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Abstract

This paper is concerned with the problem of H, filtering for linear continuous-time
systems with uncertain time-varying parameters in the matrices of the state-space
signal model. The admissible values of the parameters and their rates of variation are
assumed to belong to a given polyhedral region. Based on a parameter-dependent
Lyapunov function, which is quadratic in the uncertain parameters, we develop an
LMZT method for designing a linear stationary, asymptotically stable filter, which
ensures a prescribed performance in a H o, sense.
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1 Introduction

Over the past two decades, there has been a lot of interest on the problem of H, filtering;
see, e.g. [12], [14], [15] and the references therein. In H,, filtering the noise signals are
assumed to be deterministic with bounded energy (or average power) and the problem
is to design a filter which ensures that the induced L,-gain from the noise signals to
the filtering error remains bounded by a prescribed value. It has been known that the
H. filtering approach provides both a guaranteed noise attenuation level and robustness
against unmodeled dynamics [15].

Recently, attention has been given to the problem of robust H, filtering for linear sys-
tems with parameteric uncertainty, namely designing an asymptotically stable linear filter
which ensures a prescribed performance in a H., sense, irrespective of the uncertainty.
Several robust H., filtering approaches have been developed over the past few years.
In the case of linear systems with norm-bounded parameter uncertainty, one may cite,
the Riccati equation approaches developed in [2], [6] and [17], and the linear matrix in-
equalities (LMZs) based technique in [10]. Very recently, an LMZ approach for robust
Ho filtering for linear systems with polytope type uncertainty has been proposed in [7],
whereas [13] treated the design of a robust H, filter with pole placement constraints.

A common feature of the aforementioned robust H, filtering methods is that they are
based on the notion of quadratic stability, i.e. a fixed parameter-independent Lyapunov
function is used to guarantee robust stability and a prescribed H., performance bound
for the filtering error dynamics. Moreover, it turns out that stability and the guaran-
teed performance hold even when the parameters change arbitrarily fast, which can be
quite conservative in many applications. Motivated by the recent developments on ro-
bust stability and control of linear uncertain systems via parameter-dependent Lyapunov
functions (see, e.g. [5], [8], [9], [16], [18] and the references therein), which are known to
provide less conservative results than the quadratic stability based methods, this paper
investigates the design of a robust H,, filter based on a parameter-dependent Lyapunov
function.

In this paper we develop LMZ conditions to solve the problem of robust H, filtering for
linear systems with uncertain time-varying parameters which appear affinely in the ma-
trices of the state-space model of the signal generating system. The parameters and their
rates of variation are assumed to belong to a polytope with known vertices. The problem
addressed is the design of a linear stationary, asymptotically stable, filter which provides
a guaranteed H., performance. A new robust H. filter design methodology is pro-
posed based on the notion of bi-quadratic stability [16], i.e. using a parameter-dependent
Lyapunov function which is quadratic in the system state and in the parameters. The
proposed method incorporates information on the bounds on the rates of change of the
parameters and is less conservative than earlier methods [2], [6], [7], [10], [13], [17], which
are based on quadratic stability. In particular, the new filtering method includes the
quadratic stability based approach as a special case.



The paper is organized as follows. In Section 2, the statement of the robust H, filtering
problem addressed in this paper is presented and some preliminary results on linear time-
varying systems are reviewed. In Section 3, we develop an LMZ methodology for the
design of a robust linear stationary H ., filter which uses a parameter-dependent Lyapunov
function. Conclusions are given in Section 5.

Notation. R" denotes the n-dimensional Euclidean space, "™ is the set of n x m real
matrices, I, is the n x n identity matrix and diag{- - -} stands for a block-diagonal matrix.
For a symmetric block matrix, the symbol x denotes the transpose of the symmetric
blocks outside the main diagonal block, and the notation S > 0 (respectively S > 0), for
a real matrix S, means that S is symmetric and positive definite (respectively, positive
semi-definite). Lo denotes the space of square integrable vector function on [0, c0) with

norm || - ||y == (f~ || - ||2dt)%, where || - || denotes the Euclidean vector norm.

2 Problem Formulation

Consider the following linear uncertain continuous-time system

A(0)x(t) + Bw(t)
C(0)x(t) + Dw(t) (1)
(6)(t)

0

Ny
A~
o~
N—
1
=

2(t)

with 6 := (0,---,0,) € R? and

0@:q+iwmz (3)
R(#) = Ry + i 0;(t)R; (4)

where x(t) € R™ is the state, w(t) € R™ is the noise signal (including process and
measurement noises) which is assumed to belong to Lo, y(t) € R™ is the measurement,
z(t) € R is the signal to be estimated, B, D, A;, C;, R;, i =0, ..., p, are known constant
real matrices of appropriate dimensions and 6;(t), ¢ = 1,...,p, are uncertain bounded
real time-varying parameters with bounded rates of variation 6; (t). It is assumed that
(0(t),0(t)), Yt > 0, lie in a given polyhedral domain B with known ¢ vertices.

It is assumed, without loss of generality, that # = 0 belongs to B. Note that this condition
can be always achieved by appropriately redefining the matrices Ay, Cy and Rj.

In this paper we shall address the problem of designing a stationary linear filter which
provides an estimate Z of the signal z with a guaranteed performance in the H., sense,
irrespective of the uncertain parameters ;. Attention is focused on the design of a linear



time-tnvariant, asymptotically stable filter of order n with state-space realization

[SEN

(1) = Agi(t) + Bru(t), i(0) =0 5)
2(t) = Cra(t)

where the matrices Ay € R"*", By € "™ and Cy € R"*" are to be determined. In-

spired by the work of [16] on robust stability analysis via parameter-dependent Lyapunov

functions with quadratic dependence on the uncertain parameters, in this paper we shall

consider a filter design methodology based on a parameter-dependent Lyapunov function

which is quadratic in 6.

The robust H, filter problem addressed in this paper is as follows: Given a scalar v > 0,
find a filter of the form of (5) such that the gain from w to the estimation error z — 2
15 smaller than v for any (0,9) € B, namely, under zero initial conditions and for any
(0, 9) € B, the estimation error converges exponentially to zero and

sup sup{M : wEEz,wgéO}<7. (6)
(0,0)eB [[w]]2

We end this section by recalling a version of the bounded real lemma for linear time-

varying systems which will be used in the paper. Let the linear time-varying system

be
i(t) = At)z(t) + B(t)w(t) (7)
2(t) = C(t)x(t)

where x(t) € R" is the state, w(t) € R™ is the input, z(t) € R™* is output, and A(t),
B(t) and C(t) are real valued matrix functions with appropriate dimensions.

Lemma 2.1 ([3]) Consider the system (7) and let v > 0 be a given scalar. Then the
following statements are equivalent:

(1) The system (7) is exponentially stable and

sup {WW 'dm=0}<%

ozwely UMWl

(2) There exists a bounded positive definite matriz function P(t) over [0,00) such that

P(t) + AT (t)P(t) + P(t)A(t) + v 2P(t) B(t) BY(t)P(t) + C(t)C(t) < 0, Yt € [0,00) (8)

3 Robust H Filter Design

In order to develop the H, filter design method, the state equation of system (1) will
be rewritten in the form

&(t) = [Ao + AO(t)] z(t) + Bw(t) 9)

4



where A € R"* is a known matrix and O(¢) € R9*" is an uncertain matrix such that each
row depends linearly on the uncertain parameters 6;, and where the value of ¢ depends
on the structure of the matrices A;,  =1,...,p, and on the structure chosen for ©.

Note that the representation of (9) always exits and does not impose any loss of generality.
For example, a direct, and intuitive, choice of A and © is

T
A=A ... 4, o=|60l ... 6L, ] .
It turns out that ¢ = np for the above ©.

It should be noted that the decomposition AO of (9) is not unique. Further, it turns
out that the choice of the dimension ¢ of © should be based on the tradeoff between the
conservatism and the computational effort required by the filter design method. Indeed,
an increase of ¢ is likely to reduce the conservatism of the method as it will increase the
number of decision variables in the underlying optimization problem, however this will
increase the required computational effort.

It follows from (5) and (9) that the estimation error e := z — Z can be described by the
following state-space model

(0)(t) + Bew(t),  £(0) =0

e (10
e(t) = Ce(9)E(t)
Wherefz[xT iT]T and
=] %rd Vs ] co=[ro —o/ ] ay

In this section we shall develop an LMZ based method for determining a filter of the
form of (5) such that the estimation error system (10) satisfies the bounded real lemma
inequality of (8) with a parameter-dependent matrix P(f) that depends quadratically on
0, i.e. there exists a real symmetric matrix function P(#) € R?***" which is quadratic in
0 and satisfies:

PO) >0, VOeB (12)
P0)+AL(0)P(0) +P(0) A (0) +7~2P(0) B.BLP(0) +CL(H)C.(0) < 0, V(0,6) € B. (13)

In view of structure of the matrix A.(#), which has the feature that only its (1,1) block
depends on O, the matrix P(¢) will be assumed to be of the following form:

T pT T
P0) - lP0+P1®+(?DTP1 +0"P,0 ]123 (14)
3 4

where Py, P, P, € R"*", P, € R™*? and P, € R4,

Note that as P(#) > 0 for © = 0, it follows that the matrices Py, P; and P, should satisfy:

lPo Bl (15)

Pl P




Further, without loss of generality, we shall assume that P; is nonsingular.

In view that the inequalities of (12) and (13) are not convex in 6, the problem of testing
if these inequalities are feasible is not tractable, in general, neither analytically nor nu-
merically, even when the filter matrices Ay, By and Cy are given. In the sequel we shall
develop sufficient conditions for checking the feasibility of (12) and (13), including finding
suitable filter matrices Ay, By and Cf.

The first result provides a necessary and sufficient condition for the existence of a matrix
P(0) of the form of (14) that satisfies the conditions of (12) and (13). To this end,
introduce the notation

Ay A 0 B

A, 0) =] ©4,+0 ©A 0 |, B,H)=| ©B (16)
B;C() 0 A B;D

Cul0)=| R(B) 0 —=C; |, HO)=][© -1, 0]. (17)

Lemma 3.1 Given a scalar vy > 0, there exists a matriz P(0) of the form of (14) such
that the bounded real conditions of (12) and (13) are satisfied if and only if there ezists a
symmetric matriz P € REHOxCnta) of the form

Py, P P
P=|P' P, 0|, PP, PLc R, P eR™, PeR™  (18)
Pr 0 P

such that for all n € R*"4 the following conditions hold
n'Pn>0, Yn#0:H@)n=0 (19)
0" [AT(0)P+PA,(0) +7 *PBa(0) BI(0) P+ C1(0)Ca(6)|n<0, ¥y £0: H(B)n =0 (20)
for all (0,0) € B
Proof. First we shall factorize the matrix P () as
P(0) = ¥ (0)PU(0) (21)

where P is a symmetric matrix as in (18) and

v (6) =

I, O
© 0 |. (22)
0 I,
Further, observe that
n=V()E R & n:HO)n=0. (23)
Hence, it follows that P(6) > 0 for all € B if and only if
' Py>0, n=V(0)E VEER™, £#£0
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for all € B, which is equivalent to (19).

Now, the equivalence of (13) and (20) will be established. Considering (16), (17), (21)
and (22), it can be easily shown that the left-hand side of (13), denoted by A(€), can be
written as

A(©) = & (0)[AL(0) P + PAL(0) +~ *PBa(0) BL(0) P + C1 (0)Ca(6) ]| ¥ (6).
In view of (23), it follows that A(f) < 0 for all (,6) € B if and only if
0" [A7(0)P+PA,(0)+7 PB,(6) B (0) P+CI (6)Ca(0)|n <0, n = T ()¢, VE € R € #0

for all (9,0) € B, which is equivalent to (20). VVV

In view of Lemma 3.1, the bounded real conditions of (12) and (13) with a matrix P(6)
as in (14) can be verified via the positive definiteness of certain matrices in the null space
of the matrix H(#). Although the latter conditons could be tested using the so-called
(D, G) scaling method ([4], [11]), in this paper we shall use a technique proposed in [16],
which follows from Finsler’s lemma and will be referred to as the generalised multiplier
approach. As it will be shown in the next section, it turns out that the (D, G) scaling is
more conservative than the generalised multiplier approach.

The next result presents the generalised multiplier approach for testing the conditions
(19) and (20) of Lemma 3.1.

Lemma 3.2 Given a scalar v > 0, the bounded real conditions of (12) and (13) are
satisfied with a matric P(0) of the form of (14) if there exists a symmetric matriz

P € RCrtaxCnta) of the form of (18) and matrices L and M € R 9*9 sych that
the following inequalities are satisfied

P+ LH()+H"O)L" >0, VOeB (24)
AL@O)P+ PA,(0) + MH(0) + HY(O)MT  CT(6) PB,(0) .
C,(0) —1 0 <0, V(0,0) € B (25)
BT ()P 0 —I

Proof. First note that by using Schur’s complements, (25) is equivalent to

AT(0)P+PAL(0)++ 2PB,(0) BL(0) P+CX(0)C,(0)+ MH(9)+HY(O)MT < 0, V(0,6) € B.

(26)
Hence, the result follows immediately by noting that (24) and (26) imply the inequalities
(19) and (20) of Lemma 3.1. \VAYAY,

Remark 3.1 Note that the inequalies of (24) and (25) are affine in 6 and 6, and as such,
they only need to be verified at the vertices of the polytope B. In the case where the filter
matrices Ay, By and Cy are given, (24) and (25) are LMZs in P, L and M, and thus the
feasibility of these inequalities can be tested via standard LMZ algorithms ([1]). O



The filter design methodology proposed in this paper involves finding filter matrices Ay,
By and C; along with matrices P, L and M such that the inequalities of (24) and (25)
are satisfied at all vertices of the polytope B. Observe that these inequalities are not
jointly convex in P, A; and By. However, as it will be shown in the next theorem, it
turns out that by performing appropriate transformations and changing new variables,
these inequalities can be transformed into LMZs.

Theorem 3.1 Given a scalar v > 0, the robust Hy filtering problem for system (1) is
solvable via a parameter-dependent Lyapunov function with a P(0) of the form of (14) if
there exist symmetric matrices Py > 0, Py and Qp, and matrices Py, Ly, Ly, My, M,
Qua, Qp, Qc, Qp and Qyy, such that the following LMZIs are satisfied at all the vertices
of the polytope B:

Py—Qp+ (L —Q)0+0"(L, — Q)" Pl — L+ (L,0)"+Q, 070!
Py — L + L,©0 +Qf Py—L,—Lj —Qp | >0
Q6 —Qr Qp

oy 05 @3 RUO) P

Py D3 P35 —Qg (I)g3 <0 (28)
RO 0 Qo —I 0
®5p D5y Ds3 0 —721

where
Oy = APy + PyAg + QpC(0) + C10)Q% + Y + YT PY + M0 + 0" M (29)

g = PLAg+ P, + (Ph A+ POA) — M + M,0
®yy = A'P, + PLA+ POA+ (P,OA)T — My — M)
By = QpAy + QpC(0) + QL + Q0 32)

P30 = QpA— Qu 33)

(30)
(
(
(
P33 =y + Q) (34)
(
(
(
(

31)

®5 = B'(Py+ P,O)" + DO, 35)
d5y = BY(P, + 0T Ry) 36)

®53 = BT Qp + DTOL 37)

T =04,+0. 38)

Moreover, under the above conditions, the transfer function matriz of a suitable filter s
given by
Hzy(s) = (") (sT — (249251) 7' (39)



Proof. 1t will be shown that the inequalities of (24) and (25) are equivalent to the LMZs
of (27) and (28), respectively. First, we partition the matrices L and M accordingly to P
and H (#), namely

L M,
L - LQ , M - M2 (40)
Ls Ms

where Ll; Lg, Ml; M3 € R and LQ, M2 € RI71,
In light of the definitions of A,(0), B,(#), C,(#), H(A) and P in (16)-(18), the inequality

of (25) can be rewritten as:
W WE WhORU0) WA
Wy We WL 0 WL

Wsr Wiy Wes —C7 Wiy | <0 (41)
RO o0 -C; -I 0
L Wsi Wiy Wi 0 —7I |

where

Wit = A§ Py + PyAy+ PyB;C(0) + [PsB;C(0)]" + PY + YT P + Mi© + ©" M| (42)

Wy = PL A+ P,Y + (PBA+ POA)T — MY + My© (43)
Wy = ATP + PL A+ P,OA+ (P,OA)" — M, — M} (44)
W1 = P{ Ay + PyBsC(0) + A} P + M30 (45)

Wso = P A— M (46)

Wi = PyAs + A7 Py (47)

Ws, = BY(Py + P,0)" + DY (PB))* (48)

Wsy = BY(P, + 01 P) (49)

Wss = B'Py+ D" B} P, (50)

where T is as in (38).

Next, introduce the matrix
Jy =diag{L,, 1,, P,'P], I, I,,}.

Note that as the matrices P; and P, are nonsingular, J; is well defined and nonsingular.
Pre- and post-multiplying (41) by J! and .J;, respectively, and defining the following new
variables

Qu = PAP'P], Qp=PB;, Qc=C;P 'P] (51)

Qu = P3P 'Ms, Qp = PP P (52)



the inequality of (41) becomes the LMZ of (28). Further, (51)-(52) imply that the
mapping from (A, By, C¢, M, Py) to (4, Qp, Qc, Qar, Qp) is invertible. Hence, (41) is
equivalent to (28).

We now prove the equivalence of the inequalities of (24) and (27). In view of the definition
of H(#) in (17) and the partition of L in (40), the inequlity of (24) becomes

Po+L,©0+0TLT P — L, +0TLY P+ OTLY

Po—LY+1,0  Py—Ly,— LY —LY > 0. (53)
PI + L3O —Ly P,

Pre- and post-multiplying (53) by JI and J,, respectively, where

I, 0 0
Jy = 0 I, 0
-Pr'PT 0 pP'PF

and introducing the the variabable Q; = P3P, ' Ls, we readily obtain that the inequality
of (53) is equivalent to the LMZ of (27).

Next, considering (51) and (52), it follows that
A= Py (QuQp")Ps, Bp=Py'Qp, Cp= Q') P
This implies that the transfer function matrix Hj,(s) of the filter is given by
-1
Hzy(s) = Cy(sI = Ap) "By = (") [s] — (:")] Q. (54)

This completes the proof. \YAYAY

Theorem 3.1 provides an LMZ based method for solving the problem of robust H filter-
ing for system (1) based on a parameter-dependent Lyapunov function which is quadratic
in the uncertain parameters. The proposed method incorporates information on the
bounds on the rates of variation of the parameters and has the feature that both sta-
bility and H., performance are dependent on the uncertain parameters. Note that any
feasible solution to the LMZs of (27) and (28) yields a suitable robust filter. Further,
the robust filter with the smallest v attenuation level obtainable from Theorem 3.1 can
be easily determined by solving the following convex optimization problem:

minimize K
subject to (27) and (28) with 72 = &

The optimal filter transfer function matrix is as in (39), whereas the minimum value of
v, namely v*, is given by v* = v/k*, where k* is the optimal value of k.

10



Remark 3.2 The robust H, filter design method of Theorem 3.1 can be readily extended
to the case where the filter transfer function matrix H;,(s) is required to satisfy additional
structure constraints. A typical example is the case where a “block-decoupled” filter is
required, i.e. when H;,(s) is required to be block-diagonal.

The design of a robust H, filter with constraints on the structure of its transfer function
matrix can be easily achieved by imposing the desired structure on the matrices 24, {1p
and ()¢ and a corresponding block-diagonal structure on the matrix €2p.

As for example, suppose that the transfer function matrix H;,(s) of the robust H, filter
is required to have the following block-triangular structure

m 0

Aey($)= | g w

where M stands for a block of appropriate dimensions with no additional restriction on
its entries. This can be achieved by imposing the following structure constraints to the
matrices 24, Qp, Q¢, and Qp

H 0 H 0
4= Eom| Uy = Eom|

H 0 H 0
Qe = E E| Qp = 0O m|"

Note that the above constraints are convex and can be incorporated to the filter design
method of Theorem 3.1. |

4 (D,G) Scaling vs. the Generalised Multiplier Ap-
proach

It turns out that the robust filtering problem that we have addressed in this paper can also
be solved using the so-called (D, G)-scaling method which was initially introduced in [4].
Essentially, this method replaces the uncertain parameters © by two scaling matrices D
and G (to be specified later). Consequently, the robust filter design problem reduces
to solving a linear matrix inequality, which is somewhat simpler than the generalised
multiplier approach that we have proposed in this paper.

However, the (D, G)-scaling method is known to be conversative in general [11]. The
purpose of this section is to show that the generalised multiplier approach is indeed less
conservative than the (D, G)-scaling method, thus justifying the required extra computa-
tion.

The fundamental problem to be addressed considers the following problem: Given a
complex matrix

= Qll Q12 — Q*, Qll c Cnxn, 922 c mem (55)
Q21 Q22

11



and a matrix set
B = {diag{@lll, . -,lep} . |01| S 1,2 = 1, v ,p} (56)

we want to determine if the following quadratic condition holds:
(x*y*)Q<z><0Vy:@x,@EB,x;éO,xEC” (57)

For simplicity reasons, we do not consider derivatives of 6;.

The (D, G)-scaling method is simply stated as follows: The condition in (57) holds if
there exist matrices D and G satisfying the following:

D = D*>0,DO=0DVYO e B (58)

G = —-G", GO=0G VOB (59)
D G

Q+lG* _D]<0 (60)

On the other hand, the generalised multiplier approach uses the following: The condition
in (57) holds if there exists N € C"*™)>*™ guch that

(__)*

Q+ N[O —I]+ l s

]N*<0, VO € B (61)

Theorem 4.1 If the conditions (58)-(60) hold for some D and G, then the condition
(61) holds for some N. That is, the (D, G)-scaling method is at least as conservative as
the generalised multiplier approach.

Proof. Consider (61) and apply the (D, G)-scaling method to it to eliminate the variable
0, yielding the following:

[%]+[%][o—f|ﬂ+ % [N 10] + §§_§D <0 (62)

That is, (61) holds if there exist D, G and N satistying (58)-(59) and (62). Applying the
elimination method [1], (62) holds for some N iff the following two conditions hold:

- D 0| G -
0 |1] 28]+ 0 ol o ||| %<0 (63)
- G* 0|-D L
: Dol G I\[I o0
lé(])‘(]) lg g]+ 0 0|0 0 I]<o0 (64)
. G 0|-D]) [0 I

It is easy to verify that (63) is equivalent to D > 0, which is void, and that (64) is the
same as (60). Hence, (58)-(60) imply (61). \AAY

It is well-known that the (D, G)-scaling is non-conservative when there is a single real
paramter [11]. Hence, we have the following corollary.

12



Corollary 4.1 If B={60,1: |0,| < 1}, then the condition (61) is equivalent to (57).

Next, we give an example to show that the generalised multiplier approach is actually less
conservative than the (D, G)-scaling method.

Example 4.1 Let
S L T O I R O | .
=0 cos [t 2 as [ L ]uer
where o > 0 1s a tuning parameter.

It is easy to check that (57) is equivalent to
(I +aOM)(I+aM*O) >0, V|§;] <1

which in turn is the same as I + a©M being nonsingular for all |¢;| < 1. This actually
holds for any a > 0.

If we apply the (D, G)-scaling method, we have

oot 2] o[ ]

for some d; > 0,dy > 0 and g. Further, (60) becomes

lojwl[laM*]leG,i _GD]<0

Pre-multiplying and post-multiplying the above by [—aM I] and its complex conjugate,
respectively, we get

P MDM* +aMG — aG*M* — D < 0 (67)
It can verified that (67) has a solution (di,ds, ¢) if and only if @ < 1. Hence, (58)-(60)
have a solution only if 0 < a < 1.

However, if we apply the generalised multiplier approach and take

[

for some p > 0, (61) becomes

—1 — paMO — pa©OM* —a(l —p)M

—a(1 - p)M? _a2mars | <0

Using Schur complement and the fact that M is nonsingular, the above holds if and only
if
—I — paM®O — pa©OM* + (1 —p)*I <0

13



or equivalently,
—(I +aMO) - (I+aMO)" 4+ pI <0

Choosing p > 0 to be arbitrarily small, it can be verified that the above holds iff o < v/2.
Hence, (61) has a solution N for all 0 < a < /2.

From the above, it is clear that the (D, G)-scaling method is more conservative than the
generalised multiplier approach for this example.

5 Conclusions

In this paper, we have proposed a design method for robust H, filters for systems with
time-varying parameters. This method employs a linear time-invariant filter but uses a
parameter-dependent Lyapunov function, thus reducing conservatism compared with pre-
vious design methods. To deal with the difficulties introduced by the parameter-dependent
Lyapunov function, the so-called generalised multiplier approach has been introduced.
The resulting design method becomes solving a set of linear matrix inequalities. It is also
shown that this approach yields less conservative results compared with the (D, G)-scaling
method at the expense of some more linear matrix inequalities.
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