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Abstract. This paper studies a new approach to linear quadratic control for lin-
ear systems with input saturation. Our work presents an optimal sector bound to
model the mismatch between the unsaturated controller and saturated one and an
optimised control design associated with this sector bound. This leads to a new
characterisation of invariant sets and new switching controllers. The main outcome
of this paper is that better performance can be guaranteed for the same region of
attraction, or equivalently, a larger region of attraction is given for the same level
of guaranteed performance.

1 Introduction

In this paper, we consider the problem of linear quadratic control for linear
systems with input saturation. This problem has been widely studied and
many design methods are available; see, e.g., [1–4].

When an optimal control input exceeds a given level of saturation, it is
well-known that optimal performance can not be achieved by simply sat-
urating the control input, unless the level of over-saturation is sufficiently
small [4]. To so-called anti-windup technique is commonly used to overcome
the saturation. The key to most anti-windup methods is to “de-tune” the
optimal controller in some way. That is, a lower control gain is used when
the state is large and the control gain is gradually increased when the state
becomes small. Many ad-hoc methods were used in early days, but with little
theoretical guarantee on stability. However, many rigorous design methods
are available now to provide some guaranteed properties on stability [2–4].

To assure stability, most recent anti-windup design methods use the idea
of nested ellipsoidal invariant sets. More precisely, a sequence of ellipsoids are
given in the state space along with a sequence of controllers. The design is
done such that each ellipsoid is an invariant set, the corresponding controller
is asymptotically stabilising, and the ellipsoids are nested. The overall control
law is of a switching type, i.e., the selected controller corresponds to the
smallest ellipsoid in which the state resides. A common approach used to
compute these ellipsoids and controllers is to “de-tune” the optimal controller.
That is, the ellipsoids and the controllers are constructed by adding cost
penalty on the control. The larger the cost penalty, the lower the control gain
and the larger the ellipsoid. This idea is supported by the observation that
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low-gain controllers tend to improve the stability at the cost of performance.
Although this idea is intuitive and practical, it is not clear in general how
to design these ellipsoids (and the controllers) to give the best performance
bound.

Despite the differences in various anti-windup design methods, most of
them, if not all, use a sector bound on the mismatch between an unsaturated
controller and a saturated one. Different design methods use different sector
bounds and use them in different ways. No rigorous study has been done on
how to optimally choose a sector bound and how to optimally use a given
sector bound.

In this research, we consider the problem of designing a linear controller
to optimise a given quadratic cost function. We also use a sector bound to
model the mismatch between the unsaturated controller and the saturated
one. However, we aim to use a least conservative sector bound and use it in
a least conservative way. The main outcome of this research is that better
performance can be guaranteed for the same region of attraction, or equiva-
lently, a larger region of attraction is given for the same level of guaranteed
performance.

This paper is organised as follows: Section 2 deals with the problem of
designing a linear time-invariant state feedback controller to give the best
performance bound. Section 3 studies the key properties of this optimised
linear time-invariant controller. Section 4 deals with the problem of designing
switching controller for the purpose of improving the performance. Section 5
gives a simple illustrative example. The conclusions are given in Section 6.

2 Linear Time-invariant Control

The system we consider in this paper is given by

ẋ = Ax + bσ(u), x(0) = x0 (1)

where x ∈ Rn is the state, u ∈ R is the input, A ∈ Rn×n and b ∈ Rn are
constant, and σ(·) is a saturation function with saturation level equal to 1.
We assume that (A, b) is a controllable pair.

Given a control input u, the level of over-saturation is defined to be

d(u) = max{0, |u| − 1} (2)

Suppose the control law is such that the level of over-saturation is bounded
by ρ ≥ 0. Our first problem is to determine how to bound the nonlinearity
caused by the saturation by a sector. More precisely, we rewrite σ(u) as

σ(u) = ρ1u + δ(u) (3)

where

δ(u) = σ(u)− ρ1u (4)
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We seek the optimal value for ρ1 so that δ(u) has the smallest sector bound,
i.e., ρ2 below is minimised:

|δ(u)| ≤ ρ2|u|, ∀|u| ≤ 1 + ρ (5)

Lemma 1. The optimal value for ρ1 and the corresponding minimum ρ2 are
given below:

ρ1 =
2 + ρ

2(1 + ρ)
, ρ2 =

ρ

2(1 + ρ)
(6)

Proof. This is verified straightforwardly.

Next, we consider the following quadratic cost function

J(x0, u) =
∫ ∞

0

(xT Qx + rσ(u)2)dt (7)

for some Q = QT > 0 and r > 0, and linear control input

u = kT x (8)

for some k ∈ Rn.
Ideally, we would like to provide an optimal control law, i.e., an optimal

k, for each given initial state x0 such that the cost function J(x0, u) is min-
imised. However, the optimal k is generally dependent on x0, and the solution
is difficult to give. To relax the problem, we aim to characterise an ellipsoid

Xρ = {x : xT Pρx ≤ µ2
ρ}, Pρ = PT

ρ > 0, µρ > 0 (9)

and an associated suboptimal linear control gain k with the following prop-
erties for any parameter ρ ≥ 0:

• The level of over-saturation d(u) ≤ ρ;
• The set Xρ is an invariant set, i.e., x(t) ∈ Xρ for all t ≥ 0 if x0 ∈ Xρ;

It is well-known that if the control is not saturated, the optimal solution
is given by

k = −r−1P0b (10)

where P0 solves the following Ricatti equation:

AT P0 + P0A + Q− r−1P0bb
T P0 = 0 (11)

Moreover, the optimal cost is given by xT
0 P0x0.

We can rewrite (1) as follows:

ẋ = Ax + b(ρ1u + δ(u)) (12)
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In view of (5), we relax the optimal control problem to designing a control
gain k to minimize the worst-case cost for all δ(·) satisfying the sector bound
(5).

Now we give some analysis on the relaxed optimal control problem. Denote

J(x0, u, T ) =
∫ T

0

(xT Qx + rσ(u)2)dt (13)

and consider the Lyapunov function candidate

V (x) = xT Pρx (14)

Also, define

Ωρ = AT Pρ + PρA + Q− r−1Pρbb
T Pρ (15)

and

u∗ = −r−1bT Pρx (16)

Given any initial state x0 and any δ(·) satisfying (5), it is easy to check
that x(t) is finite for any t > 0 (i.e., there is no finite escape) and

J(x0, u, T ) = V (x0)− V (x(T )) +
∫ T

0

(
d

dt
V (x) + xT Qx + rσ(u)2)dt

≤ V (x0) +
∫ T

0

(xT Ωρx + r(ρ1u + δ(u)− u∗)2)dt

= V (x0) +
∫ T

0

f(x, u, δ(u))dt

where

f(x, u, δ(u)) = xT Ωρx + r(ρ1u + δ(u)− u∗)2 (17)

It is clear that if f(x, u, δ(u)) ≤ 0 for all x ∈ Rn and δ(·) satisfying (5), then

J(x0, u) ≤ V (x0) (18)

From the analysis above, we formulate the following relaxed optimal con-
trol problem:

P1. Design Pρ and u to minimise V0(x0) subject to f(x, u, δ(u)) ≤ 0 for all
x ∈ Rn and δ(·) satisfying (5). Further, determine the (largest) invariant
set Xρ for which the cost J(x0, u) is bounded by V0(x0).

Theorem 1. Consider the system in (1) and the cost function in (7). For
any level of over-saturation ρ ≥ 0, the optimal Pρ and u for Problem P1 are
given by

u = kT
ρ x = ρ−1

1 u∗ = −ρ−1
1 r−1bT Pρx

AT Pρ + PρA + Q− (1− ρ2
0)r

−1Pρbb
T Pρ = 0, Pρ = PT

ρ > 0 (19)
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and the invariant set by

Xρ =
{

x : xT Pρx ≤ r2

(1− ρ0)2bT Pρb

}
(20)

where

ρ0 =
ρ2

ρ1
=

ρ

2 + ρ
(21)

Proof. Using the well-known S-procedure [5], the above holds iff there exists
τ > 0 such that

f̄(x, u, δ) = f(x, u, δ) + τ(ρ2
2u

2 − δ2) ≤ 0, ∀x ∈ Rn, δ ∈ R

For the above to hold, it is necessary that τ ≥ r. Assuming this and max-
imising f̄(x, u, δ) with respect to δ yields

δ =
r

τ − r
(ρ1u− u∗)

which in turn yields

f̄(x, u, δ) = xT Ωρx + τρ2
2u

2 +
τr

τ − r
(ρ1u− u∗)2

Then, minimising f̄(x, u, δ) with respect to u results in

u =
rρ1

(τ − r)ρ2
2 + rρ2

1

u∗

and

f̄(x, u, δ) = xT Ωρx +
τrρ2

2

(τ − r)ρ2
2 + rρ2

1

(u∗)2

Note that ρ1 > ρ2. Finally, minimising f̄(x, z, δ) with respect to τ yields
τ = r,

u = ρ−1
1 u∗

and

f̄(x, u, δ) = xT Ωρx + r
ρ2
2

ρ2
1

(u∗)2 = xT Ω̄ρx

where

Ω̄ρ = AT Pρ + PρA + Q− (1− ρ2
0)r

−1Pρbb
T Pρ

with ρ0 given by (21). To assure f̄(x, u, δ) ≥ 0, it is necessary that Ω̄ρ ≤ 0.
It is easily verified that Pρ is a monotonically decreasing function of Ω̄ρ.
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Therefore, the optimal Ω̄ρ = 0. Consequently, we obtain the optimal solution
in (19).

Next, we try to characterise an invariant set Xρ as in (9) for which the
control law above applies. All we need to do is to find the largest µρ in (9)
such that

max
x∈Xρ

|δ(u)| = ρ2|u|

Equivalently,

max
x∈Xρ

∣∣ρ−1
1 r−1bT Pρx

∣∣ = 1 + ρ

The solution is given by

x =
µ√

bT Pρb
b

and

µ =
r(2 + ρ)
2
√

bT Pρb
=

r

(1− ρ0)
√

bT Pρb

That is, Xρ is given by (20).
Since f(x, u, δ(u)) ≤ 0 for all x ∈ Xρ,

d

dt
V (x) ≤ −(xT Qx + rσ(u)2), ∀x ∈ Xρ (22)

Hence, we know that Xρ is an invariant set.

Remark 1. In Theorem 1, we assume that the sector bound characterised
in Lemma 1 is used. This assumption can be relaxed to any sector bound
satisfying the following condition: Parameters ρ1 and ρ2 are such that ρ1 >
ρ2 ≥ 0 and |δ(u)| ≤ ρ2|u| for all u with the level of over-saturation bounded
by ρ, where δ(u) is defined in (4). It can be shown (with somewhat more
effort) that the optimal solution to Problem P1 is still given by (19) as in
Theorem 1, with ρ0 = ρ2/ρ1. It can be further shown that the parameters ρ1

and ρ2 that minimise V (x0) and maximise Xρ are those given in Lemma 1.

3 Properties of the Proposed Controller

In this section, we study two key properties of the proposed controller in The-
orem 1. The first property shows the improvement of the saturation control
compared with an unsaturated controller. The second property is to do with
nesting of invariant sets and monotonicity of Lyapunov matrices.

Returning to (19), we see that the Ricatti equation for Pρ corresponds
to the solution to an optimal control where the weight (or penalty) for the
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control in the cost function is changed to (1 − ρ2
0)
−1r. To achieve the cost

J(x0, u, T ) = J∗(x0, T ), u must be such that

σ(u) = −(1− ρ2
0)r

−1bT Pρx (23)

To make the above feasible (i.e., to avoid saturation), the invariant set must
be

X̄ρ =
{

x : xT Pρx =
r2

(1− ρ2
0)2bT Pρb

}
(24)

Compared with (20), we have

Xρ = (1 + ρ0)X̄ρ (25)

This illustrates that the control law in (19) gives a substantially larger in-
variant set for the same cost, compared with an unsaturated control law.

On the other hand, we may consider choosing the control law such that

σ(u) = −1− ρ2
0

2
r−1bT Pρx (26)

and choosing an invariant set such that the above control law is feasible (i.e.,
no saturation). Note that this control law is stabilising, due to the well-known
gain margin of an optimal linear quadratic control (also seen directly from
the Ricatti equation in (19)). In this case, the invariant set is given by

X̂ρ =
{

x : xT Pρx =
4r2

(1− ρ2
0)2bT Pρb

}
(27)

and we have

Xρ =
1 + ρ0

2
X̂ρ (28)

Although Xρ < X̂ρ, no performance grantee can be delivered by the controller
in (26). To make the comparison fair, we take ρ →∞ and note that

X∞ = X̂∞ (29)

This gives a somewhat surprising result:

Corollary 1. The largest invariant set given by the controller in (19) is the
same as the largest invariant set given by an unsaturated controller (26).

One implication of the results above is that the saturated controller can
bring a good benefit when ρ is not close to 0 and not too large.

Next, we study the nesting property of Xρ and monotonicity of Pρ. To
this end, define

Sρ = (1− ρ0)Pρ (30)



8 Minyue Fu

We then rewrite Ricatti equation in (19) as

AT Sρ + SρA + (1− ρ0)Q− (1 + ρ0)r−1Sρbb
T Sρ = 0 (31)

and the invariant set Xρ as

Xρ =
{

x : xT Sρx ≤ r2

bT Sρb

}
(32)

Lemma 2. The solution Sρ to (31) is monotonically decreasing, i.e., Sρ+ε <
Sρ if 0 ≤ ρ < ρ + ε. Consequently, Xρ are nested in the following sense:

Xρ ⊂ Xρ+ε, ∀0 ≤ ρ < ρ + ε (33)

Further, the solution Pρ to the Ricatti equation in (19) is monotonically in-
creasing, i.e., Pρ+ε > Pρ if 0 ≤ ρ < ρ + ε.

Proof. The monotonicity of Sρ is a basic property of the Ricatti equation (31).
We only need to show this for sufficiently small ε > 0. Denote E = Sρ−Sρ+ε

and Ωρ to be the left hand side of (31). Also define

ε0 =
ρ + ε

2 + ρ + ε
− ρ

2 + ρ
> 0

Then,

0 = Ωρ −Ωρ+ε

= EAT + AE + ε0Q− (1 + ρ0)Sρbb
T Sρ

+(1 + ρ0 + ε0)(Sρ − E)bbT (Sρ − E)
= E(A− (1 + ρ0 + ε0)Sρbb

T )T + (A− (1 + ρ0 + ε0)Sρbb
T )E

+ε0Q + (1 + ρ0 + ε0)EbbT E + ε0Sρbb
T Sρ

From (31), we know that A− (1 + ρ0)bbT Sρ is Hurwitz. Therefore A− (1 +
ρ0 +ε0)bbT Sρ is also Hurwitz when ε0 (or equivalently, ε) is sufficiently small.
Hence, the equation above implies that E > 0. Therefore, the monotonicity
of Sρ is established. The nesting property of Xρ then follows naturally from
(32). The monotonicity of Pρ is proved similarly.

Remark 1. If ρ = 0, the control in Theorem 1 recovers the optimal
control without saturation. In this case, the invariant set is given by

X0 =
{

x : xT P0x ≤ r2

bT P0b

}

Remark 2. The “largest” invariant set, called region of attraction, is
given by taking ρ →∞ (or equivalently, ρ0 → 1) and solving for Pρ in (19).
That is, the region of attraction is given by

X∞ =
{

x : xT Pρx <
r2

(1− ρ0)2bT Pρb
, ρ0 → 1

}
(34)
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Note that the solvability of Pρ for any ρ > 0 is guaranteed by the controlla-
bility of (A, b) and positive definiteness of Q.

Remark 3. Suppose A is either Hurwitz or marginally unstable (i.e.,
the only unstable eigenvalues are the ones with a zero real part). Then, the
solution to the Ricatti equation in (19) is such that the directions of Pρ

approach to either a constant (corresponding to stable eigenvalues of A) or
O(
√

1− ρ0) (corresponding to marginal eigenvalues of A). In either case, the
limiting invariant set is the whole space, i.e., X1 = Rn.

4 Switching Control

A common control strategy for combating the control saturation is to start
with a small gain when the state is “large” (to avoid or reduce saturation)
and then gradually increase the gain when the state is “small” (to improve
the performance). This strategy can be easily applied to the controller in the
previous section due to the nesting properties of Xρ and monotonicity of Pρ.

More precisely, a switching control strategy is simply formed by choosing
a sequence of saturation indices 0 = ρ(0) < ρ(1) < · · · < ρ(N) and solving
for the corresponding Lyapunov matrices Pi, invariant sets Xi and control
gains ki. The control law simply selects the control gain ki when x ∈ Xi and
x 6∈ Xi−1 (unless i = 0).

Theorem 2. Suppose x0 ∈ XN and we apply the switching control law above
by starting with kN (or ρN equivalently). Denote the switching control law
by us and the switching time from ρ(i) to ρ(i−1) by Ti. Then the cost of this
switching control is bounded by

J(x0, us) ≤ xT
0 PNx0 −

∑N
i=1 xT (Ti)(Pi − Pi−1)x(Ti) < xT

0 PNx0,

∀x0 ∈ XN , x0 6= 0
(35)

Proof. Follows directly from Theorem 1 and the monotonicity of Pρ.

The advantage of the switching law is clearly seen from the theorem above
where the negative terms in (35) are a result of the switching. However, it
is somewhat difficult to express the cost explicitly in terms of x0 and ρ(i).
More work needs to be done to study this issue and also on how to choose
the sequence {q(i)} to optimise J(x0, u).

5 Illustrative Example

To illustrate the design approach presented in this paper, we consider the
following simple system:

ẋ =




0 1

−1.25 1


 x(t) +




0

1


 σ(u(t)) (36)
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The cost function has r = 1 and

Q =




1 0

0 0




Choose ρ = 0, 2, 5, 10, 20, 40, 70, 100. The corresponding invariant sets Xρ are
shown in Figure 1. We take x0 = [0.87 0]′. Figure 1 also shows the two
state trajectories corresponding the switching controller and non-switching
controller. Their performances and control inputs are given in Figures 2-
3, respectively. It is seen clearly that the switching controller significantly
outperforms the non-switching controller.

6 Conclusion

In this paper, we have presented a new approach to designing linear quadratic
controllers for systems with input saturation. The key contribution of the
paper is of two-fold: 1) We optimise the sector bound which models the mis-
match between the unsaturated controller and the saturated one; and 2) We
determine the largest invariant set for the given sector bound above and
the associated optimal controller. The invariant sets and the corresponding
Lyapunov matrices have the nice properties of nesting and monotonicity, re-
spectively. These properties allow a switching controller to be designed easily
to yield substantially lower quadratic cost (in comparison to non-switching
controllers) while guaranteeing stability.

The sector bound used for control design can be generalised to include in-
tegral quadratic constraints. This allows a dynamic relationship between the
linear control input and the saturated control input. It is expected that this
approach can yield some improvement in the performance at the expense of
somewhat more complicated control design. More specifically, the state of the
system needs to include the dynamics of the integral quadratic constraints,
which implies that the control gain will be dynamic. More work on this topic
will be carried out by the author.

Finally, it should be noted that the design approach given in this paper
can be easily generalised to discrete-time systems.
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