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In this paper we studied a self-organization principle that input should be best reconstructed from a
factorial distributed hidden representation, which has been addressed in the literature recently. An
auto-encoder network is trained by the Least Mean Square Error Reconstruction (LMSER) while the
redundance in the representation is reduced by a proposed anti-Hebbian scheme, in which a penalty
term called Receptive Field Overlapping Index (RFOI) is combined into the objective function for
enhancing competition among nodes in the network. Our learning scheme provides a way for balancing
the cooperation and competition necessary for the self-organization process thus realizes the multiple
causes model, which accounts for an observed data by combining assertions from the discovered causes
or features in the data. Our experiment results demonstrate again the powerful information processing
capability inherent to the popular weighted sum followed by sigmoid squashing. Comparing with previous
probability theory based multiple causes models, our scheme is much easier to implement and quite

reliable.

1. Introduction

Many of the unsupervised learning paradigms can
be seen as focusing on one of the two themes: Prin-
ciple Component Analysis (PCA) and Competitive
Learning (CL).! Since the pioneering work of Oja,?
much advances have been made along the direction of
neural learning PCA, including various models and
extensions.*® From the viewpoint that human per-
ceptual system can be considered as a statistical in-
ference engine whose function is to infer the probable
causes of sensing inputs,! PCA learning is interest-
ing mainly because it provides a distributed, facto-
rial representation and such a representation can be
used as multiple causes to explain a given input. Dis-
tributed representation and factorial representation
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are both important as the former can encode simi-
larity while the later can maximally transfer infor-
mation. However, PCA has an inherent weak point
of only providing linear mapping which is trivial in
many occasions. On the other hand, CL usually
forms a highly nonlinear mapping from the input
vector to the code by performing clustering or vec-
tor quantization. In a CL learning paradigm,? each
cluster is represented by a processing unit that com-
petes with others in a winner-take-all or winner-take-
quota manner for each input pattern. By dividing
the input space into disjoint regions, CL construct
a purely local representation in which a single unit
is activated in response to an input, which means
an input vector has only single cause to be corre-
sponded. Thus a question arises, how to inherit the
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strong points of PCA and CL while overcome their
weaknesses?

At present, many researches can be considered
as a merge of PCA and CL, with an objective of
forming distributed, factorial nonlinear representa-
tion. Here the nonlinearity demonstrates its di-
versification and different nonlinear activations (or
algorithms) can bring quite different results. Some-
time they are treated as nonlinear extensions of
some PCA learnings or shortly termed as nonlinear
PCA.%-!1 Basically, nonlinear PCA learnings have
a common root in such a fact that nonlinear neu-
rons have selectivities.®” In other words, while lin-
ear neurons learn to a statistical mixture of all of
the input patterns, nonlinear neurons learn input
patterns discriminatively, thus partitioning the in-
put space. This previously discovered property has
been recently strictly studied from the viewpoint of
statistical mechanics.!?

Many nonlinear Hebbian or PCA-type learnings
for feature extraction are closely related to the redun-
dancy reduction principle formulated by Barlow,!?
who stressed the importance of extracting statistical
relevant and independent features from sensory infor-
mation in the process of cognition. The term redun-
dancy means the statistical dependence between the
components involved, and the learning refer to fac-
torial learning because it tries to find factorial repre-
sentation (code) for input. Recently many researches
have been conducted toward this direction. For ex-
ample, an architecture was established to perform
volume-conserving transformation (i.e. determinant
of the Jacobian matrix is equal to 1) for redun-
dancy reduction, which has a property that informa-
tion can be losslessly transmitted.!4® Starting from
information theoretic concepts, a reversible cellular
automata architecture was studied for performing
nonlinear decorrelation.!®=2° A general predictabil-
ity minimization principle is also for factorial learn-
ing, with corresponding architecture mainly com-
posed of two type modules (predictor module and
representational module).?® It is worthy to men-
tion that a closely related theme called “blind sep-
aration of sources” or Independent Components
Analysis (ICA) has frequently been addressed in
the last few years, mainly in the signal processing
literature. The relationship between these two re-
search lines has been discussed in detail in a recent
paper.?!

While factorial learning aiming at finding
distributed, independent representation, a lately
proposed Multiple Causes Model (MCM) further
addressed the importance of causal relationship
between input and such a representation or hidden
causes.?226 From an explanative viewpoint, MCM
aims at discovering a set of independent causes or
generators such that each input can be completely
described by the cooperative action of a few of these
possible generators. In this aspect, a multiple cause
model distinguish itself as compared with some sin-
gle cause models such as CL and the well-known mix-
ture of experts,?” in which one generator or expert is
only responsible for a single example. Recently, sev-
eral papers have discussed the multiple causes model
in the literature.

A simple scheme was previously proposed for
extracting multiple independent features from the
viewpoint of forming sparse representations by
anti-Hebbian learning.?? In a sparse code, the input
patterns can be represented combinatorially by a rel-
atively small number of the available units. However,
there is no explanation mechanism and the success of
this model strongly depends on a prior constraints on
the activity patterns at the encoding layer. Specif-
ically, a sparseness assumption was incorporated by
taking the form of generating probability for each in-
put component as a constraint for few hidden units
to become active at one time. It is obvious that such
an assumption is inappropriate when the generating
probability for input component is not available.

Later, a form of autoencoder network was con-
sidered with the hidden units signalling features and
the hidden-output weights describing the way in
which features generate predictions of the inputs.?
The conventional sigmoid at the output layer was
replaced by a noisy-or activation function, which
allows multiple causes to cooperate in a probabilis-
tically justified way to activate the reconstruction
units. Noisy-or scheme has a severe problem of lo-
cal minimum as reported in.? In order for multiple
causes to interact that is more competitive than the
noisy-or, started from the viewpoint of learning a
set of priors and conditional priors, the description
length of a set of examples drawn from the input dis-
tribution is minimized in the paper.2* Specifically,
an autoencoder networks is trained to reconstruct
the input on its output units with the goal of learn-
ing the underlying distributions. This scheme is a
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special case of the general stochastic learning frame-
work Helmholtz machine,? learning the distribution
for hidden units in the recognition model is simpli-
fied by a fixed independent prior distribution and the
parameter of the generative model is simply taken as
interpreting probability from hidden causes.

Multiple cause model is a typical example that
involve a balance between cooperation and competi-
tion. Such a cooperation and competition has been
explicitly expounded in the Helmholtz machine.?®
Though the general learning algorithm is complex
in the form, its principle can be approached via
some appropriate simplifications in a deterministic
model. In this paper, we study multiple causes
model from optimization perspective, particularly,
a single layer feedforward network trained with the
Least Mean Square Error Reconstruction (LMSER)
learning rule,®” because such an auto-encoder net-
work essentially provides an explanation mechanism
for input and its ubiquitousness in neural learning
paradigms has been pointed out in.! In a nonlin-
ear network, LMSER learning not only provides a
straightforward way for cooperatively interpreting a
given input, but also implicitly takes the advantage
of selectivity provided by neuron’s nonlinearity.6~”
However, with sigmoidal type non-local nonlinearity,
the cooperation of the multiple causes is generally
dominated. From this consideration, we discuss some
approaches for enforcing the competition. Specifi-
cally, we add some constraint terms to a best recon-
struction objective function to minimize the overlap
between the receptive fields of two different output
nodes, which approximately make the extracted fea-
tures independent. For the typical independent hor-
izontal/vertical bars example, our learning scheme
can extract multiple causes satisfactorily.

2. Learning Multiple Cause Model
(MCM) by Competition Enhanced
LMSER

2.1. MCM emerging from cooperation
and competition

A multiple cause model concerns two criteria. The
first is the independence criterion, i.e. the occurrence
of each cause or generator ought to be independent
of all other causes or generators; and the hidden rep-
resentations ought to be independent for interpreting
" agiven input. Here we distinguish causes or features

and hidden representations. In a nonlinear feedfor-
ward network, the former is represented by feedfor-
ward connection weights and the later is represented
by nonlinear activations. The second is best recon-
struction criterion which means that input could be
best reconstructed in some sense from a few of the
causes or generators. This criterion is also termed
as an invertibility criterion in the predictability min-
imization principle.26

From the above criteria we can understand that a
multiple cause model readily realizes factorial learn-
ing or redundancy reduction but not vice-versa.
Most of the proposed factorial learning schemes
based on some information theoretical criteria, e.g.
maximal information transmission, which was initi-
ated by Linsker’s Informax principle.2® While these
models implement redundancy reduction or factorial
coding, they do not provide interpretations for inputs
via combinatorially using the causes.

Reconstruction commonly refers to self-associa-
tion which is embodied in a number of neural net-
work models, for example, various auto-associative
memory models,?® the ART and BAM architec-
tures,3 and has been studied in detail recently for
linear case.3'32 As an optimization issue, there are
many specific objective functions toward best re-
construction, for example, minimal squared error,
minimal cross entropy, etc. Among these objec-
tives, minimal squared error is simple and often used,
for example, in the famous error back-propagation
algorithm.

Consider a nonlinear feedforward network archi-
tecture, as shown in Fig. 1(a) which has L input
units, L output units, and M hidden units for rep-
resentation. L x M matrix W, M x L matrix W
denote the connection weights from input to hidden
units and from hidden units to output, respectively.
The column vector w(m) = [wi(m),...,wr(m)]T
represents the weights associated with the m-th hid-
den unit, which has a postsynaptic potential h,, =
25:1 wj(m)z; = xTw(m). Nonlinear transfer func-
tion f acts on the postsynaptic potential, yielding
nonlinear activations y = [y1,...,ym]7 = f(WTx).
We take f as a sigmoidal type with value in interval
[0,1], e.g. f(t) = y32=pr, mainly from the following
considerations. First, sigmoidal units with activa-
tion value in [0, 1] can be interpreted as the posterior
probability of the presence of some features given an
input, which also can be considered as an assurance
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(2)

(b)

Fig. 1. Auto-encoder architecture. (a) A two-layer feedforward network, (b) An equivalent forward-backward single

layer network.

measure for the corresponding cause in explaining a
given input. Second, monopolar nodes more closely
relates to the characteristics of biological neurons as
producing a non-negative output firing rate.

The standard architecture in Fig. 1(a) is equiv-
alent to a single-layer network in Fig. 1(b) with
both bottom-up connections W and top-down con-
nections W. In the following we mainly consider
this architecture. To avoid confusion, we change the
terminologies hidden units (representation) and out-
put units in Fig. 1(a) to output units (representa-
tion) and reconstruction units in Fig. 1(b). Denote
% = WTy = WT f(WTx), representing a recon-
struction vector of the input data x from the repre-
sentation y, then learning is based on the following
optimization criterion:

J(W) = / p(x) 1% — [Pdx

- / p(x)[lx - WTF(WTx)|2dx (1)

where p(x) is input distribution and we also use
symbol p in other places for different probabilistic
distributions.

Simply let W = WT, that is, the forward
connection weights as extracted features or causes
are used in the backward connection weights as

reconstruction coefficients for interpreting an input.
Equation (1) becomes the one layer special case of
Least Mean Square Error Reconstruction (LMSER)
learning principle studied by one of the present
authors in the papers,5~7 and using stochastic ap-
proximation with gradient descent, a learning algo-
rithm for the minimization of J(W) can be readily
deriveds":

Wit = Wi + ue[xrel Wiyl +exyi]  (2)

where k denoting a time scale and we will drop it
in discussion for brevity without causing confusion,
e, = Xj — X, is the reconstruction error, y' is deriva-
tives of y. px is a learning rate. Comparing with
the Helmholtz machine, if we consider the bottom-
up connections as the parameters of a recognition
model for identifying causes, and the top-down con-
nections as the parameters of a generative model for
predicting or reconstructing input, then there ex-
ist an obvious difference between these two learning
paradigms, as the recognition model and generative
model in Helmholtz machine are treated separately
with different parameters.

If the network outputs are constrained to be
linear, the features that are extracted by the LMSER
rule Eq. (2) span the M-dimensional principal sub-
space, which is same as the linear autoencoder that
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has been proven to be equivalent to subspace meth-
ods. In nonlinear cases, though it still produces
principal subspace, the nonlinear transformation can
bring out such advantages as highly compressed code
and robustness, thus providing an efficient way for
signal frequencies estimation.33-34

An extension of the LMSER principle called min-
distorted reflection theory has been proposed.® As
to the single layer network structure, the input layer
and output layer can be considered as two bound-
aries which continually reflects the signals bidirec-
tionally. Specifically, consider X! = Wf(W7Tx) as a
reflection of x bounced back by the output bound-
ary, and %'*! = Wf(WT%?) as a reflection of %,
1 =0,1,...,K, K denotes the number of reflection
times. % = x. We hope that the distortions of
reflections should be as small as possible, then the
minimization objective is:

K
J(W) =Y E{|I%"*+ — &%} (3)
1=0

Similar to the derivation of Eq. (2), we can get the
following learning algorithm

K
AW = M Z[ﬁieiTwyil + eiyiT] (4)
i=0
where €' = %‘t! — %% is the reconstruction error
at 1 reflection, y* is the corresponding output vec-
tor. Generally speaking, the qualitative properties
of learning rules Egs. (2) and (4) are similar, though
strict theoretical analysis still seems necessary.

The sigmoid nonlinearity results in competition
among the neurons for firing with a given input and
makes that neurons have selectivities,57 which is an
important property to many learning tasks, for ex-
ample, classification, clustering, generalization, etc.
However, such a competition will be still quite weak
for a best reconstruction learning process as the main
goal of a best reconstruction learning algorithm as
Eq. (2) is to cooperatively use several causes per in-
put. In order to get a satisfactory multiple causes
model, the provided cooperation must be balanced
by an enforced competition which aims at finding in-
dependent causes or generators as well as assigning
different responsibilities allocation among the rep-
resentation units. In other words, multiple cause
model emerges from an interaction of cooperation
and competition.

From the above discussion, learning multiple
cause model can be cast into a constrained optimiza-
tion issue, with main cost reconstruction error guid-
ing the cooperation and a penalty cost enhancing the
competition, i.e. the aim of multiple causes model is

minimize E(W)=J(W)+AG(W) (5)

where J is a best reconstruction criterion and G is a
competition criterion which is the focus of the next
section. A is a trade-off parameter for a compromise
between the two optimization criteria.

2.2. Approaches toward independence
criterion

There are two tasks for the independence criterion.
First, the extracted features or causes should be in-
dependent, which means the postsynaptic potentials
hi(i = 1,...,M) should be factorial. Second, the
output representations must assume independent re-
sponsibilities for interpreting a given input. Here
we would like to point out that in many situations
these two tasks can be considered as approximately
equivalent in a nonlinear network. In the absence of
input noise, the mutual information I(y, x) between
random variables y and x is equal to the mutual in-
formation I(y, h) between y and the postsynaptic
potentials h as follows3?

I(y, x) =I(y, h). (6)

If the postsynaptic potentials are factorial, i.e.

M
p(h) =[] p(h) (7
i=1

and individual nonlinear transfer functions could be
adapted according to

fith) =p(hi), i=1,...,.M (8)
then mutual information I(y, h) between y and h
h
Iy, ) = [ sty anay )

will be maximized,3® which also means that the
entropy of output distribution

H(y)= - / p(y)In p(y)dy (10)
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will be maximized.?® Denote the mutual information
of the variable y as MI(y), which is a relative
entropy between p(y) and wa p(y:)

0S MI(y)=-Hy)+3 H@) (1)

ie.,
H(y) = H(y) - MI(y) (12)

we can see that maximizing H(y) will minimize the
mutual information MI(y), thus making the outputs
independent.?

From Eq. (11), factorial learning, or less strictly,
redundancy reduction, can be formulated as to make
MI(y) as small as possible. An obvious way is
minimizing 3, H(y:), which can be termed as bits
entropy or pixel entropy.!3 However, the probability
distribution p(y;) involved in the pixel entropy is
generally difficult to analytically calculate except
in some special cases. Deco and Parra'® offered a
method for solving this problem by reducing it to
minimize the upper bound of pixel entropies which
is entropy of a sum of Gaussian distributions, i.e.

M
G=-3 / p(y:) log p(yi)dy:

=1

M
<-> / p(y:) log q(y:)dy:
=1

LM
log(2m) + 5 > / p(v:)(yi — %) dy
=1
(13)

7; is the mean of y;, q(y;) is the Gaussian distribu-
tion. In a simplified form, we can minimize

M
G=> vl (14)
=1

Another way to decorrelate non-Gaussian distri-
bution is to expand the distribution in higher orders

agtrictly speaking, condition Eq. (8) is necessary in the above
discussion of information transmission in the neural network,
which means the input pdf match the slope of sigmoid non-
linearity. Many real-world analog signals, including speech
signals, are super-gaussian (with longer tails and being more
sharply peaked than gaussians),?! can be considered approx-
imately satisfying this condition.

of correlation matrix and then impose the indepen-
dence condition.!* Such a cumulant-based method is
obviously complex. It needs more memory require-
ments for computing the relevant statistical quanti-
ties. As being observed by many researchers, non-
linear function enables a network to compute with
non-gaussian statistics, and find higher-order forms
of redundancy inherent in the inputs.?!

Pixel entropy minimization can be generally re-
alized by a competition or anti-Hebbian mechanism
among the output units. This means that any two
activations have some kind of inverse relationships,
which will make activations decorrelated or inde-
pendent. In a simple case, decorrelating sigmoidal
activations can take higher-order moments of the
output distributions into computation and approach
independent postsynaptic potentials. Taking Taylor
expansion of sigmoid f(h) = 7=k = 2% b h2k+1,
where b; are coefficients, then the decorrelation of
hidden activations, i.e.

> Tw =0 (15)
i,j
actually means that
Y bijrh T R = 0. (16)
i#j kl

As being argued in,?* Eq. (16) can be thought of as
an approximation of independence test.

A straightforward way of introducing competi-
tion is adding lateral inhibitory connections among
the output units. However, in many cases it is nei-
ther desirable nor feasible to introduce explicit in-
hibitory links between competing nodes.3” Besides,
it is generally preferable to minimize the number
of connections. Recently, some approaches for pro-
ducing “competitive” or inhibitory effects in neural
network models have been proposed,®” e.g. the com-
petitive activation mechanism, with which the nodes
in a network compete for any externally applied ac-
tivation. Unfortunately, the competitive activation
mechanism is complex in the form though it is a uni-
versal principle that can be applied to any network
structure.

An alternative way for controlling the spread of
activation and implementing inhibitory interactions
can be reached by minimizing some appropriate in-
dex which serve as the penalty cost in Eq. (5). For
the convenience of discussion, such an index can
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be termed as Receptive Fields Overlapping Index
(RFOI) because joint activation of two units usually
means the overlapping of the corresponding receptive
fields.

Two nodes in a neural network are said to be
competitors if the gain of one occurs at the expense
of the other, i.e. if their functional relationships are
inhibitory in nature.3® For example, the ith node
with

& i) (17)

can be said to involve competitive interactions with
node j if %;—J? < 0 when 7 # j. From this consid-
eration, we propose the following conditions for a
suitable receptive fields overlapping index.

First, the overall index G can be expressed as
the summation of pairwise index g;; over all possible

combination of ith node and jth node (i # j), i.e.

M
G=ZZyij. (18)

=1 j=1
J#i

Second, pairwise index g;; should be a monotoni-
cally increasing function of y; (or y;), thus indicating
their correlation in some sense.

Third, with fixed pairwise index g;;, ¥; can be
expressed as a monotonically decreasing function of
y; and vice visa, which means that output activations
inhibit each other.

Decreasing the index defined above can produce
similar effect as from anti-Hebbian learning. We
emphasize here that pairwise index g;; is a statis-
tical quantity over input distribution. Therefore, we
can easily derive on-line algorithm with stochastic
approximation.

RFOI can be designated by many function forms
that meet the above requirements. In the following
we discuss some of possible indexes.

1. RFOII
9ij = / (viy;)*p(x)dx (19)
where k is a positive integral, with k = 1 being
the most simple one. Generally we take k = 2.

Then using stochastic approximation, RFOI I
can be replaced by

9i; = (yiy;)?. (20)

It follows from Eq. (5) that the change in
weight Aw;; can be made in proportional to
the corresponding derivative of E by

Aw(k)=p |xeTw(k)y,+yre—Iyix > o}
1%k

k=1,...,M. (21)

Equation (20) reflects a simple inverse pro-
portional relationship between two activations
via function ¢/t(c > 0), as shown in Fig. 2(a).
Decreasing g;; amounts to increasing the mu-
tual inhibition.

It is worthy to mention that the simple
constraint scheme in Eq. (20) was first ap-
plied in the Gnax learning for encouraging
different output units to discover mutually
exclusive features.’® Gpn.x is a powerful ob-
jective and can potentially capture arbitrarily
high-order structure in the input distributions
though its learning algorithm is quite com-
plicated. Such a mechanism was also intro-
duced into the so called Competitive Hebbian
Learning (CHL).3° The CHL is simple and ef-
fective in some feature detecting issues, but
it has several shortcomings. First, the learn-
ing algorithm was proposed without solid the-
oretical foundations, especially the derivative
of the output squashing function was dropped
from the maximisation of cost function with-
out sound reason. Second, an empirically cho-
sen limit on the weights is a key factor for the
success of the algorithm. Based on an infor-
mation theoretical criterion, i.e., maximizing
output variance, Deco and Obradovic!” intro-
duced a similar constraints in an RBF learning
paradigm with output activations being nor-
malized Gaussian function. The constraint pe-
nalizes the correlations between the outputs of
Gaussian units, thus performing clustering in
the input space.

RFOI I has a natural generalization with
forms:

g = [ - p)lo0ix (22)
or
. / (1 - go)yil*p(x)dx  (23)

with y; being regarded as a logic variable,
i.e. 1 — y; means the ‘NO’ version of y;.
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0 05 1
(c)

T—e—T"

In a more general situation, the (y;y;)*
term in RFOI I can be replaced by g;; =
9(yiy;), with g being a differentiable increas-
ing function.

. RFOI II

9i; = / (yi +5)*p(x)dx (24)

with k is positive integral. This index is based
on a simple linear function a —¢,0 < a <1
as shown in Fig. 2(b), i.e. any output is a
linear decreasing function of other outputs.
Similarly, it has following variants.

gij = — / (i +1-9;) px)dx  (25)

0 05 1
(d)

Fig. 2. Several functions that could serve as the receptive field overlapping index. (a) ¢/t(c > 0), (b) a —¢, 0 <a <1,
t -t
(©) 7%=, (¢>0), (d) &=

or
gy == [(-v+u)pix. (20
. RFOI III
9= [w(en —epax (@)
or

9ij = / y;(e¥ — e ¥ )p(x)dx. (28)

This index comes from the function %=,
(¢ > 0), as shown in Fig. 2(c). For simplicity,
we do not introduce power index k though it
is also applicable here.
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4. RFOIIV

05 = / g - p(x)dx  (29)
or

g5 = / gy (@ — px)dx.  (30)

RFOI IV can be considered as generaliza-
tion of RFOI III or established on the func-
tion :—:%2%: See Fig. 2(d). In mathemat-
ics, there are many other functions that have
similar characteristics as shown in Fig. 2, for
example, 1In %ﬁ—i—(t # 0). While other
function forms could be used, the above four
type RFOI indexes are simple and their cor-
responding learning algorithm are quite easy
to implement. To save the space, we omit the

explicit learning algorithms.

Remark 1

The parameter X in the above learning paradigm is
a fitting parameter for the combination of two costs.
In our experience, the range of A can be chosen in a
relatively large range without dramatically changing
the performance. We leave the study on how to
choose A in future studies.

Remark 2

Gradient descent method, while simple to imple-
ment, suffers from some disadvantages. How to ap-
propriately choose the learning parameter p in or-
der for the algorithm to converge and for the weight
to be stable (remain bounded) is generally problem
dependent. In linear output case, the p; should
satisfy the condition 0 < pr < 2||xx||=2 for the
convergence.3® In nonlinear situation, there is no
such theoretical guideline. If px is chosen too small,
the convergence process may be very slow. On the
other hand, instability occurs if p; is unsuitably
chosen too large. An efficient way for solving such
a problem is applying other optimization technique
such as conjugate gradient.

3. Simulations

As a first example, we demonstrate that our learning
scheme can partition the input space into minimally
overlapping regions. We consider the problem of

learning to respond to randomly placed Gaussian-
shaped spots. The data generation scheme and
training was similar to that used in the Competitive
Hebbian Learning.3° In the experiments, each input
vector was a random located Gaussian spot, with
its center at arbitrary position except that there
must be two input units away from the nearest
edge in the input array. In the simulations we are
mainly interested in the cases of more than one
output nodes in the consideration that a multi-nodes
network should learn to share the input space and
develop distinct regions of strong response.

In the experiment, 100 input units with 10 x 10
square array were tested. The average brightness of
1000 Gaussian spots was calculated beforehand and
then subtracted from each random Gaussian spot
during training. Initial weights were set to small
random values. The training was made with A =
1. Typically, we test 5000-10000 training samples.
Figures 3-5 illustrated typical results of two-nodes,
three-nodes and four-nodes cases, respectively, with
learning algorithm Eq. (21). We can find that differ-
ent nodes have developed strong responses in nearly
minimally overlapped different regions of the input
space. The localized masks have their descriptive
scopes that are narrowed to only certain regions of
the full data space. The receptive fields of distinct
units share their responsibility in accounting for each
observed data.

The second example is a benchmark example of
extracting a number of independent horizontal and
vertical bars on an input pixel grid.??-?* Figure 6
shows a test data set generated by the independent
actions of 16 underlying components appearing as
horizontal and vertical bars. In this example, hidden
causes corresponding to the horizontal and vertical
bars interact such that data pixels occurring at the
intersection of bars remain black. An autoencoder
network with a single hidden layer has been tested
to capture the structure in these patterns using
the sigmoid and noisy-or activation functions at the
output layer and employing a cross-entropy error
to evaluate the reconstruction.?® This cross entropy
error measure is similar to the use of a minimum
description length strategy. Dayan and Zemel®* used
such an error measure and reported that the sigmoid
scheme fails to capture the separate generators. The
noisy-or does much better, but 73% of the time it
gets stuck at a local minimum in which one or more
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(a)

10
00

(b)

Fig. 3. Learned responses of a pair of nodes trained on randomly placed Gaussian spots from learning algorithm Eq. (21).

The nonlinear activation function is f(t) = ﬁ{?

0.5,

(a)

(c)

Fig. 4. Learned responses of three output nodes trained on randomly placed Gaussian spots from learning algorithm

Eq. (21). The nonlinear activation function is same as in Fig. 3.

bars do not have individual generators. A more com-
petitive rule was proposed in Ref. 24 with consider-
ably improved performance, but it can still get stuck
at a local minimum in 31% of time.

Our proposed learning scheme can be directly ap-
plied to binary data in such a problem. In a training
data, each of the 16 possible lines are drawn with a
fixed probability, for example, %, independently from
all the others. Pixels that are part of a drawn line
have the value 0, all others are 1. The network has
16 representation units. An extra node is introduced
to account for the average brightness. The sigmoidal
nonlinearity is taken as f(r) = fye=s. First, we

tested with a generating probability % via the learn-
ing algorithm Eq. (21). Figure 7 shows the learned
weights (equalized image), which clearly reveal the
generative model they embody. Next, we changed
the generating probability to 2 and 2, respectively,
with the similar results.

Another example of multiple causes structure is
adopted from Saund,?® with nine 121-dimensional
test data samples shown in Fig. 8, which reflect
two independent processes, one of which controls the
positions of the black and white squares on the left-
hand side, the other controlling the right. Similar to
the experiment procedure in the above example, a
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(2) (b)

10

(c) (d)

Fig. 5. Learned responses of four output nodes trained on randomly placed Gaussian spots from learning rule Eq. (21).
The nonlinear activation function is same as in Fig. 3.

Fig. 7. Multiple causes representation for 2000 randomly
Fig. 6. Samples of horizontal and vertical bars in a 10x10 generated horizontal and vertical bars discovered by the
grid. Each bar is generated with probability 3. learning rule Eq. (21).
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Fig. 8. Typical 121-dimensional test data samples designed by Saund, which exhibit multiple cause structure. Independent
processes control the position of the block rectangle on the left- and right-hand sides.

Fig. 9. The corresponding multiple causes representation for 2000 randomly generated data as shown in Fig. 8.

network with six representation units (plus another
extra node for the average brightness) and sigmoidal
nonlinearity f(z) = ﬁ%;- is trained with algorithm
Eq. (21). Figure 9 demonstrated an experiment
result, showing the multiple cause representation for
these data.

4. Discussions and Conclusions

Factorially representing the environment is an im-
portant object of unsupervised learning. Factorial
codes has following advantages?®:

1. Optimal input segmentation.

2. Speeding up supervised learning.
3. Occam’s razor.

4. Novelty detection.

In addition, any factorial representation realizes
maximal information transmission (under certain
mild conditions). Learning multiple causes model is
even more challenging in the sense that it need to not
only find factorial representations, but also model
the interaction of the representations with input for
generating a set of patterns, which involve a deli-
cate balance between cooperation and competition.
Furthermore, learning multiple causes model also
implicitly emphasizes the importance of distributed
representation which expresses information by the
ensemble behavior of a collection of microfeatures.?

The principle of learning multiple cause model
is explicitly embodied in the self-supervised learn-
ing framework Helmholtz machine.25 In Helmholtz
machine, the competition and cooperation are
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realized by two coupled modules, recognition mod-
ule and generative module, with the former guiding
the self-organization degree of formed representation
and the later guiding the quality of reconstruction
from the representation. Note that the indepen-
dence criterion in recognition module is implicitly
embodied in an assumption that the hidden repre-
sentation is factorial. As been argued in Ref. 1, any
method that communicates each hidden activity sep-
arately and independently will tend to result in fac-
torial codes because any mutual information between
hidden units will cause redundancy in the communi-
cated message, so the pressure to keep the message
short will squeeze out the redundancy. Stressing the
causal relationship between the data and representa-
tion (code) from statistical inference, the Helmholtz
machine is particularly important in such areas as
source coding,.

Our learning scheme can be considered as follow-
ing the principle of Helmholtz machine?® by a much
simplified deterministic learning in an auto-encoder
network. If we consider the bottom-up connections
as the parameters of a recognition module and top-
down connections as the parameters of a generative
module, one important assumption in our learning
scheme is that these two modules should be recipro-
cal, thus making the learning much easier. However,
we would like to emphasize that the Helmholtz ma-
chine is much general, because it formulates learn-
ing as statistical inference which may underlie the
mechanism of human perception. Though the typical
task of multiple cause model of extracting horizon-
tal/vertical bars can be easily tackled by our learning
scheme, other tasks such as detecting the directions
of shift patterns which was exemplified by Helmholtz
machine is difficult to realize by our learning algo-
rithms, possibly because the balance between coop-
eration and competition in this case is more difficult
to control than the simpler horizontal/vertical bars
example. Though the Helmholtz machine performs
better for some learning tasks, our proposed scheme
for learning multiple causes model is still interest-
ing as it is based on simple constrained optimization
principle.
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