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Abstract

This paper studies the structured singular value (�) prob-
lem with real parameters bounded by an `p norm. Our
main result shows that this generalized � problem is NP-
hard for any given rational number p 2 [1; 1], when-
ever k, the size of the smallest repeated block, exceeds 1.
This result generalizes the known result that the conven-
tional � problem (with p =1) is NP-hard. However, our
proof technique is di�erent from the known proofs for the
p = 1 case as these proofs do not generalize to p 6= 1.
For k = 1 and p = 1, the � problem is known to be
NP-hard. We provide an alternative proof of this result.
For k = 1 and p �nite the issue of NP-hardness remains
unresolved. When every block has size 1, and p = 2 we
outline some potential di�culties in computing �.

1 Introduction

The problem of real structured singular value (real �)
arises in many robust control problems where the control
system is subject to uncertain parameters. See, e.g., [3,
4, 5, 7, 2] for motivations and references.

Given a matrix M 2 Cn�n and a set � described by

� = f� = diagf�1Ik1 ; � � � ; �mIkmg j �i 2 Rg ;

ki > 0;

mX
i=1

ki = n (1)

the real � problem is to compute the value of ��(M).
This value is de�ned to be 0 if In ��M is nonsingular
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for all � 2�, or otherwise

��(M) = (inff� > 0 j det(In ��M) = 0;

jj�jj1 � �g)�1 (2)

where jj � jj1 denotes the `1 norm and

� = diagf�1; � � � ; �mg: (3)

Henceforth m will denote the size of the problem. It
is known that the problem of determining if ��(M) < 1
is NP hard, see Poljak and Rohn [9], Braatz et. al. [1],
Nemirovskii [8], and Coxson and DeMarco [2]. This neg-
ative result means that �nding an algorithm for com-
puting ��(M) is very unlikely if the algorithm is forced
to require a number of computations that rises at most
polynomially in m, i.e. the problem can be solved in
polynomial time.
In this paper, we study a generalized � problem by

allowing the norm on � to be an `p norm for any p 2
[1;1]. More precisely, given M;�, and p 2 [1;1], we
de�ne ��;p(M) to be zero if In ��M is nonsingular for
all � 2�, or otherwise

��;p(M) = (inff� > 0 j det(In ��M) = 0;

jj�jjp � �g)�1 (4)

For simplicity, we will denote ��;p(M) by �p. Our ob-
jective is to analyze the computational complexity of the
�p problem.
One might hope that the techniques used in [9, 1, 2] for

showing the NP-hardness of the �1 problem is general-
izable to the �p case. Unfortunately, this is not the case.
Examining [9, 1, 8, 2], we �nd that all the NP-hardness
proofs for the �1 problem rely (directly or indirectly)
on a well-known fact that the following quadratic pro-
gram is NP-hard for p = 1: Given a positive-de�nite
and symmetric rational matrix Q, determine if

max
jjxjjp�1

xTQx < 1 (5)
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See Vavasis [10, Exercise 4.3, p. 101]. However, when
p 6=1, it is not clear whether the problem remains NP-
hard. Further, it is known that for p = 2 the quadratic
program above is in the class of P, i.e. a ploynomial time
algorithm can be formulated to provide its solution; see
Ye [11] for such an algorithm. Hence, a new technique
is needed to investigate the computational complexity of
the �p problem. The di�culty with the �p problem, p 6=
1, is that there is a single constraint on � rather than
multiple constraints as in the �1 case.

2 Main Result

Despite the di�erences between the �1 problem and the
�p problem, p 6= 1, as discussed above, we still have a
negative result for the latter.
To explain this negative result, we de�ne k =

minfk1; � � � ; kmg, which is the smallest size of the re-
peated blocks, and denote �p by �p(k), an explicit func-
tion of k. Then, our main result is as follows:

Theorem 1 Given any (�xed) k � 2 and p 2 [1; 1), the
problem of determining if �p(k) < 1 is NP-hard. Further,
the problem of determining if �1(1) < 1 is also NP-hard.

Proof. As in almost all NP-hardness analysis cases, our
basic idea is to polynomially transform a known NP-hard
problem to the problem of determining if �p(k) < 1. Two
problems are said to be related by a polynomial transfor-
mation if (i) a polynomial number of operations can be
used to transform the �rst problem to the second; and
(ii) the size of the �rst depends polynomially on the size
of the second. The �p and �1 statements in the thoerem
are proved separately in two parts.

Part 1: We start with the following NP-hard problem.

The 0-1 Knapsack Problem: Given an integer vector
c = (c1; � � � ; cm)T , determining if there exists a binary
vector x = (x1; � � � ; xm)T 2 f�1; 1gm such that cTx = 0.

It is well-known that the Knapsack problem is NP-
hard; see, e.g., Garey and Johnson [6].
Let c be the integer vector in the Knapsack problem.

Denote p = �=�,where � and � are coprime positive in-
tegers. Without loss of generality, we assume that the
size m of the Knapsack problem is such that the num-
ber (2m)�1=p is rational. If this is not the case, one
can augment enough number of zero components to the
vector c such that the new size, say m̂, is such that
(2m̂)�1=p is rational. One particular choice of m̂ is given
by m̂ = (2m)�=2. Note that such augmentation does not
alter the solvability of the Knapsack problem and that
the new size m̂ is polynomial in m.
De�ne n = 2m and

f(�) = j

mX
i=1

ci(�i � �m+i)

+

mX
i=1

�
(�i + �m+i)

2 + (�i�m+i + d2)2
�
; (6)

where j =
p�1, � = (�1; � � � ; �n)T and d = (2m)�1=p > 0.

Obviously, necessary and su�cient conditions for
f(�) = 0 for some � 2 Rn are that

�i = ��m+i; j�ij = d; i = 1; � � � ; m (7)

and
mX
i=1

ci�i = 0 (8)

Relating xi in the Knapsack problem to �i, i = 1; � � � ;m,
by

xi =
�i

d

we know that the Knapsack problem has a solution x 2
f�1; 1gm if and only if f(�) = 0 for some jj�jjp � 1.
Since the former problem is NP-hard, it follows that the
problem of determining if f1(�) 6= 0 for all jj�jjp � 1 is
NP-hard.

Now we need to transform f(�) to some det(I ��M)
with k = 2. De�ne for all i 2 f1; � � � ;mg:

gi = [�1 1� d4 + jc1 �i 1� d4]0

hi = [1 �m+i � 1� 2d2 � jc1 1]0

and

Di =

0
BB@

1 ��m+i 0 0
0 1 0 0
�i 1 1 �2d2 � 1
0 1 0 1

1
CCA :

Further de�ne

A(�) =

0
BBBBBBB@

0 g01 g02 � � � g0m

h1 D1

h2 D2

...
. . .

hm Dm

1
CCCCCCCA
:

Observe, for each i 2 f1; � � � ;mg

det(Di) = 1:

Further

g0iD
�1
i hi

= g0i

0
BB@

1 �m+i 0 0
0 1 0 0
��i ��i�m+i � 2d2 � 2 1 2d2 + 1
0 �1 0 1

1
CCAhi

= ci(�i � �m+i) + (�i + �m+i)
2 + (�i�m+i + d2)2:
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Thus,

det(A(�)) = �
mX
i=1

g0iD
�1
i hi

= j

mX
i=1

ci(�i � �m+i)

+

mX
i=1

�
(�i + �m+i)

2 + (�i�m+i + d2)2
�

= f(�):

Since each �i appears in only two rows in A(�) and that
too in an a�ne fashion, for each i 2 f1; � � � ; 2mg,

rank

�
@A(�)

@�i

�
� 2:

Thus we can write A(�) as follows:

A(�) = A0 �
2mX
i=1

�iBiC
T
i (9)

where Bi and Ci are matrices with two columns only.
Further,

detA(0) = f(0) =

mX
i=1

d4 = md4 6= 0

It follows that

f(�) = detA(0) det

 
I �

2mX
i=1

�i(A
�1
0
Bi)C

T
i

!

Let

B =
�
A�1
0
B1 � � � A�1

0
B2m

�
; C = [C1 � � � C2m] ;

M = CTB; � = diagf�1I2; � � � ; �2mI2g
Then,

f(�) = md4 det(I �B�CT ) = md4 det(I ��M)

So, det(I � �M) 6= 0 for all jj�jjp � 1 if and only if
f(�) 6= 0 for all jj�jjp � 1, which is NP-hard to determine.
Hence, the problem of determining �p(k) < 1 is NP-hard
for all ki = 2 and rational p � 1. The fact that the same
applies when the ki � 2, follows by taking the above
constructedM and suitably augmenting it with zero rows
and columns.

Part 2: The proof that the problem of determining if
�1(1) < 1 is NP-hard can be found in [8]. A similar proof
is included below for completeness. Take the quadratic
program in (5). We �rst argue that for any positive semi-
de�nite symmetric Q,

max
jjxjj1�1

xTQx = max
jjxjj1�1;jjyjj1�1

xTQy (10)

This is easily shown because

max
jjxjj1�1

xTQx � max
jjxjj1�1;jjyjj1�1

xTQy

� max
jjxjj1�1;jjyjj1�1

�
xTQx

�1=2 �
yTQy

�1=2
� max

jjxjj1�1
(xTQx)1=2 max

jjyjj1�1
(yTQy)1=2

= max
jjxjj1�1

xTQx

Next, we de�ne

� =

�
x

y

�

and

A(�) =

�
1 xT

y Q�1

�
;

with Q positive de�nite symmetric. Then,

detA(�) =
1� xTQy

detQ
:

It follows that (5) holds if and only if

detA(�) 6= 0; 8 jj�jj1 � 1 (11)

As done in Step 1, it is straightforward to construct M
and � such that

detA(�) = detA(0) det(I ��M)

Further, since each xi or yi appears in at most one row
in A(�), the resulting � has k1 = � � � = k2m = 1. Then
by suitably augmenting the M matrix by zero rows and
columns, if need be, it follows that the problem of deter-
mining if �1(1) < 1 is NP-hard.

3 Some Remarks

The result in Theorem 1 leaves one question unanswered:
Is the problem of determining whether �p(1) < 1 NP-
hard for p 6=1? In the following, we o�er some remarks
on this problem when p = 2 and every ki = 1.
First, we note that f(�) = det(I ��M) is a multilin-

ear function in � when k = 1. If either i) f(�) is real
and bilinear in �i or ii) f(�) is complex and linear in �i,
then checking if �2(1) < 1 is a special quadratic problem
with p = 2. In these cases, the problem has polynomial
complexity (provided that M is rational), as pointed out
in Section 1. Unfortunately, this observation does not
generalize.
Secondly, we de�ne the unit ball

B = f� : jj�jj2 � 1g (12)

F (B) = fdet(I ��M) : � 2 Bg 2 R2 (13)

and use the symbol @(X) to denote the boundary of a set
X . We ask the following question: Is @F (B) � F (@B)?
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The motivation of this question is simple because an af-
�rmative answer to this question would make it su�cient
to consider @B alone to solve the �2(1) problem. Unfor-
tunately, the following example shows that the answer is
negative.
Example: Take

M =

�
0:3846+ 1:9231i 0:0769+ 1:3846i
0:3846+ 1:9231i �1:9231+ 0:3846i

�
;(14)

� = diagf�1; �2g (15)

Both F (B) and F (@B) are illustrated in Figure 1 by
dots and asterisks, respectively. It is clear that @F (B) 6�
F (@B) in this case. Also observed in this example is that
0 2 F (B) but 0 62 F (@B).
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4 Conclusion

Our main result shows that the generalized � problem
is NP-hard regardless what lp norm is used to measure
the uncertainty block, as long as the minimum block size
is 2. Thus, the di�culty in computing � is not unique
to the l1 measure of the uncertainty. The case when
k = 1 remains unsolved apart from the usual � problem
(p =1). A nice feature of a subset of this case, namely
when each ki = 1, is that det(I ��M) is multilinear in
�. Nevertheless, di�culties exist in dealing even with this
special case, as illustrated in the example in Section 3.
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