedat all verticesof

� � � x h�
δ:

min γ subject to:

P 
 LaΨa 
 Ψ !aL !a � 0 � P � P!kllm p ϒ 	 P� γ 
i
 LbΨb
 Ψ !bL !b r km
0

C 	 x � δ 
g!
D 	 x � δ 
 ! sv�

0 C 	 x � δ 
 D 	 x � δ 
H� w Ir

suttv j 0
(17)

whereϒ 	 P� γ 
 is givenby (11).

Moreover, the origin of the unforcedsystem(w � 0)
is locally exponentiallystable. x
The proof of above theoremwas omitted because
of spacelimitation. See(Coutinhoet al., 2001) for
furtherdetails.

REMARK: For linear time-invariant (LTI) systems
with no uncertainparameters,the optimizationprob-
lem in Theorem5 leadsto a necessaryandsufficient

condition.To illustratethis point, let us considerthe
following LTI system:

ẋ � Ax 
 Bww and z � Czx 
 Dzww.

Definethe multipliersLa � 0 andLb ��@ F � G� H � C � .
From (17), we get the following: min γ subject to:
P � 0 (P � P� ) andkllm

∆ 	 P� F � G � H � γ 
 km 0
C�z
D �zw

sv�
0 Cz Dzw � w I

s ttv j 0 (18)

wherethematrix∆ 	 P� F � G � H � γ 
 is givenby

]_` V K F X F � L P X FA V G� FBw
V H �

P X A� F � V G GA X A� G� GBw X A� H �
B�wF � V H HA X B�wG� HBw X B�wH � V γI

d ef
Now, applying the Schur complementto (18) and

definingF � 0, G � P andH � 0, weget�
A� P 
 PA 
 C�zCz PBw 
 C�zDzw

B�wP 
 D �zwCz D �zwDzw w γI � " 0 (19)

recoveringtheclassicalresultfor LTI systems(Boyd
et al., 1994).Note that the secondLMI of (18) has
multipliers which the classicalresult (19) doesnot
have. The useof multipliers allows us to deal with
nonlinearitiesand uncertainparameters.The same
idea has beenusedto solve analysisand synthesis
problemsof uncertain(continuousanddiscretetime)
linearsystemssee,e.g.(deOliveiraet al., 1999;Ap-
karianetal., 2000).

4. CONTROL DESIGN

Considertheuncertainnonlinearsystemasfollows:

ẋ � A 	 x � δ 
 x 
 Bu 	 x � δ 
 u 
 Bw 	 x � δ 
 w
z � Cz 	 x � δ 
 x 
 Duz 	 x � δ 
 u 
 Dwz 	 x � δ 
 w (20)

wherex 	 0
.� 0, 	 δ � δ̇ 
�� � δ, u ��� p denotesthecontrol
input, and Bu 	 x � δ 
 and Duz 	 x � δ 
 are affine matrix
functionsof x andδ with appropriatedimensions.

In this sectionwe areconcernedwith theproblemof
determiningacontrollaw to improvetheperformance
of the closed-loopsystem.In particular, we use a
control law u � K 	 x � δ 
 x, where the control matrix
is givenby K 	 x � δ 
8� ∑q

i ? 0Kiπi , theauxiliary vectors
πi are as defined in section 3 and Ki ��� p 1 n are
fixed matrix gains to be determined.Note that this
control law canrepresenta gain scheduleror a non-
fragile controller. For simplicity, we assumethat the
state information is available for feedbackand the
parametersδi areknown on-lineto thecontroller.

Theorems2 and5 provide the foundationfor solving
our synthesisproblem.To analyzetheclosed-loopre-
gionalstability for givenadmissibleinputdisturbance� andcontrol-gainsKi 	 i � 0 ��&�&�&'� q
 , wecanreplace



the matricesA 	 x � δ 
 andC 	 x � δ 
 thatareusedin (10)
and(17)with thefollowing:

A �A@ A0 
 BuK0 B�B�B Aq 
 BuKq C
C �A@ C0 
 DuzK0 B�B�B Cq 
 DuzKq C (21)

andapply Theorem2 to verify the regional stability
andTheorem5 to determinean upperboundon the�

2-gain.

To extend this result to the designcase,we observe
that the matrix inequalitiesin (10) and (17) will be
bilinear matrix inequalities(BMIs). BMI problems
appearcommonlyin robust control design.In order
to avoid this technicaldifficulty, we usean iterative
algorithm,similar to analgorithmproposedby (Feron
et al., 1996),in which theBMI problemis solvedvia
two LMI sub-problems.It is well-known thatiterative
algorithmsmayprovidea locally optimalsolutionfor
BMI problems.Nevertheless,eachiteration tendsto
improve the closed-loopperformance,so the tech-
niqueis ofteneffective.

Algorithm1. Considerthesystem(20)with given
�

x,�
δ, � , and Theorems2 and 5 with the matrices

A 	 x � δ 
 andC 	 x � δ 
 asdefinedin (21).

STEP1 Determinea stabilizingcontrollersuchthat� is admissible;
STEP2 For a given controller and taking into ac-

count(21),solvetheLMIs in (10)andtheoptimiza-
tion problem(17) to obtainthematricesLbr andLb

respectively.
STEP3 For givenmatricesLbr andLb, solve respec-

tively (10) and (17) to obtain the new control pa-
rametersK0 � B�B�B � Kq. Note that the inequalitiesin
(10) and (17) are affine in all variablesincluding
K0 � B�B�B � Kq.

STEP4 Iterateover steps2 and3 until convergence
or satisfactionof a pre-defined

�
2-gain.

At eachiteration i, notethat Algorithm 1 guarantees
the regional stability of the closed-loopsystemand
γi " γ G i � 1J . As a result, this algorithm convergeson
alocalminimum.To overcometheproblemof finding
an initial stabilizingcontroller(STEP1), we propose
thefollowing result.

4.1StabilizingController

Considerthedifferentialequationof system(20), i.e.

ẋ � A 	 x � δ 
 x 
 Bu 	 x � δ 
 u 
 Bw 	 x � δ 
 w (22)

We assumefor abovesystemthat:

A4. The systemmatrix A 	 x � δ 
 can be rewritten as
A 	 x � δ 
�� Π 	 x � δ 
 Ã 	 x � δ 
 wherethe matrix Ã 	 x � δ 
 is
an affine functionof 	 x � δ 
 andΠ 	 x � δ 
 is a nonlinear
function of 	 x � δ 
 that satisfy the following: 	 1
 the
matrix Ã 	 x � δ 
 is boundedfor x � � x andδ � � δ; 	 2

thereexistsanon-zeromatrixΩΠ 	 x � δ 
 affinefunction
of 	 x � δ 
 suchthatΠ 	 x � δ 
 ΩΠ 	 x � δ 
�� 0; and 	 3
 there
existsaconstantmatrixNΠ suchthatΠ 	 x � δ 
 NΠ � In.

A5. The systemmatrix Bw 	 x � δ 
 can be rewritten as
Bw 	 x � δ 
�� Φ 	 x � δ 
 B̃ 	 x � δ 
 , wherethematrix B̃ 	 x � δ 
 is
an affine functionof 	 x � δ 
 andΦ 	 x � δ 
 is a nonlinear
function of 	 x � δ 
 that satisfy the following: 	 1
 the
matrix B̃ 	 x � δ 
 is boundedfor x � � x andδ � � δ; 	 2

thereexistsanon-zeromatrixΛΦ 	 x � δ 
 affinefunction
of 	 x � δ 
 suchthatΦ 	 x � δ 
 ΛΦ 	 x � δ 
�� 0; and 	 3
 there
existsaconstantmatrixNΦ suchthatΦ 	 x � δ 
 NΦ � Im.

Then, we can proposethe following statefeedback
controllaw thatassurestheregionalstabilityof system
(22) for agivenconstantµ.

Theorem6. Let
�

x,
�

δ andµ be given.Considerthe
system(22) andAssumptionsA1, A4 and A5. Sup-
posethereexist matricesX, Y and L that solve the
followingLMIs constructedatall verticesof

� � � x h�
δ.

X � 0 � X � X �
1 w a�kXak � 0 �H5 k

He p Γ 	 X � Y � µ� 1 
i
 + ΩΠ 0
0 ΛΦ - L r j 0

(23)

whereΓ 	 X � Y � µ� 1 
 is givenby�
NΠXÃ � 
 NΠBuY 0

NΦB̃� w 0 & 5µ� 1NΦN �Φ �
Then, the system(22) with u � YΠ 	 x � δ 
 � X � 1x is
regionally stableand the set � definedby µ is an
admissiblesetof inputdisturbances. x
The proof of above theoremwas omitted because
of spacelimitation. See(Coutinhoet al., 2001) for
furtherdetails.

5. NUMERICAL RESULTS

To illustrate the potentialof the proposedtechnique,
we analyzetwo numericalexamples.In thefirst one,
we computean upper boundon the

�
2-gain of the

system.In the secondexample,we designa nonlin-
earcontrollerthatminimizesthe

�
2-gain.In bothex-

amples,we assumethat the setsof admissibleinput
disturbancesaregiven.

Example 1: considerthe following uncertainsystem
whichis basedontheVanderPolequation(El Ghaoui
andScorletti,1996):

ẋ ��+ 0 w 1
1 ε 	 x2

1 w 1
 - x 
�+ 0
1 - w (24)

with z ��@ 1 0 C x 
 w, w ��� (for someµ � 0), and
the nonlineardumping factor ε is constantand ap-
proximatelyknown, i.e. ε ��@ ε0 w ∆ε � ε0 
 ∆ε C , where
ε0 � 0 & 8 and∆ε � 0 & 2.

Our objective in this exampleis to determinea bound
ontheoutputenergy aswell asestimatethesizeof set



� usingdifferentLyapunov matrices(constant,affine
and quadratic).To this end, let

�
x be the polytope

definedby thefollowingset 3 x1 � x2 : � xi ��" α � i � 1 � 2 7 ,
whereα is agivenscalar.

Now, consider that the matrix P is partitioned as

followsP ��+ P0 P1

P!1 P2 - . With thispartition,weobtained

thefollowing Lyapunov matrices:	 i 
 P0, P1 andP2 are
free, i.e the matrix

) 	 x � δ 
 is quadraticin 	 x � δ 
 ; 	 ii 

P0 andP1 arefreeandP2 � 0, i.e thematrix

) 	 x � δ 
 is
affine in 	 x � δ 
 ; and 	 iii 
 P1 � 0, P2 � 0 andP0 is free,
i.e. thematrix

) 	 x � δ 
 is constant.

Table1 shows theestimatedupper-boundson the
�

2-
gainof theinput/outputoperatorandsizesof theinput
disturbancesfor the proposedapproachusing Theo-
rems2 and 5 with differentLyapunov matrices.For
all the solutions,α � 0 & 7 is used.As expected,the

Lyapunov Matrix
Upper-bounds

Constant Affine Quadratic
γ 84.5 84.4 10.7
µ 0.10 0.11 0.30

Table1.
�

2-gainandsizeof �
polynomial Lyapunov function (quadraticLyapunov
matrix) achieved lessconservative results,thusjusti-
fying therequiredextra computationandshowing the
potentialof ourapproach.

Example 2: considerthe following nonlinearsystem
which is basedon the benchmarkexampleproposed
in (Kokotović etal., 1991).

ẋ � km
0 1 x3

0 0 1
0 0 0

sv x 
 km
0
0
1

sv u 
 km
0
0
1

sv w (25)

with z � x1 andw ��3 w : � ∞
∞ w� wdt " 0 & 1 7 .

Theobjectivein thisexampleis to stabilizethesystem
in a � ∞ senseusing a static state-feedback	 u �
K0x
 .To thisend,let

�
x bethepolytopedefinedby the

following boundson thestate-spacevariables: � x1 ��"
1, � x2 ��" 1 and � x3 ��" 1.

Notethatsystem(25) is open-loopunstable.Then,us-
ing theorem6weobtainedK̃0 ��@ w 2 & 0 w 3 & 8 w 2 & 2 C h
105 that stabilizesregionally the closed-loopsystem
with γ � 58.

After 2 iterationsof algorithm1, we obtainedγ � 0 & 1
for thecontrolgainK0 �A@ w 3 & 8 w 6 & 4 w 3 & 8 C h 105.

6. CONCLUDINGREMARKS

In this paper, we have proposeda new techniqueto
analyzethe regional stability andcomputean upper-
boundonthe

�
2-gainfor aclassof uncertainnonlinear

systemsusingtheLMI framework.To ascertainthero-
bustnessandperformanceof thenonlinearsystem,we
useLyapunov functionswhich arepolynomial func-
tions of the stateanduncertainparameters.Through

an iterative algorithm, this techniqueis extendedto
thesynthesisproblem.Thenumericalexamplesshow
the potential of our approachwhen comparedwith
techniquesusingquadraticandaffine quadraticLya-
punov functions.Futureresearchmayconcentrateon
devisinga betteralgorithmfor thesynthesisproblem.
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