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Abstract. In this chapter, we propose to use a parametric multiplier
approach to deriving parametric Lyapunov functions for robust stabil-
ity analysis of linear systems involving uncertain parameters. This new
approach generalizes the traditional multiplier approach used in the ab-
solute stability literature where the multiplier is independent of the un-
certain parameters. Our main result provides a general framework for
studying multiaffine Lyapunov functions. We show that these Lyapunov
functions can be found using linear matrix inequality (LMI) techniques.
Some known results on parametric Lyapunov functions are shown to be
our special cases.

1 Introduction

This chapter considers robust stability analysis for linear time-invariant (LTI)
uncertain systems. Our focus is on the existence of parametric Lyapunov func-
tions. Our motivation for considering parametric Lyapunov functions stems from
two facts. First, they can offer less conservative robust stability conditions than
parameter-independent Lyapunov functions that are used in the quadratic sta-
bility theory. Secondly, they can be applied to stability analysis of systems with
time-varying parameters. In the latter case, one possible approach is to find a
parametric Lyapunov function which assures that the “frozen” uncertain system
(i.e., the uncertain system with “frozen” parameters) is robustly stable with
certain stability margin. This margin can then be used to determine the “aver-
age” time variation for the parameters that could be withstood without losing
stability.

The use of parametric Lyapunov functions can be traced back to the work
of Parks [8] who proves the Routh-Hurwitz stability condition for polynomials
directly using a Lyapunov matrix called Hermite matrix. The unique feature of
the Hermite matrix is that it is bilinear in the coefficients of the polynomial.
The well-known Popov criterion [9], when specialized to dealing with a single
constant uncertain parameter rather than sector-bounded nonlinearity, yields a
Lyapunov function which depends on the uncertain parameter affinely. In fact,
most absolute stability criteria given in the literature give, explicitly or implic-
itly, a parametric Lyapunov function when the uncertainty or nonlinearity they
consider reduces to constant uncertain parameters.



Recently, Dasgupta et. al. [2] studies the existence of parametric Lyapunov
functions for the following family of systems:

ẋ(t) = A(q)x(t) = (A0 + bcT (q))x(t), q ∈ Q (1)

where b, c(q) ∈ Rn,

Q = {q = [q1, · · · , qm]T : q−i ≤ qi ≤ q+
i } (2)

and h(q) is affine in the elements of q This type of uncertainty is called rank-1
uncertainty. It is shown in [2] that the uncertain system above is robustly stable,
i.e., stable for all q ∈ Q, if and only if there exists some constant stable matrix
F and a compatibly dimensioned vector w such that the augmented uncertain
system

˙̄x(t) = Π(q)x̄(t) =
[

F wcT (q)
0 A(q)

]
x̄(t), q ∈ Q (3)

admits a parametric Lyapunov function P (q) that depends on q multiaffinely. A
procedure for constructing F, w and P (q) is given in [2]. It is also shown how this
result is used in robust stability analysis for linear systems with time-varying
parameters. In Feron et. al. [4] and Haddad and Bernstein [5], a more general
class of uncertain matrices

A(q) = A0 +
p∑

i=1

qiAi (4)

are considered and the so-called generalized Popov criterion to generate para-
metric Lyapunov functions. This kind of uncertain systems are also studied by
Gahinet et. al. [3] using an affine Lyapunov matrix

P (q) = P0 +
p∑

i=1

qiPi (5)

where Pi, i = 0, 1, · · · , p are symmetric. In contrast to [2], the robust stability
tests given by the generalized Popov criterion and an affine Lyapunov matrix
above are conservative in general.

In this chapter, we study a more general family of uncertain system described
by

ẋ(t) = A(q)x(t) = (A0 −BD−1(q)C(q))x(t), q ∈ Q (6)

where the nominal matrix A0 ∈ Rn×n is assumed to be stable, B ∈ Rn×m is a
constant full rank matrix, m ≤ n, C(q) ∈ Rm×n and D(q) ∈ Rm×m are affine
in q as follows:

C(q) =
p∑

i=1

qiCi, D(q) = D0 +
p∑

i=1

qiDi (7)



and D(q) is invertible for all q ∈ Q. Also, we seek for a multiaffine Lyapunov
matrix P (q) = PT (q) > 0 of the following form

P (q) = P0 +
p∑

i=1

qiPi +
∑

i 6=j

qiqjPij + · · · (8)

such that

(A0 −BD−1(q)C(q))T P (q) + P (q)(A0 −BD−1(q)C(q)) < 0, ∀q ∈ Q (9)

The tool we use for establishing parametric Lyapunov functions is the multi-
plier approach, which is popularly used in the absolute stability literature. The
basic idea of this approach is to find a transfer matrix of certain structure, called
multiplier, such that the cascade of the multiplier and some transfer matrix re-
lated to the uncertain system is strictly positive real. What makes our approach
unique is the use of parametric multipliers while in the literature only constant
multipliers are used. Our main result gives a sufficient condition for the exis-
tence of a multiaffine Lyapunov function in terms of the existence of an affine
multiplier with a special structure. It turns out that this multiplier can be found
by solving a set of linear matrix inequalities (LMIs). The solution to the LMIs
automatically provides a multiaffine Lyapunov function for the given uncertain
system. We then focus on the analysis of the conservatism of the method we
propose. Two schemes have been analyzed in detail, namely, the so-called gen-
eralized Popov criterion for the multiparameter case, which has been studied by
many authors, and the so-called affine quadratic stability test (AQS test) for the
single parameter case. It is found that the former renders a constant multiplier,
and the latter results in a constant multiplier in the single parameter case and
an affine multiplier in general. Subsequently, a frequency domain interpretation
of these two schemes is given.

2 Multipliers and Robust Stability

To motivate the multiplier approach, we consider the following uncertain transfer
matrix associated with (6):

G(s, q) = C(q)(sI −A0)−1B + D(q) (10)

Lemma 1. The system (6) is stable if and only if G−1(s, q) is stable.

Proof. The characteristic polynomial of the system (6) is given by

det(sI −A0 + BD−1(q)C(q))
= det(sI −A0) det(I + (sI −A0)−1BD−1(q)C(q))
= det(sI −A0) det(I + D−1(q)C(q)(sI −A0)−1B)
= det(sI −A0) det(D−1(q)) det(D(q) + C(q)(sI −A0)−1B)

Hence, the eigenvalues of the system (6) coincides with the poles of G−1(s, q)
modulo the stable eigenvalues of A0.



In view of the result above, we are interested in finding an affine transfer
matrix, called affine multiplier, of the following form

K(s, q) = Ck(q)(sI −A0)−1B + Dk(q)
= (Ck0 +

∑p
i=1 qiCki)(sI −A0)−1B + (Dk0 +

∑p
i=1 qiDki)

(11)

such that the transfer matrix below

H(s, q) = K(s, q)G−1(s, q) (12)

is strictly positive real (SPR) for all q ∈ Q.
A few remarks are in order.

1. A direct consequence of the existence of such a multiplier is that G−1(s, q)
and hence the system (6) are robustly stable. This follows from the trivial
fact that an SPR function is stable.

2. If B and C(q) are rank 1, which is slightly more general than the uncer-
tain system (1) where D(q) = 1, the corresponding G(s, q) is a single-input
single-output transfer function depending on q affinely. That is, the numer-
ator coefficients of G(s, q) are affine in q and the denominator of G(s, q) is
parameter independent. In this case, it is known that G−1(s, q) is robustly
stable if and only if a parameter-independent multiplier K(s) (possibly with
a high order) exists to render K(s)G−1(s, q) robustly SPR; see Anderson
et. al. [1]. The parametric Lyapunov functions given in [2] are actually based
on the existence of such a multiplier. The multipliers we allow in this chapter
are more general than [2] in the sense that they are paremeter dependent but
more restrictive in the sense that they share the same A0 as G(s, q). As we
will see later, this restriction is used to assure that the multiplier will yield
a multiaffine Lyapunov matrix (8).

3. Although the multiplier approach is a frequency domain method, it has a
natural state space domain interpretation. This interpretation is achieved
using a version of the well-known Kalman-Yakubovic-Popov (KYP) Lemma
called Parametric KYP Lemma that is to be introduced in the next section.
This result is the key device for deriving a multiaffine Lyapunov function
from a affine multiplier. It is this lemma that motivates the use of parametric
multipliers.

3 Parametric KYP Lemma

This section presents a a version of the well-known KYP Lemma which is in-
strumental to dealing with systems with uncertain parameters. To prepare for
the result, we first introduce a known generalized KYP lemma by Willems [12].

Lemma2. (Generalized KYP Lemma) Given A ∈ Rn×n, B ∈ Rn×k and
symmetric Ω ∈ R(n+k)×(n+k), there exists a symmetric matrix P ∈ Rn×n such
that [

AT P + PA PB
BT P 0

]
+ Ω < 0 (13)



if and only if there exists some ε > 0 such that

[BT ((sI −A)−1)∗ I]Ω
[

(sI −A)−1B
I

]
< 0, ∀ Re[s] ≥ ε (14)

Further, if A is Hurwitz stable and the upper left n × n block of Ω is positive-
semidefinite, then P above, when exists, is positive definite.

Our desired result is given as follows:

Lemma 3. (Parametric KYP Lemma) Given matrices A ∈ Rn×n, B ∈
Rn×m, m ≤ n, a hyperrectangular set Q ⊂ Rp, a parametric matrix Ω(q) ∈
R(n+m)×(n+m) described by

Ω(q) = ΩT (q) = ΩM (q) +
p∑

i=1

q2
i Ωii (15)

where ΩM (q) is multiaffine in q and

Ωii ≥ 0, i = 1, · · · , p (16)

Then the following conditions are equivalent:

i) There exists ε > 0 such that

[BT ((sI −A)−1)∗ I]Ω(q)
[

(sI −A)−1B
I

]
< 0, ∀ Re[s] ≥ −ε (17)

for all q ∈ Q.
ii) There exists a multiaffine matrix

P (q) = PT (q) ∈ Rn×n, q ∈ Q (18)

such that

Π(q) =
[

AT P (q) + P (q)A P (q)B
BT P (q) 0

]
+ Ω(q) < 0 (19)

for all q ∈ Q.
iii) The inequality (17) holds at all vertices of Q.
iv) The inequality (19) holds at all vertices of Q.

Proof. The equivalences i)<=>iii) and ii)<=>iv) are obvious due to the as-
sumption in (16).

The implication ii)=>i) follows directly from Lemma 2. More precisely, for
each fixed q ∈ Q, there exists ε(q) > 0 such that (17) holds for all Re[s] ≥ −ε(q).
Since Q is a compact set,

ε = min
q∈Q

ε(q)

exists and is positive. Subsequently, (17) holds for Re[s] ≥ −ε.
To show iii)=>iv), we apply Lemma 2 and induction. Without loss of gener-

ality, we assume Q = [0, 1]p.



Suppose iii) holds for p = 1, i.e, Q = [0, 1]. Let P0 and P1 be any solutions
to (19) at q = 0 and q = 1, respectively. (The solutions are guaranteed to exist
by Lemma 2.) Also denote the corresponding Π(q) by Π0 and Π1. Define

P (q) = (1− q)P0 + qP1 (20)

which is affine in q, symmetric and positive definite. It is obvious that the cor-
responding Π(q) is negative definite at q = 0 or 1. That is, iv) holds for p = 1.

Suppose iii)=>iv) for p = k, we need to prove it for p = k + 1. Assume
iii) holds for p = k + 1 and write q = (qk, qk+1). Then, (17) holds for all
qk ∈ [0, 1]k, qk+1 = 0 and qk+1 = 1. By the assumption, there exists P0(qk)
and P1(qk), both multiaffine, symmetric and positive definite, such that the cor-
responding Π(q), denoted by Π0(qk) and Π1(qk), are negative definite for all
qk ∈ [0, 1]k. Now we apply the same “trick” for p = 1 again. That is, define

P (q) = (1− qk+1)P0(qk) + qk+1P1(qk) (21)

Then P (q) is multiaffine, symmetric and positive definite. Also, it is straight-
forward to verify (19) at qk ∈ [0, 1]k, qk+1 = 0 and 1, when the above P (q) is
applied. That is, iv) holds for p = k + 1.

Remark. It is important to know that the proof above gives an algorithm for
constructing the multiaffine Lyapunov matrix P (q) required for the Parametric
KYP Lemma. Alternatively, P (q) can be searched using SDP algorithms because
(19) is an LMI at each vertex of Q. The latter is efficient especially when only a
few terms of Pi, Pij , · · · are sought for.

4 Main results on parametric Lyapunov functions

Under a “convexity condition” , our main result below provides a necessary
and sufficient condition for the existence of a multiplier of the form (11). This
condition automatically renders a multiaffine Lyapunov matrix.

Theorem4. Given the uncertain system in (6), suppose there exists an affine
multiplier K(s, q) of the form (11) such that the transfer matrix H(s, q) in (15)
is SPR at all vertices of Q. In addition, the convexity condition below is satisfied:

He
[[

CT
i

DT
i

]
[Cki Dki]

]
≤ 0, i = 1, · · · , p (22)

Then, the following properties hold:

i) H(s, q) is SPR for all q ∈ Q.
ii) H(s, q) has the following n-th order realization

Hs, q) = (Ck(q)−Dk(q)D−1(q)C(q))(sI −A0 + BD−1(q)C(q))−1

×BD−1(q) + Dk(q)D−1(q)
(23)



iii) There exists a multiaffine P (q) = PT (q) of (8) to establish the robust SPR
property of H(s, q), i.e.,

Π(q) =
[

AT (q)P (q) + P (q)A(q) Π12(q)
ΠT

12(q) Π22(q)

]
< 0 (24)

holds for all q ∈ Q, where

Π12(q) = P (q)BD−1(q)− CT
k (q) + CT (q)D−T (q)DT

k (q)

Π22(q) = −(Dk(q)D−1(q) + D−T (q)DT
k (q))

iv) (24) holds for all q ∈ Q if and only if it holds at all corners of Q.
v) The same P (q) above is a Lyapunov matrix for establishing the robust sta-

bility of (6).

Conversely, if there exists P (q) of the form (8) and a multiplier K(s, q) of
the form (11) such that the convexity condition (22) is satisfied and that the LMI
(24) holds at all vertices of Q. Then, K(s, q)G−1(s, q) is SPR for all q ∈ Q.

Remark. The property iv) shows that the multiaffine Lyapunov matrix P (q) can
be searched using LMI techniques. Indeed, the matrix in (24) is linear in P0, Pi,
Pij , · · · ( defined in (8)). Subsequently, the existence of such P (q) is equivalent
to that the 2p LMIs (24), one for each corner of Q, are feasible.

Now the proof of Theorem 4 follows.

Proof. Define

Ω(q) = −
[

CT (q)
DT (q)

]
[Ck(q) Dk(q)]−

[
CT

k (q)
DT

k (q)

]
[C(q) D(q)]

Then, K(s, q)G−1(s, q) being SPR for all q ∈ Q is equivalent to the existence of
ε > 0 such that

−2He[G∗(s, q)K(s, q)] = [BT ((sI −A0)−1)∗ I]Ω(q)
[

(sI −A0)−1B
I

]
< 0

for all Re[s] ≥ −ε and q ∈ Q. Note that the quadratic terms in Ω(q) are given
by

Ωii = −2He
[[

CT
i

DT
i

]
[Cki Dki]

]
≥ 0, i = 1, · · · , p

Using Lemma 3, the SPR condition above is equivalent to the existence of a
multiaffine P (q) such that the following holds at all vertices of Q:

[
AT

0 P (q) + P (q)A0 P (q)B
BT P (q) 0

]
− 2He

[[
CT (q)
DT (q)

]
[Ck(q) Dk(q)]

]
< 0

Pre- and post-multiplying both sides by
[

I 0
−D−1(q)C(q) D−1(q)

]

and its transpose, respectively, will yield (24).



Remark. (LMI Solution) The inequalities (22) and (24) represent a finite set
of LMIs (p from (22) and 2p from (24)). These LMIs are jointly convex in
P0, Pi, Pij..., Cki and Dki. Thus, efficient LMI algorithms, such as interior point
algorithms, can be applied to compute the affine multiplier and and the associ-
ated multiaffine Lyapunov matrix.

The following result shows that the form of the affine multiplier can be sim-
plified to have one less pair of Cki, Dki. In particular, for single parameter un-
certain systems, the existence of affine multipliers is equivalent to the existence
of a constant multiplier, provided that the convexity condition mentioned above
is satisfied.

Theorem5. Given the uncertain system in (6), suppose there exists an affine
multiplier K(s, q) of the form (11) such that the transfer matrix H(s, q) in (15)
is SPR at all vertices of Q and the convexity condition in (22) is satisfied. In
addition, assume that [Cp, Dp] has rank m (full rank). Then, there exists Ep ∈
Rm×m such that

[Ckp Dkp] = Ep[Cp, Dp], Ep + ET
p ≤ 0 (25)

Further, Let

C̄ki = Cki − EpCi, D̄ki = Dki − EpDi, i = 0, 1, · · · , p− 1 (26)

and

K̄(s, q) = (C̄k0 +
p−1∑

i=1

qiC̄ki)(sI −A0)−1B + (D̄k0 +
p−1∑

i=1

qiD̄ki) (27)

Then, K̄(s, q)G−1(s, q) is SPR for all q ∈ Q. In particular, if p = 1 then the
resulting multiplier K̄(s, q) is parameter independent.

The proof of the theorem above hinges upon the following lemma:

Lemma6. Suppose A,B ∈ Rn×k, k ≤ n with rank(A) = k and

ABT + BAT ≥ 0 (28)

Then, there exists some H ∈ Rn×k such that

B = AH, rank(H) = rank(A), H + HT ≥ 0 (29)

Proof. Let T ∈ Rn×n be a nonsingular transformation matrix such that

TA =
[

Ik

0

]

and denote

B̄ =
[

B̄1

B̄2

]
= TB



Then, (28) implies
[

Ik

0

]
[B̄T

1 B̄T
2 ] +

[
B̄1

B̄2

]
[Ik 0] =

[
B̄1 + B̄T

1 B̄T
2

B̄2 0

]
≥ 0 (30)

This results in B̄2 = 0. Consequently,

TB =
[

Ik

0

]
B̄1 = TAB̄1

So, H = B̄1 and B = AH and rank(B) = rank(H). Finally, H +HT ≥ 0 follows
from (28) and the full rank property of A. So (29) holds.

Now the proof of Theorem 5 follows.

Proof. Using Lemma 6, the convexity condition (22) and the full rank property
of [Cp, Dp] imply that Ep exists to satisfy (25). Since K(s, q)G−1(s, q) is SPR
for all q ∈ Q, there exists ε > 0 such that

He[G∗(s, q)K(s, q)] > 0, Re[s] ≥ −ε, q ∈ Q

It follows that

He[G∗(s, q)K̄(s, q)] ≥ He[G∗(s, q)K̄(s, q)] + G∗(s, q)He[Ep]G(s, q)
= He[G∗(s, q)(K̄(s, q) + EpG(s, q))]
= He[G∗(s, q)K(s, q)] > 0, Re[s] ≥ −ε, q ∈ Q

Remark. The assumption that [Cp, Dp] is full rank is always satisfied for the
single parameter case. This condition, however, may not be satisfied in general.
Whenever this condition holds, the result above shows that the LMIs (22) and
(24) are simplified without any harm by setting [Ckp Dkp] = 0. It is however,
difficult to simplify further because the resulting [C̄ki, D̄ki] may not meet the
convexity condition.

Remark. The result above shows how to simplify the multiplier. But it makes
no implication that similar simplification can be made for the Lyapunov matrix.
For example, it is not claimed that a constant multiplier renders a constant
Lyapunov matrix.

5 Comparison with other schemes

Theorem 4 gives a sufficient condition for the existence of multiaffine Lyapunov
matrix that is of the same order as the plant. In this section, we show that two
other known schemes for obtaining parametric Lyapunov functions are special
cases of Theorem 4. One of these two schemes is a generalized Popov criterion
derived based on the so-called S-procedure [4, 3, 6, 5, 11], and the other is
called affine quadratic stability (AQS) test by Gahinet et. al. [3]. We show that
the former gives a parameter independent multiplier, while the latter gives a
parameter independent multiplier in the single parameter case and an affine
multiplier in general.



5.1 Generalized Popov Criterion

Consider the following system:

ẋ = (A0 +
p∑

i=1

qiAi)x (31)

Or equivalently,

ẋ = A0x +
p∑

i=1

Aiwi

yi = x

wi = qiyi, i = 1, · · · , p (32)

where q = (q1, · · · , qp) ∈ Q = [−1, 1]p (without loss of generality), A0, Ai ∈ Rn,
i = 1, · · · , p, and A0 is asymptotically stable.

The generalized Popov criterion seeks for a Lyapunov function of the follow-
ing form [3]:

V (x, t) =
1
2
xT (P0 +

p∑

i=1

qiPi)x +
p∑

i=1

(1− q2
i )

∫ t

0

yT
i Siyidτ (33)

where Si = ST
i ≥ 0 and (P0+

∑
i qiPi) = (P0+

∑
i qiPi)T > 0 for all qi ∈ [−1, 1].

Note that this function appears to be more general than an affine quadratic
Lyapunov function due to the integral terms.

The following sufficient condition is established [4, 3] which is generalized
from [5, 6, 11]:

Lemma7. The system (31) is robustly stable with the Lyapunov function (33)
if there exists symmetric matrices P0, Pd = diag{Pi}, S = diag{Si} ≥ 0 and
skew symmetric matrix T = diag{Ti} such that the following LMI is satisfied:

[
AT

0 P0 + P0A0 + CT SC P0B + AT
0 CT Pd + CT T

BT P0 + PdCA0 − TC BT CT Pd + PdCB − S

]
< 0 (34)

where B = [A1, A2, · · · , Ap] and CT = [I, I, · · · , I].

What we intend to show here is that the condition in Lemma 7, if satisfied,
will lead to a parameter independent multiplier K(s) which in turn leads to a
multiaffine Lyapunov function without an integral term (c.f. (33)). The following
is the result:

Theorem8. Consider the uncertain system (32) and suppose that the condition
in Lemma 7 is satisfied. Define ∆ = diag{qiIn}, C(q) = ∆C,

G(s, q) = I − C(q)(sI −A0)−1B (35)

K(s) = −(TC + PdCA0)(sI −A0)−1B + (S − PdCB) (36)

Then, K(s) is invertible and K(s)G−1(s, q) is SPR for all q ∈ Q.



Proof. Suppose the condition in Lemma 7 holds. A straightforward application
of Lemma 3 yields

G∗(s)SG(s)− S + (sPd + T )G(s) + G∗(s)(sPd + T )∗ < 0, ∀ Re[s] ≥ −ε

for some ε > 0, where G(s) = C(sI −A0)−1B.
Define

X(s) = S + G∗(s)(sPd + T )

Y (s) = G∗(s)SG(s)− S + (sPd + T )G(s) + G∗(s)(sPd + T )∗

It is straightforward to verify that

X(s)G(s, q) + G∗(s, q)X∗(s)
= −Y (s) + G∗(s)S1/2(I −∆∗∆)S1/2G(s)

+(S1/2 −∆S1/2G(s))∗(S1/2 −∆S1/2G(s))
≥ −Y (s) > 0, ∀ Re[s] ≥ −ε, ∆

That is,
He[(S + G∗(s)(sPd + T ))G(s, q)] > 0, ∀ Re[s] ≥ −ε (37)

holds for all ∆. The idea above is in fact borrowed from [7]. It is straightforward
to verify that an alternative representation of K(s) in (36) is given by

K(s) = S − (sPd + T )C(sI −A0)−1B

Noting that S and Pd are symmetric and T is skew symmetric, (37) is equivalent
to

He[G∗(s, q)K(s)] = He[K∗(s)G(s, q)] > 0, ∀ Re[s] ≥ −ε

That is, K(s)G−1(s, q) is SPR for all q ∈ Q.

Remark. Note that the Lyapunov function in (33) involves integral terms. How-
ever, the existence of a multiplier K(s) in (36) implies that an alternative Lya-
punov function can be found which does not involve integral terms. This claim
follows from the property iv) in Theorem 4. The tradeoff is that the new Lya-
punov function may involve multiaffine terms. But in the special case where
p = 1, we can conclude that the Lyapunov function obtained using Theorems 8
and 4 is affine.

5.2 The Affine Quadratic Stability (AQS) Test

Consider the uncertain system (31) and the affine Lyapunov matrix

P (q) = P0 +
p∑

i=1

qiPi (38)



The AQS test proposed in Gahinet et. al. [3] amounts to finding such P (q) that
the following two conditions are satisfied:

(A0 +
p∑

i=1

qiAi)T P (q) + P (q)(A0 +
p∑

i=1

qiAi) < 0, ∀ qi = ±1; (39)

AT
i Pi + PiAi ≥ 0, ∀ i = 1, · · · , p (40)

The use of the constraint (40), which adds to the conservatism of the method,
is to assure that (39) holds for all q ∈ Q. The AQS test requires to solve the set
of LMIs above.

The result below gives an interpretation of the AQS in terms of the multiplier
approach.

Theorem9. Given the uncertain system (31). Suppose there exists an affine
Lyapunov matrix of the form (38) such that (39) holds. Define

G(s, q) = I − (
p∑

i=1

qiAi)(sI −A0)−1 (41)

and

K(s, q) = (P0 +
p∑

i=1

qiPi)(sI −A0)−1 (42)

Then, K(s, q)G−1(s, q) is SPR for all q ∈ Q. The convexity condition for K(s, q)
as stated in Theorem 4 holds when (40) is satisfied.

Further, for the single parameter case, let A1 be decomposed into

A1 = BC (43)

where B ∈ Rn×m, C ∈ Rm×n are full rank matrices and m ≤ n. Then, there
exists some H ∈ Rk×k such that

BT P1 = HC, rank(H) = rank(BT P1), H + HT ≥ 0 (44)

and K̄(s)Ḡ(s, q)−1 is SPR for all q ∈ [−1, 1], where

Ḡ(s, q) = I − qC(sI −A0)−1B (45)

and
K̄(s) = BT P0(sI −A0)−1B + H (46)

Proof. The properties about K(s, q)G−1(s, q) are trivial. The existence of H
follows from Lemma 6. To show that K̄(s)Ḡ−1(s, q) is SPR for all q ∈ [−1, 1],
we take p = 1 and note that (39) implies the existence of ε > 0 such that

He[(sI −A0 − qBC)∗(P0 + qP1)] > 0, ∀ Re[s] ≥ −ε, q ∈ [−1, 1]



Pre- and post-multiplying the above by the full rank matrix (sI −A0)B and its
Hermitian gives

He[Ḡ∗(s, q)(BT P0(sI −A0)−1B + qBT P1(sI −A0)−1B))] > 0

Using (44), the above becomes

0 < He[Ḡ∗(s, q)(BT P0(sI −A0)−1B + qHC(sI −A0)−1B)]
= He[Ḡ∗(s, q)(BT P0(sI −A0)−1B + H −HḠ(s, q))]
≤ He[Ḡ∗(s, q)(BT P0(sI −A0)−1B + H)]
= He[(Ḡ∗(s, q)K̄(s)], ∀ Re[s] ≥ −ε, q ∈ [−1, 1]

So K̄(s)Ḡ−1(s) is SPR for all q ∈ [−1, 1].

6 Generalization to Discrete-time Systems

Consider the uncertain discrete-time system:

x(k + 1) = A(q)x(k) = (A0 + BD−1(q)C(q))x(k) (47)

where all the entries are the same as in the continuous time case. Searching for
parametric Lyapunov functions in the discrete-time case seems more involved
than in the continuous-time case. The reason is that the stability requirement
in the discrete-time case becomes finding P (q) = PT (q) > 0 such that

AT (q)P (q)A(q)− P (q) < 0, ∀ q ∈ Q (48)

Even when A(q) and P (q) are both affine, the inequality above involves cubic
terms. Alternatively, the following equivalent condition to (48) can be analyzed:

[−P (q) AT (q)
A(q) −P−1(q)

]
< 0 (49)

This condition is often used for quadratic stability analysis when P (q) is re-
stricted to be constant. When parametric Lyapunov matrices are in considera-
tion, the condition (49) again seems to be powerless because P−1(q) is nonlinear
in q.

In this section, we show that the multiplier idea studied in previous sec-
tions can be generalized to discrete-time systems with ease. We first introduce
a counterpart of the Parametric KYP Lemma for the discrete-time.

Lemma 10. (Discrete-time Parametric KYP Lemma) Given matrices A,B,
Ω(q), Q as in Lemma 2. Then the following two conditions are equivalent:

i) There exists 0 < ε < 1 such that

[BT ((zI −A)−1)∗ I]Ω(q)
[

(zI −A)−1B
I

]
< 0,

∀ |z| ≥ 1− ε, q ∈ Q
(50)



ii) There exists a multiaffine matrix

P (q) = PT (q) ∈ Rn×n, q ∈ Q (51)

such that

Π(q) =
[

AT P (q)A− P (q) AT P (q)B
BT P (q)A BT P (q)B

]
+ Ω(q) < 0 (52)

for all q ∈ Q.
iii) The inequality (50) holds at all vertices of Q;
iv) The inequality (52) holds at all vertices of Q.

Proof. The proof is essentially the same and is based on a discrete-time version
of Lemma 2. So the details are omitted.

Applying the lemma above, the counterpart of Theorem 4 is easily obtained.

Theorem11. Given the uncertain system in (47), suppose there exists an affine
multiplier K(z, q) of the form (11) such that the transfer matrix H(z, q) in (12) is
SPR at all vertices of Q. In addition, the convexity condition in (22) is satisfied.
Then, the following properties hold:

i) H(z, q) is SPR for all q ∈ Q.
ii) H(z, q) has the following n-th order realization

H(z, q) = (Ck(q)−Dk(q)D−1(q)C(q))(zI −A0 + BD−1(q)C(q))−1

×BD−1(q) + Dk(q)D−1(q)
(53)

iii) There exists a multiaffine P (q) = PT (q) to establish the robust SPR property
of H(z, q), i.e.,

Π(q) =
[

AT (q)P (q)A(q)− P (q) Π12(q)
ΠT

12(q) Π22(q)

]
< 0 (54)

holds for all q ∈ Q, where

Π12(q) = AT (q)P (q)BD−1(q)− CT
k (q) + CT (q)(DT )−1(q)DT

k (q)

Π22(q) = (DT )−1BT P (q)BD−1(q)− 2He[Dk(q)D−1(q)]

iv) The same P (q) above is a Lyapunov matrix for establishing the robust sta-
bility of (47).

Conversely, suppose there exists P (q) of the form (8) and a multiplier K(z, q)
of the form (11) such that the convexity condition (22) is satisfied and that the
LMI (54) holds at all vertices of Q. Then, K(z, q)G−1(z, q) is SPR for all q ∈ Q.

Proof. The proof is virtually identical to the continuous-time case. The details
are thus omitted.

Remark. Note that, as in the continuous time case, (54) is affine in P0, Pi, Pij ,
· · ·, Cki, Dki. Hence, finding a multiaffine Lyapunov matrix P (q) amounts to
solving a finite number of LMIs (p for (22) and 2p for (54) at the vertices of Q).



7 Conclusions

In this chapter, we have studied the use of the multiplier approach to generate
parametric Lyapunov functions for linear systems with parameter uncertainty. In
the process of doing so, we have derived an extended version of the KYP lemma,
parametric KYP lemma, as a general tool to study the robust stability with
parameter uncertainty. Using this lemma, we have provided conditions under
which an affinely parameterized multiplier exists to establish the robust stability
of the uncertain system. This type of parametric multiplier then naturally leads
to a multiaffine Lyapunov function that can be used to establish robust stability
in the state space domain. Although not studied in this chapter, we point out that
parametric Lyapunov functions can also be used in dealing with time-varying
parameters; see [2]. Also shown in this chapter is that some previous results in
the literature on parametric Lyapunov functions lead to special multipliers. This
analysis confirms the generality of our approach. We have also demonstrated the
ease of adapting our approach to discrete-time systems despite of the observation
that uncertain parameters in the discrete-time case appear to be harder to deal
with.
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