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Abstract: In this paper, we propose a new approach to the optimal control problem for linear
time invariant systems subject to input constraints. The input constraint is described by means
of integral quadratic constraints in order to obtain an accurate model for the nonlinearity. The
key point of this work is to use the IQC information on the design stage to improve the
closed-loop performance. We apply this strategy to the input saturation problem by using a
combination of multipliers and propose an algorithm to tune some parameters associated
with the 1QC. Numerical examples show that this strategy can significantly improve the
performance of the system when compared with the circle and Popov criteria.
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1. INTRODUCTION the desired performance if the input is relatively small,
i.e. when the system has a linear behavior, and loose
The linear optimal control is a well-established topic their optimality as soon as the system turns nonlinear.
of research and the textbooks (Anderson and Moore,

1989) and (Green and Limebeer, 1995) are good ex-
amples of this. However, in practical control prob-
lems the closed-loop system is subject to constraints

on the control input converting the linear behavior - i .
of this system into a nonlinear one. The negligence &t @l 1999; Kiyama and Iwasaki, 2000). In this case,

of this nonlinearity at the control design stage can It Should be noted that the LMI framework is proba-
be a major source of performance degradation and_bly more appropriate than the Rlccgttl approach since
even instability of the closed-loop system. There has 't €nables the use of non-quadratic Lyapunov func-
been a lot of research devoted to the optimal input FIOI’]S and mquphgrs via numerical procedure reduc—
constrained control problem, see the survey (Bernstein'"d the conservatism. However, for the synthesis case,
and Michel, 1995). Basically, we have two approaches (Kiyama and Iwasaki, 2000) proved that controllers
for solving this problem: the optimization-based meth- based on the circle criterion (saturated controllers)
ods, where the goal is to optimize the performance of or linear control (unsaturated controllers) achieve the
the ’closed—loop system, and tAd-hocmethods, like same domain of attraction. In other words, the circle
the anti-winduptechnique, thatde-tuné the optimal  Cfitérion and perhaps the Popov criterion are poten-
control in order to preserve the stability of the closed- tially conservative for synthesis purposes.

loop system. The anti-windup methods only achieve The purpose of this paper is to develop a new strat-
egy to the linear optimal control with input constraint
using theAbsolute Stability Theorand multipliers

On the other hand, the regional stability problem of
input constrained linear system has been addressed
by some researchers via circle or Popov criteria and
LMI constraints, e.g. (Hindi and Boyd, 1998; Kapila
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that characterizeshe saturationnonlinearitiesin or-
derto obtainlessconserative resultsthanthe circle
andPopu criteria. To this end,the “trouble-making”
componenis describedy meanf integralquadratic
constraintglQCs)(MegretskiandRantzer1997),and
the IQC information is usedto improve the perfor
manceof the closed-loopsystem.One of the most
importantpropertieof thelQC framenork is theeasy
way to combinemultipliers aiming an accuratede-
scription of the nonlinearity (Jonsson,1996). As a
result,we proposean IQC to describethe saturation
nonlinearitythatcombineghecircle criterionandthe
multiplier proposedy (ZamesandFalb,1968).Then,
for a given1QC the optimal controlleris numerically
computedria acornvex optimizationproblem(in terms
of LMIs). To tunesomeof the parametersissociated
with the IQC, we proposean iterative algorithm to
improve the closed-loopperformanceVia numerical
exampleswe shav that our methodologycansignif-
icantly improve the performanceavithout degradation
of the domainof attractionwhencomparedwith the
circleandPopu criteria.

This papelis organizedasfollows. Section2 stateghe
problemof concernandsection3 shows the mainre-
sultof thiswork. Sectior4 characterizetheinputsat-
urationby IQCsandproposesnalgorithmto designa
dynamicakontrollaw. Finally, sectiorb givesillustra-
tive examplesandsomeconclusionaredranvn in Sec-
tion 6. Becausef spacdimitation, someof references
and results are omitted, for further details see (D.
Coutinhoand M. Fu, 2001) (available for download
at ftp://warhol.nwcastle.elu.aupubReporIs/EE01046.ps.Qz

2. PROBLEM STATEMENT

In this work, we considera systemgivenby
X(0) =xo (6

wherex € R" is thestateu € R is the controlinput,
A € R™" andb € R" are constant,and o(-) is a
nonlinearoperator

X = AX + bo(u),

We assumethatthe pair (A, b) is controllableandthe
nonlinearoperatoro(-) hasaboundedyainandcanbe
describedy

o(u) = p1u+d(u) )

for a given positive scalarp; andan operatord(-) €
R that satisfiesthe following integral quadraticcon-
straint(IQC)

/ f (%, u,8) dt > 0 3)

0

wheref(-) is aquadratidorm, andx; is definedby
Xn == AT[XT[+ Buu + 566 y XT[(O) = 0 (4)

with X € R, andAn € R js Hurwitz.

It is well-known thattheabove IQC hasanequialent
frequengy domainform asfollows

© ragw " o [a(w)
[-[Gim] nw (5| 20 ©
in termsof amultiplier [ (jw).

For corveniencelet usrepresenthenonlinearsystem
(1) andIQC (3) in anaugmentedpaceasfollows:

5?:/1>z+éu+é5,va:/ f(xm,u,8)dt >0 (6)
0

where

X1, x_ A 0], 5 plb . 5 b
XT[], A_[OA”], B_[BU],and B_[B5].

To analyzethe regional stability of above systemwe
usethefollowing resultfrom the Lyapuna theory as
proposedn (Kiyamaandlwasaki,2000).

X=

Lemmal. Consider a nonlinear system & = f(X)

wheref : R — R is a continuougunctionsuchthat
f(0) = 0. Let X C R be a polyhedralsetcontaining
theorigin. Assumethatthedifferentialequationsatis-
fiestheconditionsfor the existenceanduniquenessf

solutionfor any X(0) € X. Supposehereexistsacon-
tinuouslydifferentiablefunctionV : X—R satisfying
thefollowing inequalitiesfor somepositive scalars;,

€, €3 andp.

<
X

(%)
/(

()
ThenthesetX £ { Xe X : V(X) <2} isadomain
of attractionfor the nonlinearsystemj.e. X(t) - O as
t — oo for arny X(0) € X. m|

Re X

1 9
I/\ I/\ I/\
><1\ ><l
X
<C

< <

The proof of above lemmais verified straightfor
wardlyfrom (Kiyamaandlwasaki,2000)andtheLya-
punov theory

As Lyapun« function candidate)et us considerthe
following quadratidunctionin theaugmentedpace

!

= V(x, %) = X PR = [ X] P[ X] @)

V(X) o .
whereP = P ¢ R(Mnm)x(n+nm)

Now, considelthe following quadraticcostfunction
JI(xo,U) = / (X Qx+ ro(u)?)dt ®)
0

for somematrixQ = C'C (C € R™") andscalar > 0.

Then,the problemof concernin thiswork is to find a
dynamicalcontrollaw

rl X
u=K [Xn] 9)
for someK € R suchthat:

o thecostfunction(8) is minimized;



¢ theclosed-loogsystemis regionally stablewith a
domainX, i.ex(t) — 0ast — oo for ary x(0) € X.

In this paper obsere thatwe areconsideringa level
surfaceof V(X), representedby X, asan estimateof
thedomainof attractionof the closed-looppugmented
system(6) with u = K'& For the original system
(1), we will estimateits domain of stability as the
projectionof X in the sub-spacéx, x; = 0) thatwe
denoteby thesetX.

3. CONTROL DESIGN

In this section,we proposea solutionto the problem
statedin section2. To this end, let us considerthe
augmentedsystem(1) and denotethe following (to
relaxtheinfinite dimensionaproblem):

J(xo,u,T) = /OT(X'Qx-f-rc(u)z)dt, T oo (10)

Fromthedefinitionsof the Lyapuna function(7) and
the augmentedsystem(1) and keepingin mind that
x(0) = xo and xx(0) = 0, we can rewrite above, for
T — 00, aSJ(%0,u, T) =V (%0,0) —V(X(T),%n(T))+ fOT (V (%, %) +
X Qx+ro(u)?)dt < V(xo,0)+ fg*(V(X,%r) +X Qx+ro(u)?)dt.

It is clearthatif f3(V (x,Xr) + X Qx4+ ra(u)?)dt < 0,
V X, Xn satisfying(6), then

J(%o,u) <V(x0,0) = [XS]I P [Xg]-

Fromtheabove analysiswe canreformulatetheprob-
lem of concernin this paperasfollows

Problem2. Determinea Lyapunw function in the
augmentedspaceand designa control law u given
by (9) suchthat: (i) minimize V(xp,0) subjectto
J& (V (%, Xm) + X Qx+ r(pru+ 8(u))?)dt < 0, for all
X, X and &(+) satisfying(6); and (ii) the closed-loop
systemis regionally stablewith adomainX. O

To solve the above problem,we have the following
constraintsfy’ (V (X, Xr) + X QX+ r(p1u+ 8(u))2)dt <
Oforall &: [y f(Xm,u,8)dt > 0.

Using the well-known S-procedurethe above is sat-
isfiedif andonly if thereexists a scalart; > 0 such
that

/0oo (V (%, Xr) + X QX+ (pru + 8)?
+ T1f(XpUu,0))dt <0

(11)

Note by definitionthat f (X, u,0) is a quadraticform.
In the sequel,we considerthe following quadratic
form for f(Xm,u,d)

Xt ’ F1,1 Fi2 Fi3 Xt
u F1’2 F2’2 F23 u (12)
5 Fi3 Fo3 Fa3 5

whereF1 = Fj; € R, Fip € R™, Frge R™, Fpp €
R, o3 € R andRsz € R.

Beforewe statethe main resultof this section,let us
definethe following auxiliary variablesfor simplicity
of notation.

. 01 = 0] - 0
1 |:T1Fll:| 12 [Flz] 13 |:F13:|

. r
¢=[C 0];11=—%; a=rp2+1iFn  (13)

and B =rp1+T11Fs.

Theoem3. Considerthe augmentedsystem(6), the
IQC (3) satisfying(12), the costfunction (8) andthe
auxiliary notation(13). Let X be a given polyhedral
setcontainingthe origin. Let (Xp,0) € X bea given
initial conditionfor the augmentedystem(6). Let A
andSbethesolutionto thefollowing problem:

minA subjectto:

S>0,S=S (14)
» [%0]
%o < >0 (15)

L 0

Q9 +W(S) £ SFis
DA T
Fi3S 0 ——

i 13 at?

whereQ(S) and¥(S) aregivenby
Q(S) =SA +As-— % (EB’ +11SF138 + BB +

At o ~ o~ ~ o~ ~ o~
rlsFlgs) t (BB +11BF .S+ nSFlss)

- % (sF1B +BF1.9): (17)
~ '[2 ~ o~ ~ o~
W(S) = SF11S— §1(8312F13S+ SF13F;,9) (18)

Then,the costfunction (8) is minimizedandsatisfies
J(xo,u) < A for thecontrollaw u= —% (I§'P+ Tllfl'g) £.

Moreover, if x(0) € X thenthetrajectoryx(t) — 0 as
t — o for somep > 0, where X is the intersection
of (x, X = 0) sub-spacewith the setX £ {X € X :
KSR < 1P} i

The proof of above theoremwas omitted becauseof
spacdimitation. See(D. CoutinhoandM. Fu, 2001)
for furtherdetails.

Obsene thatthe optimizationproblemin theorem3 is
notcorvex onthedecisionvariableS. However, aswe
will seesubsequentlyit is possiblefor someclasses
of IQCsthatthis problemis corvertedinto a cornvex
one. To illustrate this point and the potential of the
proposedcontroller in the next sectionwe apply this



frameawork to the control of linear systemswith input
saturation.

4. IQC CHARACTERIZATION

Consideiin systen(1) thatthenonlinearoperatoio(-)
is theunit saturatiorfunction,i.e.

1 u>1
o(u) = u for Ju<1
-1 u< -1

By assumptionthe operatora(-) canbe decomposed
into linearanduncertaimonlinearparts.Thus thefirst
problemof concernin this sectionis how to bound
by a sectorthe uncertainnonlinearpartcausedy the
saturation.

With thisaim, let usdefinethelevel of over-satumation
as d(u) = max{0, |u —1} foragivencontrolu,

andsupposehatthe controllaw is suchthat d(u) <

p and |d(u)| < pzjul for p,p2 > 0. Fromthese
definitionandassumptionye canstatethe following
problem.

Problem4. Whatis theoptimalsectorthatboundshe
nonlinearitycausedy thesaturatior?,i.e. how to find
min p2 suchthatd(u) = o(u) — pau, |8(u)| < pz|ul for
all ju <1+p. O

Recently in the work (Fu, 2000), M. Fu proposed
a solution for this problem that is summarizedas
follows.

Lemmab. (Optimal sector bound, (Fu, 2000)) The

optimal sectorboundto the problem4 is obtainedfor

thefollowing valuesof p; andp;
24+p p

Sh1Erl

1= ———

21 +p)’ (19)
Now, we haveto find a suitabledescriptionin termsof

integral quadraticconstraintsfor the saturationnon-
linearity with the optimal sectorbound(19). To this

end,we will usethestrongresultobtainedby (Zames
and Falb, 1968) for the unit saturationfunction. By

their statementthe stability problemis describedby

thelQC:

® [ d(jw) ] . [auw) ]
5 H) | &> dw>0
L. [o(wv) 2= (M) 5(jw) | M=

wherefze (H) is givenby

fze(H) = ° o+ HW)

To+H(—jw) —2(t12+ReH(jw)) |’

T2 > 0 is a scalarto be determinedand the transfer
functionH (jw) is suchthatReH(jw) < 1.
Fromtheabove IQC, thefollowing holds

ajw)

wRe 5(iw *gzp g(j_\\/,vv) dw>0 (20)
/w (iw) (iw)

wheregzg is givenby
0 T2+H(jw)
0 —(T2+H(jw))

Definea new signalasy(jw) = (12 + H(jw))o(jw)
andconsiderthe following realizationof the transfer
functiont, + H(s)

T2+ H(9 = Cu(sl—Ap) B+ Dn+12  (21)

Thus the time-domainsignal y(t) is given by the
following stateequations

).(T[ =
y =

wherex; € R™. Note from (4) that B, = p1Br and
BB = BT['

gzrF =

Arxe + Bro(u)

Crxn + (Dr+T12)0(u) (22)

With thesignaly(t), we canwrite thefollowing time-
domainform of the condition (20) f5°{(u — o(u)’)
(CrXre+ (T2+ D)o (U)) +(X,.Crt (T2 + D) o(u)) (u—
o(u))} dt > 0.

Considerthe optimal sector bound condition, i.e.
o(u) = pau+ d6(u) and |d(u)| < pzu, and above in-
equality Then, we can state the following time-
domainlQC for saturategystems

Xnt Xnt

/w [ UI fa(Xm Y, T2, 13) [ UI dt >0 (23)
13 b

wherefa (X, Y, T2, T3) is givenby

/

0 ) (1—(81)(:;'[ ) ( ~Cn )
p1P2(Dr+T2 1—2p1
e () (5%
~Cn (1-2p1)(Dn+T2) (Tz_-lz-((?g:?))>

andtgz > 0 is afree parameteto betuned.

Remark 1. Controllersbasedon circle and Popw
criteria canbe viewed as specialcasesof theorem3.
To illustratethis point, considerthe following 1QC to
describehe saturation:

!
00
J

g] [%% _01] [g] dt >0 (24)

i.e. the IQC (23) with 12 =0, 13 = 1 andH(jw) =

0. Note that controllers designedwith above 1QC
correspondto the ones obtainedby the technique
proposedn (Fu,2000)(usingthecircle criterion).In a
similar way, we canalsorecover controllersbasedon
Popo (e.g.(Kapilaetal., 1999))andZames& Falb
criteriaif we chooserespectiely: (a) 12 =1,13=1
andH(s) =s; and(b) 1= 1andt3 =0. |

In orderto designthe controllaw, we needto obtaina
corvex form for the optimizationproblem(16). From
thE|QC (23) obser‘ethatlfll =0, |512 = —(l— D1) lflg
anddefinean auxiliary matrixasF = [0 Cy] . Then,
we canwrite FioF) 5 = —(1— p1)FF and statethe
following theorem.



Theoem6. Considerthe sameconditionsof theorem
3, thelQC (23) andthe above analysis.Let xo bethe
initial conditionof the system(1). Let A andS bethe
solutionto thefollowing corvex optimizationproblem

min A subjectto:

S$S>0,S=S; (25)
[0
X0 S >0; (26)
|0
Qe F £ S
E's — (1B n 0 0
. 11-p1
és 0 1, o0 | S0 @)
~] BZ
F..S 0 0 -
| ot

whereQ(S) is givenby (17).

DefineasetX, asfollows:

oo fi] o 3] <) o

IB2(1+p,)2 ,
T .
B'S1B+11(ByF1a+F,3Bs)+12F 513

wherep? =

Then,for u=—1 (I§'P+rllfig) % andary x(0) € X,
the following conditionshold: (i) J(X,0) < A; (ii)
X(t) = 0ast — oo; and(iii) |u(t)| < 1+p. 0

PROOF. The proofof item (i) follows directly from
theorem 3 and the Sdwur complementapplied to
(27). Now, define the following polyhedral X, =

{%: |K%| < 1+p}, whereK = %(é'PJr T1Fp,). Let
X, be a level surface of the Lyapunw function
V(®) = £S71% ie. X, = {X: XS < p2}. From
the Lyapuna theory the set)~<p will be invariantif
the relation X, C X, is satisfied.From (Luenbeger,

1989)and(Dona, 2000),lemma3.6.1.,the minimum

V(X) that satisfiesabove is given by uf) — e

K'sK

B2(14p)? -

B S*15+T1(B§;(F133)a)+@ﬁ13§13. Therefore for ary X(0) €
X, thetrajectoryX(t) — 0 ast — . Keepin mindthat
Xn(0) = 0 by definition. Then,for ary x(0) = xo that
belongsto the setX, asdefinedin (28), thetrajectory
X(t) — 0 ast — 0. Moreover, for ary xg € X, theover
saturationconstraintu(t)| < 1+ p is alwayssatisfied

(sinceX, C Xo C Xp). O

Thekey pointof the proposednethodis the choiceof
the transferfunction H(s). Unfortunately until now,
thereis no a systematiavay to computeit. To over-
comethis difficulty, we proposethe following Algo-
rithm to helponthecontroldesign.

Algorithm1. Considertheorem6, the IQC (23) and
definethe structureof Sasfollows:

S— S11 Sz
1 S2
wherethe partitioncorrespondso the partitionof X.

STEP 1 ChooseH(s) to have thefollowing structure
Ch-18" 4.+ 0

H(S):_§“+an_1s“—1+...+ao (29)
andthefollowing statespaceealization

o 1 0 -- O 0

o o 1 .- 0 0
An= : : oo »Be=| |,

o o o0 .- 1 0

—ap —ag —a -+ —A-1 -1
Cri=][Co --- Cn_1], andDy = 0. Initialize a, ... ,

an—1 andcy,...,cn—1 arbitrarily but with A being
Hurwitz;

STEP 2 Choosghescalar; suchthatt, > [5°|h(t)|dt;

STEP 3 Determinetsz andS, to minimizeA;

STEP 4 Fix S12, 1, S92, andtuneay, ... ,a,—1 and
Co,- .- ,Cn—1, toMinimizeA;

STEP5 lteratebetweersteps2 and4. O

For eachiteration i, note in above algorithm that
the closed-loopsystemis regionally stableand the
performancepoundsatisfieshi < A_y). As aresult,
this algorithmcornvergeson alocal minimum.

5. NUMERICAL RESULTS

To demonstratethe potential of our approach,we
considertwo examplesto comparethe closed-loop
performancewherethe first oneis from (Fu, 2000)
(circle criterion)andthe secondneis from (Kapilaet
al., 1999)(Popuw criterion).

Example 1. Considerthe following open-loopunsta-
ble linearsystemawith input saturation(Fu, 2000):

X1 . 0 1||x1 0
[xz] = [—1.25 1] [xz] + [1] o)  (30)
and definethe costfunction J(xg,u) with r = 1 and
C=[10].

To allow a comparatre study we will considerthat
the saturationis describedy the circle criterionwith
optimal bound sector i.e. IQC (24), and by 1QC
(23). Also, we will usethreedifferentlevels of over-
saturationNotefor thecircle criterionthatwe canap-
ply directly Theoremb with F12 =0, F13=0,F3= 0,
T2 =0andH(s) = 0.

Now, we startalgorithm1 from the following condi-
tions:

Ap= [_01 _11];Cn=[ 10];12=1 and 13=1.

After five iterationswe gotthefollowing
S+2

H(s)=-05— ———
S 2+ 0.55+5.1

T,=1.3 and 13=10.



1.0+

0.8

0.6

0.4

0.0

-0.2 4

-0.4

-0.6

-0.8 4

-1.0 T T T T T T T T T T
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 08 1.0

Fig. 1. Domainof stability for differentlevelsof over-
saturationconsideringcircle criterion and 1QC
(23).

Thetable 1 andfigure 1 summarizehe results(cost

Level of Multiplier
over-saturation| 1QC (24) | 1QC (23)
p=0 1.58/ X | 1.05/ Xg
p=1 1.73/ X | 1.18/%4
p=10 418/ Xy | 2.431 %
Tablel. Optimalcostsanddomainsof sta-

bility.

functionanddomainof stability), for aninitial condi-
tion xo = [ 0.5 0.5]'. The resultsshaved clearly that
theproposediynamicalcontrollaw improvedthe per

formanceof the closed-loopsystemwithout degrada-
tion of thedomainof stabilitywhencomparedvith the
circle criterion(eventhelinearcontroller i.e. p = 0).

Example 2. Considerthe following LTI systemwith
inputsaturation(Kapilaetal., 1999):

-02 1 O 0

x=[ 0 =02 1 [x—| 0 |o(u),x(0)=x
0 0 01 0.35

(31)

andthatthe costfunction(8) is definedby Q =13 and
r = 1. The objective in this exampleis to designa
state-feedbac&ontrollerthatminimizesthecostfunc-
tion definedabove for a level of oversaturationp =
0.25 andinitial conditionxg = [2 —4.5 1.3]". Using
theorem6, we obtaineda costof 47.63. To illustrate
the potentialof our approachthe controllerproposed
in (Kapila et al., 1999) (using the Popor criterion)
obtaineda costof 652for the sameconditions.

6. CONCLUSION

Thispapemresenteé.nen methodologyo designop-
timal controllersfor lineartime invariantsystemswith
input constraintsthat achieses a better performance
than the circle and Popor criteria. The saturationis
describedby meansof integral quadraticconstraints.
Thekey contritutionsof this paperarethe useof IQC
informationto improve the closed-loopperformance

(in otherwords,we construcia dynamicalcontrollaw

usingthe time-domainform of the IQC), andthe ex-

tensionof the Zames& Falb criterionto the optimal
sectoboundproblemproposinganiterative algorithm
to malke easierfor the designetto choosehe suitable
multiplier. Futureresearctwill be concentraten the
tuningof parameterassociateavith the IQC.
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