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Abstract

This paper studies the structured singular value (1) prob-
lem with real parameters bounded by an ¢, norm. Our
main result shows that this generalized p problem is NP-
hard for any given rational number p € [1, oc], when-
ever k, the size of the smallest repeated block, exceeds 1.
This result generalizes the known result that the conven-
tional p problem (with p = 00) is NP-hard. However, our
proof technique is different from the known proofs for the
p = oo case as these proofs do not generalize to p # oo.
For k = 1 and p = oo, the p problem is known to be
NP-hard. We provide an alternative proof of this result.
For £ = 1 and p finite the issue of NP-hardness remains
unresolved. When every block has size 1, and p = 2 we
outline some potential difficulties in computing pu.

1 Introduction

The problem of real structured singular value (real )
arises in many robust control problems where the control
system is subject to uncertain parameters. See, e.g., [3,
4,5, 7, 2] for motivations and references.

Given a matrix M € C™*" and a set A described by

A = {A = diag{&lfkl,- . -,(Smfkm} | 61 c R},

ki >0, zm:k'i:n
i=1

the real p problem is to compute the value of pa (M).
This value is defined to be 0 if I,, — AM is nonsingular

(1)
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for all A € A, or otherwise

pa(M) = (inf{a>0| det(l, — AM)=0,
16]loc < @})~! (2)
where || - || denotes the ¢o, norm and
0 = diag{d1,---,0m}- (3)

Henceforth m will denote the size of the problem. It
is known that the problem of determining if ua (M) < 1
is NP hard, see Poljak and Rohn [9], Braatz et. al. [1],
Nemirovskii [8], and Coxson and DeMarco [2]. This neg-
ative result means that finding an algorithm for com-
puting pa (M) is very unlikely if the algorithm is forced
to require a number of computations that rises at most
polynomially in m, i.e. the problem can be solved in
polynomial time.

In this paper, we study a generalized p problem by
allowing the norm on J§ to be an ¢, norm for any p €
[1,00]. More precisely, given M, A, and p € [1,00], we
define pa (M) to be zero if I, — AM is nonsingular for
all A € A, or otherwise

fia (M) (inf{a > 0 | det(I, — AM) =0,

8], < o))"

(4)

For simplicity, we will denote pa ,(M) by pp. Our ob-
jective is to analyze the computational complexity of the
[tp problem.

One might hope that the techniques used in [9, 1, 2] for
showing the NP-hardness of the po, problem is general-
izable to the p, case. Unfortunately, this is not the case.
Examining [9, 1, 8, 2], we find that all the NP-hardness
proofs for the po, problem rely (directly or indirectly)
on a well-known fact that the following quadratic pro-
gram is NP-hard for p = oo: Given a positive-definite
and symmetric rational matrix ), determine if

max z7Qz <1
llz|lp<1

()
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See Vavasis [10, Exercise 4.3, p. 101]. However, when
p # 00, it is not clear whether the problem remains NP-
hard. Further, it is known that for p = 2 the quadratic
program above is in the class of P, i.e. a ploynomial time
algorithm can be formulated to provide its solution; see
Ye [11] for such an algorithm. Hence, a new technique
is needed to investigate the computational complexity of
the p,, problem. The difficulty with the yu, problem, p #
00, is that there is a single constraint on § rather than
multiple constraints as in the p, case.

2 Main Result

Despite the differences between the p, problem and the
1y problem, p # oo, as discussed above, we still have a
negative result for the latter.

To explain this negative result, we define &
min{ky, -, ky,}, which is the smallest size of the re-
peated blocks, and denote p, by pp(k), an explicit func-
tion of k. Then, our main result is as follows:

Theorem 1 Given any (fited) k > 2 andp € [1, o), the
problem of determining if pp(k) < 1 is NP-hard. Further,
the problem of determining if poo(1) < 1 is also NP-hard.

Proof. Asin almost all NP-hardness analysis cases, our
basic idea is to polynomially transform a known NP-hard
problem to the problem of determining if 41, (k) < 1. Two
problems are said to be related by a polynomial transfor-
mation if (i) a polynomial number of operations can be
used to transform the first problem to the second; and
(ii) the size of the first depends polynomially on the size
of the second. The p, and jio statements in the thoerem
are proved separately in two parts.

Part 1: We start with the following NP-hard problem.

The 0-1 Knapsack Problem: Given an integer vector
¢ = (c1," +,cm)T, determining if there exists a binary
vector = (21, -, xm) T € {—1, 1}™ such that ¢Tz = 0.

It is well-known that the Knapsack problem is NP-
hard; see, e.g., Garey and Johnson [6].

Let ¢ be the integer vector in the Knapsack problem.
Denote p = 3/a,where o and 3 are coprime positive in-
tegers. Without loss of generality, we assume that the
size m of the Knapsack problem is such that the num-
ber (2m)~'/P is rational. If this is not the case, one
can augment enough number of zero components to the
vector ¢ such that the new size, say m, is such that
(2r)~1/? is rational. One particular choice of 77 is given
by 1 = (2m)?/2. Note that such augmentation does not
alter the solvability of the Knapsack problem and that
the new size m is polynomial in m.

Define n = 2m and

]Zcz

m+z

+ Z [(3i + Omti)?® + (6i0myi +d*)?], (6)
i=1

where j = /=1, 6 = (01,---,6,)" and d = (2m)~"/? > 0.

Obviously, necessary and sufficient conditions for
f(8) =0 for some § € R™ are that
5i:_§m+ia |5l|=d, Z':l,---,m (7)
and
Z CZ'(SZ' =0 (8)
i=1

by

we know that the Knapsack problem has a solution = €
{—1, 1} if and only if f(6) = 0 for some ||d]|, < 1.
Since the former problem is NP-hard, it follows that the
problem of determining if f;(d) # 0 for all ||6]], < 1 is
NP-hard.

Now we need to transform f(4) to some det(I — AM)
with k = 2. Define for all i € {1,---,m}:

gi=[-1 1—d"+je & 1-d"

hi=[1 dpmyi —1-2d*—jer 1]
and
1 —6mti O 0
0 1 0 0
Di=| 1 1 —2d* -1
0 1 0 1
Further define
0 |91 9 " 9nm
hi | Dy
A@G) =] p, D
hm Dm
Observe, for each i € {1,---,m}
Further
’D;lhi
1 Omti 0 0
, 0 1 0 0
= g; o o hz
¢ —0; _6i5m+i —2d°—2 1 2d°+1
0 -1 0 1

€i(6; = Omti) + (i + Omti)” + (0:0mi + d°)*.

3453



Thus,
- gD h
i=1

m

i i = i)
i=1

+D [0+ 0msi)” + (Bibmri + d°)°]

=1

f(9).

Since each d; appears in only two rows in A(d) and that
too in an affine fashion, for each i € {1,---,2m},

e [0

det(A(6))

< 2.
8(52 :|_2

Thus we can write A(d) as follows:

2m
A(0) = Ag = Y _8:BiCF

i=1

9)

where B; and C; are matrices with two columns only.
Further,

det A(0) = £(0) = id“ =md' £0

=1

It follows that
2m
f(8) = det A(0) det (1 - Z Ji(AolBi)CiT>
=1

Let

B:[Angl A6132m]§ C=[Cy - Con];

M =C"B; A =diag{dL5, ---, Samlz}

Then,
f(6) = md* det(I — BAC") = md" det(I — AM)

So, det(I — AM) # 0 for all ||d]|, < 1 if and only if
f(6) # 0 for all ||0]], < 1, which is NP-hard to determine.
Hence, the problem of determining p,(k) < 1 is NP-hard
for all k; = 2 and rational p > 1. The fact that the same
applies when the k; > 2, follows by taking the above
constructed M and suitably augmenting it with zero rows
and columns.

Part 2: The proof that the problem of determining if
loo (1) < 1is NP-hard can be found in [8]. A similar proof
is included below for completeness. Take the quadratic
program in (5). We first argue that for any positive semi-
definite symmetric @,

2T Qx =

T
= max ' Qy (10)
[[2]oo <1, ]|yl o0 <1

max
l[z]lo<1

This is easily shown because

T T
Qe S mas T
T NL/2 o \1)2
S i (1R (v ey)
T 1/2 T 1/2
S e, Q' max (vTQu)Y
— T
T el ” Qx

Next, we define
-(;)
Y
1 =

a=() 5h).

with @) positive definite symmetric. Then,

1—2zTQy
det Q

and
T

det A(d) =

It follows that (5) holds if and only if

det AB) # 0, ¥ |0l <1 (11)
As done in Step 1, it is straightforward to construct M
and A such that

det A(9) = det A(0) det(I — AM)

Further, since each z; or y; appears in at most one row
in A(9), the resulting A has k; = -+ = kogy, = 1. Then
by suitably augmenting the M matrix by zero rows and
columns, if need be, it follows that the problem of deter-
mining if (1) < 1 is NP-hard. O

3 Some Remarks

The result in Theorem 1 leaves one question unanswered:
Is the problem of determining whether p,(1) < 1 NP-
hard for p # oo? In the following, we offer some remarks
on this problem when p = 2 and every k; = 1.

First, we note that f(d) = det(I — AM) is a multilin-
ear function in § when k& = 1. If either i) f(d) is real
and bilinear in §; or ii) f(4) is complex and linear in d;,
then checking if p2(1) < 1 is a special quadratic problem
with p = 2. In these cases, the problem has polynomial
complexity (provided that M is rational), as pointed out
in Section 1. Unfortunately, this observation does not
generalize.

Secondly, we define the unit ball

B={d:]l9]l: <1} (12)

F(B) = {det(I — AM) : § € B} € R? (13)

and use the symbol 9(X) to denote the boundary of a set
X. We ask the following question: Is 0F(B) C F(0B)?
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The motivation of this question is simple because an af-
firmative answer to this question would make it sufficient
to consider OB alone to solve the ps(1) problem. Unfor-
tunately, the following example shows that the answer is
negative.

Example: Take

M o= 0.3846 + 1.9231:  0.0769 + 1.3846: (14)
- 0.3846 + 1.92317 —1.9231 + 0.3846%
A = diag{dl, (52} (15)

Both F'(B) and F(0B) are illustrated in Figure 1 by
dots and asterisks, respectively. It is clear that OF (B) ¢
F(9B) in this case. Also observed in this example is that
0 € F(B) but 0 ¢ F(OB).

=) = ~

|
-

Imaginary part of det (I - Delta M)

-15 . 0.5 1 1.5
Real part of det (I - Delta M)

4 Conclusion

Our main result shows that the generalized p problem
is NP-hard regardless what [, norm is used to measure
the uncertainty block, as long as the minimum block size
is 2. Thus, the difficulty in computing g is not unique
to the [, measure of the uncertainty. The case when
k = 1 remains unsolved apart from the usual p problem
(p = 00). A nice feature of a subset of this case, namely
when each k; = 1, is that det(I — AM) is multilinear in
0. Nevertheless, difficulties exist in dealing even with this
special case, as illustrated in the example in Section 3.

References

[1] R. P. Braatz, et. al., “Computational complexity of
p calculation,” IFEE Trans. Auto. Contr., vol. 39,
no. 5, pp. 1000-1002, May 1994.

[2] G. E. Coxson and C. L. DeMarco, “The computa-
tional complexity of approximating the minimal per-
turbation scaling to achieve instability in an interval

matrix,” Mathematics of Control, Signals, and Sys-
tems, vol. 7, No. 4, pp. 279-292, 1994.

[3] J. C. Doyle, “Analysis of feedback systems with
structured uncertainties,” Proc. IEE, pt. D, vol. 129,
pp. 240-250, 1982.

[4] M. K. H. Fan, A. L. Tits and J. C. Doyle, “Robust-
ness in the presence of mixed parametric uncertainty
and unmodelled dynamics,” IEEE Transactions on
Automatic Control, vol. 36, no. 1, pp. 25-38, 1991.

[5] M. Fu and N. E. Barabanov, “Improved upper
bounds for mixed p,” Proc. 34th Conference on De-
cision and Control, New Orleans, December, 1995.

[6] M. R. Garey and D. S. Johnson, Computers and in-
tractability: A guide to NP-completeness, New York:
W. H. Freeman, Co., 1983.

[7] G.Meinsma, Y. Shrivastava and M. Fu, “Some prop-
erties of an upper bound of p,” 1995. To appear in
IEEE Trans. Auto. Contr..

[8] A. Nemirovskii, “Several NP-hard problems arising
in robust stability analysis,” Math. Control Signals
Systems, vol. 6, pp. 99-105, 1993.

[9] S. Poljak and J. Rohn, “Checking robust nonsingu-
larity is NP-hard,” Math. Control Signals Systems,
vol. 6, pp. 1-9, 1993.

[10] S. A. Vavasis, Nonlinear Optimization: Complexity
Issues, Oxford University Press, N. Y., 1991.

[11] Y. Ye, “On affine scaling algorithms for nonconvex
quadratic programming,” Mathematical Program-
ming vol. 56, pp. 285-300, 1992.

3455



		2015-04-08T10:43:19-0400
	Certified PDF 2 Signature




