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It can be shown thatkLPk1 > 1 for h > 0:115. Hence the test fails
to detect the stability of this uncertain delay system.

IV. CONCLUSIONS

All results presented in the previous section can be generalized to
synthesis of uncertain delay systems. In fact, we can also include other
types of uncertainties and disturbances easily using the general linear
fractional framework [24]. It is also clear that the problems consid-
ered in [4] and [11]–[14] are special cases in our framework. Some
additional details can be found in [6]. We would also like to point out
that many other control problems, such as the guaranteed cost control
problem considered in [3] and [13], can be easily handled using this
framework. Finally, we would like to point out that in our opinion, one
should only use these conservative conditions derived in this paper or
other papers for robust synthesis purpose rather than for checking the
stability of uncertain delay systems, which can be done more accurately
by using methods like that in [1]. It is also obvious that other approxi-
mation methods can be used to obtain possibly improved bounds. We
shall not pursue this issue further here.
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Computational Complexity of Real Structured Singular
Value in Setting

Minyue Fu and Soura Dasgupta

Abstract—This paper studies a generalized real structured singular
value ( ) problem where uncertain parameters are bounded by an
norm. Two results are presented. The first one shows that this generalized

problem is NP-hard for any given rational number [1 ]. The
NP-hardness holds as long as , the size of the largest repeated block,
exceeds one. This result generalizes the known NP-hardness result for
the conventional problem (with = ). Our second result, which
strengthens the first one, considers the approximability problem of the
generalized . We show that the problem of obtaining an estimate for the
generalized with some guaranteed bound on the relative error remains
to be NP-hard, regardless how large this bound is.

Index Terms—Computational complexity, robust control, robustness
analysis, structured singular value.

I. INTRODUCTION

The problem of real structured singular value (real�) arises in many
robust control problems where the control system is subject to uncer-
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tain parameters; see, e.g., [4]–[7], [9], and [16], for motivations and
references.

Given a matrixM 2 C
n�n and a set� described by

� = f� = diagf�1Ik ; � � � ; �mIk gj�i 2 Rg;

ki > 0;

m

i=1

ki = n (1.1)

the real� problem is to compute the value of��(M). This value is
defined to be 0 ifIn��M is nonsingular for all� 2�, or otherwise

��(M) = (inff� > 0jdet(In ��M) = 0; k�k1 � �g)�1

(1.2)

wherek � k1 denotes thè1 norm and

� = diagf�1; � � � ; �mg: (1.3)

Henceforthm will denote thesize of the problem. It is known that
the problem of determining if��(M) < 1 is NP hard; see Poljak
and Rohn [12], Braatzet al. [2], Nemirovskii [11], and Coxson and
DeMarco [3]. This negative result means that finding an algorithm for
computing��(M) is very unlikely if the algorithm is forced to require
a number of computations that increases at most polynomially inm,
i.e., the problem needs to be solved inpolynomial time.

In this paper, we study a generalized� problem by allowing the norm
on� to be aǹ p norm for anyp 2 [1;1]. More precisely, givenM;�,
andp 2 [1;1], we define��;p(M) to be zero ifIn��M is nonsin-
gular for all� 2 �, or otherwise

��;p(M) = (inff� > 0jdet(In ��M) = 0; k�kp � �g)�1:

(1.4)

For simplicity, we will denote��;p(M) by �p. Our objective is to
analyze the computational complexity of the�p problem.

The motivation for considering the�p problem is that there are many
applications where the uncertainty set is not a hyper-rectangle. In this
case, a non-1-norm can be a better norm to use. In fact, spherical
uncertainty sets have been studied by many researchers; see, e.g., [1,
Ch. 15, 16].

One might hope that the techniques used in [2], [3], [11], and [12]
for showing the NP-hardness of the�1 problem is generalizable to the
�p case. Unfortunately, this is not the case. Examining [2], [3], [11],
and [12], we find that all the NP-hardness proofs for the�1 problem
rely (directly or indirectly) on a well-known fact that the following
quadratic program is NP-hard forp = 1: Given a positive-definite
and symmetric rational matrixQ, determine if

max
kxk �1

xTQx < 1: (1.5)

(See Vavasis [14, Exercise 4.3, p. 101].) However, whenp 6= 1, it is
not clear whether the problem remains NP-hard. Further, it is known
that forp = 2 the quadratic program above is in the class of P, i.e., a
ploynomial time algorithm can be formulated to provide its solution;
see Ye [15] for such an algorithm. Hence, a new technique is needed to
investigate the computational complexity of the�p problem. The dif-
ficulty with the�p problem,p 6= 1, is that there is a single constraint
on � rather than multiple constraints as in the�1 case.

Despite the differences between the�1 problem and the�p
problem, p 6= 1, as discussed above, we present two negative
results for the generalized� problems. The first result shows that the
generalized� problem remains to be NP-hard.

The second result, which strengthens the first one, deals with
the approximability of the generalized�. That is, we are interested

in knowing how good an estimate can be obtained for� using a
polynomial algorithm (polynomial inn). To be more precise, we have
the following definition:

Definition 1.1: An estimatê� is called an�-approximation of� for
some� � 0 if j�̂ � �j � ��.

To motivate this problem, we return to the standard� problem and
note several known results. First, Coxson and DeMarco [3] shows that
�-approximation of� with arbitrarily small � > 0 is an NP-hard
problem, following a well-known result on the inapproximability of the
so-called maxcut problem. A more negative result is offered by Toker
[13] showing that computing an upper bound� with the guarantee that
� � � � Cm1���(M) for some (very large) constantC > 0 and
(very small)� > 0 is an NP-hard problem. Recently, it is shown by Fu
[6] that computing a�-approximation problem remains to be NP-hard
evenfor any� = K(m), whereK(m) is any prescribed positive func-
tion of m, including exponential functions. The second result in this
paper shows that this negative result is still valid for the generalized�
problem.

II. M AIN RESULTS

Definek = maxfk1; � � � ; kmg, which is the largest size of the re-
peated blocks, and denote�p by�p(k), an explicit function ofk. Then,
our main results are as follows.

Theorem 2.1:Given any (fixed)k � 2 andp 2 [1;1), the problem
of determining if�p(k) < 1 is NP-hard. Further, the problem of de-
termining if�1(1) < 1 is also NP-hard.

Theorem 2.2:Let any (fixed)k � 2 andp 2 [1;1] be given (in-
cludingp = 1). The problem of determining if�p(k) = 0 is NP-hard.
Subsequently, for any (arbitrarily large) prescribed functionK(m) >

0, wherem is the dimension of the�p(k) problem, the problem of
finding an upper bound� guaranteeing�p(k) � � � K(m)�p(k)

is NP-hard. Similarly, for any (arbitrarily small) prescribed function
K(m) > 0, the problem of finding a lower bound� guaranteeing
K(m)�p(k) � � � �p(k) is NP-hard.

Proof: The two theorems above are to be proved together. First,
we note that the second part of Theorem 1 is known; see, e.g., [11]. Sec-
ondly, we show that the second part of Theorem 2 is implied by the first
part of the theorem. Let us prove the result for� by contradiction. Sup-
pose there existsK(m) > 0 and a polynomial time algorithm which
produces a�with the guarantee that�p(k) � � � K(m)�p(k). Then,
�p(k) = 0 if and only if � = 0. Hence, this algorithm will be able to
solve the�p(k) = 0 problem in polynomial time, which contradicts the
first part of Theorem 2. A similar argument holds for the lower bound.

Now let us turn to the first part of Theorem 1 and the first part of
Theorem 2. As in almost all NP-hardness analysis cases, our basic idea
is to polynomially transform a known NP-hard problem to the problem
of determining if�p(k) < 1. Two problems are said to be related by
a polynomial transformation if: i) a polynomial number of operations
can be used to transform the first problem to the second and ii) the size
of the first depends polynomially on the size of the second.

The 0-1 Knapsack Problem:Given an integer vectorc =
(c1; � � � ; cm)T , determining if there exists a binary vector
x = (x1; � � � ; xm)T 2 f�1; 1gm such thatcTx = 0.

It is well known that the Knapsack problem is NP-hard; see, e.g.,
Garey and Johnson [8].

Let c be the integer vector in the Knapsack problem. Two cases are
considered: i)1 � p < 1 and ii) p = 1.

For Case i), we denotep = �=�, where� and� are coprime positive
integers. Without loss of generality, we assume that the sizem of the
Knapsack problem is such that the number(2m)�1=p is rational. If this
is not the case, one can augment enough number of zero components
to the vectorc such that the new size, saŷm, is such that(2m̂)�1=p is
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Fig. 1.

rational. One particular choice of̂m is given bym̂ = (2m)�=2. Note
that such augmentation does not alter the solvability of the Knapsack
problem and that the new sizêm is polynomial inm.

Definen = 2m and

f(�) = j

m

i=1

ci(�i � �m+i)

+

m

i=1

(�i + �m+i)
2 + (�i�m+i + d2)2 (2.6)

wherej =
p�1, � = (�1; � � � ; �n)T andd = (2m)�1=p > 0.

For Case ii), i.e.,p = 1, we simply takem̂ = m andd = 1. This
can be viewed as the limiting case ofp!1. The same definition for
f(�) will be used.

Obviously, necessary and sufficient conditions forf(�) = 0 for
some� 2 Rn are that

�i = ��m+i; j�ij = d; i = 1; � � � ;m (2.7)

and
m

i=1

ci�i = 0: (2.8)

Relatingxi in the Knapsack problem to�i, i = 1; � � � ;m, by

xi =
�i
d

we know that the Knapsack problem has a solutionx 2 f�1; 1gm if
and only iff(�) = 0 for somek�kp � 1. Since the former problem is
NP-hard, it follows that the problem of determining iff1(�) 6= 0 for
all k�kp � 1 is NP-hard.

Now we need to transformf(�) to somedet(I��M) with k = 2.
Define for all i 2 f1; � � � ; mg

gi = [�1 1� d4 + jc1 �i 1� d4]0

hi = [1 �m+i �1� 2d2 � jc1 1]0

and

Di =

1 ��m+i 0 0

0 1 0 0

�i 1 1 �2d2 � 1

0 1 0 1

:

Further define

A(�) =

0 g01 g02 � � � g0m

h1 D1

h2 D2

...
. . .

hm Dm

:

Observe, for eachi 2 f1; � � � ; mg
det(Di) = 1:

Further

�g0iD�1

i hi =�g0i

1 �m+i 0 0

0 1 0 0

��i ��i�m+i � 2d2 � 2 1 2d2 + 1

0 �1 0 1

hi

= jci(�i � �m+i) + (�i + �m+i)
2 + (�i�m+i + d2)2:

Thus

det(A(�)) = �
m

i=1

g0iD
�1

i hi

= j

m

i=1

ci(�i � �m+i)

+

m

i=1

(�i + �m+i)
2 + (�i�m+i + d2)2

= f(�):
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Since each�i appears in only two rows inA(�) and that too in an
affine fashion, for eachi 2 f1; � � � ; 2mg

rank
@A(�)

@�i
� 2:

Thus we can writeA(�) as follows:

A(�) = A0 �

2m

i=1

�iBiC
T
i (2.9)

whereBi andCi are matrices with two columns only. Further

detA(0) = f(0) =

m

i=1

d
4 = md

4 6= 0:

It follows that

f(�) = detA(0) det I �

2m

i=1

�i(A
�1

0 Bi)C
T
i :

Let

B = A
�1

0 B1 � � � A
�1

0 B2m ; C = [C1 � � � C2m]

M =C
T
B; � = diagf�1I2; � � � ; �2mI2g:

Then

f(�) = md
4 det(I �B�CT ) = md

4 det(I ��M):

So,det(I � �M) 6= 0 for all k�kp � 1 if and only if f(�) 6= 0 for
all k�kp � 1, which is NP-hard to determine. Hence, the problem of
determining�p(k) < 1 is NP-hard for allki = 2 and rationalp � 1.
The fact that the same applies when theki � 2, follows by taking the
above constructedM and suitably augmenting it with zero rows and
columns.

Note in the construction of� andM above thatdet(I��M) 6= 0
for all k�kp � 1 if and only if det(I � �M) 6= 0 for all �. This
is becausef1(�) 6= 0 if k�kp > 1. It follows that the problem of
determining if�p(k) = 0 is also NP-hard.

III. SOME REMARKS

The result in Theorem 1 leaves one question unanswered: Is the
problem of determining whether�p(1) < 1 NP-hard forp 6= 1?
In the following, we offer some remarks on this problem whenp = 2
and everyki = 1.

First, we note thatf(�) = det(I � �M) is a multilinear function
in � whenk = 1. If either: i) f(�) is real and bilinear in�i or ii) f(�)
is complex and linear in�i, then checking if�2(1) < 1 is a special
quadratic problem withp = 2. This is clear form Case i) because a
bilinear function is a special quadratic function. In Case ii), we simply
need to look at thejf(�)j2 which is quadratic. In these cases, one can
apply the polynomial algorithm in [15] (or other similar algorithms) to
compute the worst casef(�) over a given ball (provided thatM is ra-
tional). This can be thus be combined with a bisection on the size of the
ball to estimate�2. Unfortunately, this observation does not generalize
to a more complex structure off(�).

Secondly, we define the unit ball

B = f�: k�k2 � 1g (3.10)

F (B) = fdet(I ��M): � 2 Bg 2 R2 (3.11)

and use the symbol@(X) to denote the boundary of a setX. We ask
the following question: Is@F (B) � F (@B)? The motivation of this
question is simple because an affirmative answer to this question would
make it sufficient to consider@B alone to solve the�2(1) problem. Un-
fortunately, the following example shows that the answer is negative.

1) Example: Take

M =
0:3846 + 1:9231i 0:0769 + 1:3846i

0:3846 + 1:9231i �1:9231 + 0:3846i

� =diagf�1; �2g: (3.12)

BothF (B) andF (@B) are illustrated in Fig. 1 by dots and asterisks,
respectively. It is clear that@F (B) 6� F (@B) in this case. Also ob-
served in this example is that0 2 F (B) but0 62 F (@B).

IV. CONCLUSION

Two results have been presented for the generalized real� problem
where the uncertain parameters are measured by an`p norm. Our first
result shows that computing the generalized� problem is NP-hard re-
gardless whatlp norm is used to measure the uncertainty block, as
long as the minimum block size is 2. This result is strengthened by
our second result which shows that the generalized� problem is also
very hard to approximate in general. Thus, the difficulty in computing
or approximating� is not unique to thel1 measure of the uncertainty.
The case whenk = 1 remains unsolved apart from the usual� problem
(p = 1). A nice feature of a subset of this case, namely when each
ki = 1, is thatdet(I � �M) is multilinear in�. Nevertheless, diffi-
culties exist in dealing even with this special case, as illustrated in the
example in Section III.
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