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1 Introduction

The design of one-channel linear-phase FIR digital �lters was a hot topic in the early '70s. Especially
the Chebyshev approximation attracted great interest, since it is optimal and the optimality is also
an appealing one, because the optimization error is evenly distributed over frequency. [9] looked at
linear programming techniques, and a few others proposed a whole range of di�erent approaches to
the problem. A major breakthrough was achieved in [7] and [6] by the introduction of the application
of Remez exchange algorithm [1].

In 1995, an attempt was made to generalize the Parks-McClellan algorithm [4]. The proposed
method extends the usage beyond the linear-phase region, enabling the user to specify �lters with
arbitrary magnitude and phase response. It has some limitations, however, the most important being
that in the general case, the algorithm is optimal on a subset of the desired interval only.

Not much research has been performed on global optimization of �lters, i.e. when optimality of
an entire system, consisting not only of the �lter, but also of other components, is opted for. In the
original paper presenting the Parks-McClellan algorithm, only piecewise-linear speci�cation functions
is regarded. As is evident from reading their sources, this is actually an unnecessary requirement.
In fact, any continuous requirement function is allowed, opening the possibility to optimize entire
systems, where the actual �lter forms one component only.

The developments in the �eld of telecommunications have caused multi-channel connections to
become very common. Naturally, signals in such connections needs to be maintained and replenished
regularly just like for one-channel systems. This calls for multi-channel �lters and, indirectly, design
algorithms for these. What makes these special is that channel interference has to be accounted for.

The global least-squares optimization problem for multi-channel �lters is solved (see, e.g. [2]),
so the least-squares norm will not be regarded in this report. For other matrix norms, there are
only iterative and, due to the nature of the problem, very ine�cient methods available. Encouraged
by the unprecedented performance of the one-channel Remez exchange algorithm, we examine the
multi-channel problem thoroughly with the hope to �nd a similarly e�cient method.

1.1 Problem formulation

Figure 1 shows a one- or multi-channel system H consisting of a linear-phase interference function G

and a linear-phase �lter F (see Section 2.1 for a discussion on the properties of linear-phase systems).
The frequency-domain response Y (!) to a signal X(!) is

Y (!) = FZ(!) = F (!)(GX(!)) = HX(!); H(!) = FG(!):
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Figure 1: An interference function and a �lter

We want the overall magnitude response function H(!) = FG(!) to be the best possible approx-
imation to a speci�ed, desired magnitude response function Hdr(!). This function is called the
speci�cation function. The problem can be recast into an optimization problem (� are the �lter
coe�cients):

minimize �kE(!)k = minimize �kFG(!)�Hdr(!)k; 8! 2 [0; !]1; (1)

where E(!) is the error function, and k � k denotes whatever norm we deem suitable. Please note that
the design we are looking for is the best design for a system consisting both of an interference function
and a �lter, ie. we want to optimize the performance of the entire system, not just the �lter.

The discussion will not be restricted to one-channel systems, but the systems are required to have
an equal number of input and output channels.

Example 1.1 A telecommunications problem. Imagine a long telecommunications link consist-
ing of two coaxial cables lying next to each other in the ground. Each cable carries one phone call. It is
reasonable to expect the signal to deteriorate by distance, so we had better put \repeaters", electronic
devices designed to amplify and recondition the signal, along the way. The deterioration of the signal
is modelled with the two-channel magnitude function G(!) depicted in Figure 2. We have modelled
signal deterioration within channels as being inductive (low-pass) in character whereas inter-channel
distortion is more likely to be capacitive (high-pass) in character.

Figure 3 shows the desired magnitude response function for the entire system Hdr. Obviously, we
want to attenuate external noise present in the system, a noise which is often of high pitch. This is
accomplished by the low-pass character of the diagonal elements of the �lter. Furthermore, we would
rather see all interference between channels annihilated, which is reected by the all-stop look of the
o�-diagonal elements.

Figure 4 shows one solution to the problem. It is the resulting �lter of a maximum absolute value
(MAV) norm optimization, carried out as a linear program (LP), see Section 4.2. The �lter error
function, the total system response, and the total system error function are shown in Figures 5, 6, and
7, respectively. The tap sizes for the �lters are 39 taps for diagonal elements and 29 for o�-diagonal
elements.

1.2 Di�erent Approaches Attempted

A number of di�erent approaches to the problem have been explored. A wide range of methods are
used hereby, from very general optimization methods with a solid theoretical background, to more
specialized methods exploiting known properties of the problem|here, the theoretical foundation
might sometimes be a bit thinner.

To summarize, this is the contents of the rest of the paper:

1So-called don't-care regions are never used in this report. For global optimization problems, a controlled behavior
of the �lter in the don't-care regions cannot be guaranteed.

2



Preliminaries This section briey introduces and discusses theory and notation needed and used
throughout the rest of the report. Issues covered are linear-phase �lters and the error function.

The One-Channel Filter Describes the Remez Exchange algorithm, the most popular method
available for the design of Chebyshev-optimal one-channel linear-phase FIR �lters, as well as
the element-wise approach to the multi-channel problem.

Normed Optimization In all instances, the goal is to achieve optimum performance of the �lter
in respect to a (known or unknown) norm. However, this norm might not be present at all
throughout the algorithm. This is very much the case for the Remez Exchange Algorithm. In
this section we take a close look at algorithms where we do use a norm, ie. a matrix norm,
to summarize all the complex behavior of a matrix transfer function into one single scalar
error function, which is then optimized. We end up with either a linear program (LP) or a
semide�nite program (SDP), which are both very well-known optimization problems with an
extensive theoretical foundation and a multitude of e�cient algorithms available.

The Multi-Channel Remez Exchange Algorithm No matter how e�cient the algorithms for
LPs and SDPs might be, they su�er from the same basic weakness: The error function has to
be optimized over a very dense set of frequencies, which tends to make the problem formulation
very large and also very quickly growing (sometimes exponentially) with �lter length and other
parameters involved. Therefore, an attempt has been made to reduce the number of frequencies
to optimize for by choosing just a few which are expected to exhibit \extremal" behavior. The
error function is optimized for these frequencies, and an exchange policy is also incorporated
so those frequencies that cease to behave \extremally" can be discarded in favor for those who
pop up during the course of the algorithm. This is very much the same approach as the Remez
exchange algorithm in the one-channel case, except that the behavior of the algorithm has to be
a bit more complex to accommodate for the interdependency between channels.

2 Preliminaries

2.1 Linear-Phase Filters

The z-transform of an M -tap FIR �lter F is:

F(z) =
M�1X
t=0

h(t)z�t; 2

where h(t) is the �lter impulse response. The frequency response function is

F(ej!) =

M�1X
t=0

h(t)e�j!t:

Assuming M odd, we can write this as

F(ej!) = e�j!
M�1
2

M�1X
t=0

h(t)e�j!(t�
M�1
2 )

= e�j!
M�1

2

0
@h�M � 1

2

�
+

M�3

2X
t=0

h(t)e�j!(t�
M�1
2 ) + h(M � 1� t)ej!(t�

M�1
2 )

1
A :

2The letter t is chosen to denote \tap"|this should cause no confusion since no time domain discussions are carried
out in the report.
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Figure 2: A two-channel interference function,
G(!)
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Figure 3: Speci�cation, Hdr, for the two-di-
mensional telecommunications example
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Figure 4: The real-valued frequency response
function of a two-channel �lter
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Figure 5: Filter error function
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Figure 6: Total system response
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Figure 7: Total system error
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It is easy to see that if we assume the symmetry condition h(t) = h(M�1�t) to the impulse response,
the above expression can be simpli�ed further into

F(ej!) = e�j!
M�1

2

0
@h�M � 1

2

�
+

M�3
2X

t=0

h(t) cos!

�
t�

M � 1

2

�1A

= e�j!L
LX
t=0

�(t) cos!t = e�j!LF (!); (2)

F (!) =

LX
t=0

�(t) cos!t; L =
M � 1

2
(3)

where the � coe�cients are:�
�(0) = h(L)
�(t) = 2h(L� t); t = 1; 2; � � � ; L:

(4)

F (!) is the real-valued frequency response function. The phase is a linear function of frequency, which
means that the group delay3 will be constant over frequency|no phase distortion is introduced by the
�lter, which is often an absolute requirement for signal processing applications. Equation 2 reassures
us that the phase always will be linear, and in all further discussions, the phase will be disregarded,
as will the complete frequency response function F(ej!) in favor of the simpler real-valued frequency
response function F (!).

With some simple modi�cations (see for instance [8, pp. 620{623] or [6]), Equations 2 and 4 can
be generalized to apply to �lters with an even number of taps M , and with an antisymmetric impulse
response function (h(t) = �h(M � 1� t)), as well.

2.2 Multi-Channel Linear-Phase Filters

The real-valued frequency response function for a linear-phase multi-channel �lter is simply a matrix
where each element is a real-valued frequency response function, so for a C-channel �lter we get:

F (!) =

0
BBB@

F11(!) F12(!) � � � F1C(!)
F21(!) F22(!) � � � F2C(!)

...
...

. . .
...

FC1(!) FC2(!) � � � FCC(!)

1
CCCA (5)

where

Fij(!) =

LijX
t=0

�ij(t) cos!t; i; j = 1; 2; � � � ; C: (6)

2.3 The Error Function

The error function is given by

E(!) = FG(!)�Hdr(!): (7)

A�ne Format
The Semide�nite Programming (SDP) approach of Section 4.1 requires the error function to be in

a�ne format, which is simply a linear combination of matrices. In this context, we choose to express

3The group delay is the time it takes for a signal to pass through a �lter.
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the error primarily as a function of the �lter coe�cients, �, and we let the superscript n 2 1; 2; � � � ; N
denote for what frequency sample !n it is being evaluated:

E(n)(�) = FG(!n)�Hdr(!n)

= �Hdr(!n) +
CX
i=1

CX
j=1

KijG(!n)

LijX
t=0

�ij cos!t; (8)

whereKij denotes a special matrix that has zeroes everywhere except for a one (1) in the (i; j) position.

Column Format
In Section 4.2 and Section 5 we will need Equation 7 expressed as a matrix times the �lter coe�-

cients � expressed as a vector:

Acol�;

where

col� =
�
�11(0) � � � �11(L11) �21(0) � � � �21(L21) � � � � � � �CC(LCC)

�T
;

where col is the column operator, that converts a matrix to a single column vector simply by picking
elements from the matrix column by column.

The Kronecker product can be used to implement the column operator, due to the following
property:

colFG(!) = (G(!)T 
 I1)colF(!); I1 2 R
m�m

This is now applied to the transfer functions, which are all C � C-matrix-valued (C is the number
of channels) functions of frequency. Since colF is a vector of sums containing the � coe�cients we
wanted as a separate vector, we will have to continue further by using the Kronecker product once
again, but we �rst de�ne

cosL! =
�
1 cos! cos 2! � � � cosL!

�
;

so we get

colF (!) = (I2 
 cosL!)col�; I2 2 R
C2
�C2

;

All in all we now yield

colFG(!) = (G(!)T 
 I1)(I2 
 cosL!)col� = Â(!)col�; I1 2 R
C�C; (9)

where

Â(!) = (G(!)T 
 I1)(I2 
 cosL!); Â(!) 2 RC2
�C2(L+1): (10)

3 The One-Channel Filter

The original paper [7] describing the application of the Remez exchange algorithm for the design of
optimal linear-phase FIR �lters refers to [1, pp. 72{100], for all the underlying theory. The bits of this
that are of most importance for Section 5 further on will be summarized here. Please note that our
treatise of the subject in general and the Remez exchange algorithm described in Section 3.2 below
in particular is somewhat more general than the one of the original paper. The reason for this is
that the authors of the original paper apparently did not foresee, or for that sake, cared about, the
need of an algorithm that could �nd the optimal solution for an entire system|they were apparently
only interested in �nding the best possible �lter for piecewise-constant speci�cations, and they could
hereby make a few simplifying assumptions. These assumptions are however not very signi�cant, as
we will see, and we will consistently use and cite the more general theory from [1, pp. 72{100].
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3.1 Introduction

Throughout this section, we will work with so-called generalized polynomials only:

H(!) =

LX
t=0

�(t)�t(!); (11)

where � is a vector of continuous basis functions �t,

� =
�
�0 �1 � � � �L

�
; �t 2 C[0; �]; t = 0; 1; � � � ; L; (12)

that ful�ll the Haar Condition.

De�nition 3.1 The Haar Condition. A vector of continuous basis functions � as described in
Equation 12 is said to satisfy the Haar condition if a system of these function vectors, evaluated on
any variable vector ! of the same size,

�(!) =

0
BBB@

�0(!1) �1(!1) � � � �L(!1)
�0(!2) �1(!2) � � � �L(!2)

...
...

. . .
...

�0(!L+1) �1(!L+1) � � � �L(!L+1)

1
CCCA ; ! =

0
BBB@

!1
!2
...

!L+1

1
CCCA ; (13)

is nonsingular. This is equivalent to saying that zero (0) is the only generalized polynomial (Eq. 11)
that has L+ 2 or more roots on [0; �].

Lemma 3.2 For every ordered set of frequencies !; 0 � !1 < !2 < � � � < !L+2 � � the determinants
det �(!) all have the same sign.

A natural choice of basis functions for signal processing applications would normally be trigono-
metric functions, eg.

�(!) =
�
1 cos! cos 2! � � � cosL!

�
;

but since we wish to optimize entire systems including interference functions, it is not feasible to
restrict the discussion to that case.

We now want to �nd the generalized polynomial H that approximates a given function Hdr as
well as possible in the Chebyshev sense, that is, we want to solve the following optimization problem:

minimize �kEk () minimize �

 
max
!

�����
LX
t=0

�(t)�t(!)�Hdr(!)

�����
!
:

At the core of the solving of this problem e�ciently is the alternation theorem below.

Theorem 3.3 The Alternation Theorem. In order that a certain generalized polynomial

H(!) =

LX
t=0

�t�t(!); ! 2 [0; �]

shall be a best approximation to a given function Hdr 2 C[0; �] it is necessary and su�cient that the
error function E = H �Hdr exhibit at least L+ 2 \alternations" thus:

E(!n) = �E(!n�1) = �max
!
jE(!)j; !1 < !2 < � � � < !L+2: (14)
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Provided that the optimal frequency vector �! is know, the optimal set of coe�cients can be found
simply by solving the full-rank linear equation system

E(!n) = H(!n)�Hdr(!n) = (�1)n�; 8n 2 f1; 2; � � � ; L+ 2g

,

LX
t=0

�(t)�t(!n)�Hdr(!n) = (�1)n�; 8n 2 f1; 2; � � � ; L+ 2g

,

0
BBB@

�0(!1) �1(!1) � � � �L(!1) 1
�0(!2) �1(!2) � � � �L(!2) �1

...
...

. . .
...

...
�0(!L+2) �1(!L+2) � � � �L!L+2 (�1)L+2

1
CCCA
0
BBB@

�(0)
...

�(L)
�

1
CCCA =

0
BBB@

Hdr(!1)
Hdr(!2)

...
Hdr(!L+2)

1
CCCA :

(15)

Note that � is also an unknown in this expression, but since ! was assumed to be the optimal
frequency vector, � = j�j = kEk. Also note that even if ! is not assumed to be the optimal one, the
solution of the linear equation system of Equation 15 gives us the optimal solution for that subset of
frequencies. Obviously, the trick is to iteratively �nd the subset on which subset optimality equals
global optimality.

3.2 The Remez Exchange Algorithm

Below follows an outline of the famous Remez exchange algorithm. Figure 8 might help understanding
the algorithm.

The Remez Exchange Algorithm

Input: The tap size L 2 R, the set of basis functions � 2 CL+1[0; �], and an initial,
ordered frequency set ! 2 RL+2 (this can be an arbitrary set, eg. a uniformly
distributed one).

Output: The �lter coe�cients � 2 RL+1.

Minimize: Minimize the error function E(!) by solving Equation 15. This yields a set
of �lter coe�cients �0 as well as the �0 = j�0j.

Evaluate: Evaluate the new error function E0(!) =
PL

t=0 �
0�t(!): We will have

E0(!n) = �E0(!n+1) = ��0; n = 1; 2; : : : ; L+ 1: (16)

Exchange:

1. Due to (16) and continuity, E0(!) has a root zn in each interval
[!n�1; !n]; n = 2; 3; � � � ; L+ 2. In addition, z1 = 0, zL+3 = �. Let
�n = signE0(!n).

2. Select a trial set !0 by �nding local extrema of the error function on each
subinterval de�ned by its roots:

!0n = max
!2[zn;zn+1]

�nE
0(!):

3. While kE0k > maxn jE
0(!0n)j

Do De�ne � such that E0(�) = kE0k. Insert � in !0 and remove a point such
that the values of E0(!0n) still alternate in sign.
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Repeat: Repeat from Minimize with the new set of extremal frequencies !0 as long as
the criterion of the alternation theorem (Eq. 14),

E(!n) = �E(!n�1) = �max
!
jE(!)j; !1 < !2 < � � � < !L+2;

is not satis�ed.

The Exchange step can be implemented in several di�erent ways. What is important is that the new
E0(!0) alternates in sign and that the largest peaks of the error function are included. A typical
situation for the Exchange steps above is depicted in Figure 8

��

���

!0n, trial

zn

!n

!0n, �nal

�l

+��

�u

+�

5

1 3 52

1 3

21

�

E(!)

5321

2

4

4

4

5

6

6

6

6

7

0
!

�

3 4

Figure 8: The error function, E0(!) =
PL

t=0 �(t)�t(!) � Hdr(!), in a step of the Remez exchange
algorithm

The convergence of the algorithm to the unique4, optimal solution is governed by the following
theorem.

Theorem 3.4 Convergence of the Remez Exchange Algorithm. The successive generalized
polynomials H(k)(!) =

PL
t=0 �

(k)(t)�t(!) converge uniformly to the best approximation H� according
to the following inequality:

kH(k) �H�k � A�k; 0 < � < 1 (17)
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Figure 9: An interference function and a �lter

3.3 Application to One-Channel Filters

We like to solve the following optimization problem for the one-channel �lter F including a continuous
interference function G:

minimize �kEk; () minimize �kFG�Hdrk

() minimize �

 
max
!

�����G(!)
LX
t=0

�(t) cos!t�Hdr

�����
!
: (18)

Obviously, the FG above is a generalized polynomial in the basis functions � de�ned as follows:

�(!) =
�
G(!) G(!) cos! G(!) cos 2! � � � G(!) cosL!

�
: (19)

By the Haar condition of De�nition 3.1 it follows that G cannot have any zeros in the interval [0; �].

Experiment

Example 3.5 Element-wise Optimization of the Multi-Channel Filter. Say for instance that
we have the speci�cation function Hdr(!) of Figure 10 and the interference function G(!) depicted
in Figure 11. If we use the Remez exchange algorithm individually for each element of the �lter, we
get the �lter error function of Figure 12, which might look good enough. If however the e�ect of the
interference function on the total system error is taken into account, things start to look much less
encouraging, as in Figure 13.

Discussion
The Remez exchange algorithm possesses a number of features that distinguishes it from other

optimization algorithms and also contributes to its extreme e�ciency:

� The a priori knowledge of the nature of the optimal solution provided by the alternation
theorem (Th. 3.3) means that we know exactly what to look for. The alternation theorem
tells us that as long as we can �nd the right extremal frequencies !n, we need to optimize the
objective function for these frequencies only, and we need not bother about any of the other
frequencies. This saves tremendous amounts of calculation and, consequently, time.

� The convergence rate given by Theorem 3.4 is very good, leading to, in most cases, less than
10 iterations.

� Each step of the algorithm involves the solution of a full-rank linear equation system and
a linear search for local extrema of the error function. Both these steps can be very e�ciently
implemented.

4The uniqueness of the optimal solution is guaranteed by the Haar condition, see [1, pp. 80{82].
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� The algorithm is amultiple exchange algorithm, meaning that in the search for the \correct"
extremal frequencies, all \trial" extremal frequencies are exchanged simultaneously at each step.
This is much more e�cient than exchanging only one frequency at a time.

4 Normed Optimization

From an optimization viewpoint, a norm can be de�ned as a way of summarizing the sometimes very
complex behavior of a vector-valued or matrix-valued function into one single scalar function. Instead
of trying to optimize all the elements and aspects of the original function, we can now concentrate on
the simpler representation of it and hope that an optimal (in some sense) norm implies an optimal
objective function (in some sense). Of course, what is meant by optimality is in practise de�ned by
the norm used.

The choice of norm also determines the type and nature of the optimization problem we end up
with. We have chosen to study these two di�erent norms:

The Spectral Norm The maximum singular value (MSV) norm, or the spectral norm, is de�ned as

kAkMSV = max�i(A); 8i 2 f1; 2; � � � ;min(m;n)g: (20)

where �i denote the singular values.

The optimization problem of minimizing the maximum singular value norm of a matrix-valued
function can be recast as a semide�nite program (SDP), described in Section 4.1 below.

The Maximum Absolute Value (MAV) Norm For a matrix A 2 Rm�n, the maximum absolute
value (MAV) norm is de�ned as

kAkMAV = max jaij j; 8i 2 f1; 2; � � � ;mg; 8j 2 1; 2; � � � ; n; (21)

where aij denotes the (real-valued) elements of A.

The minimization of the MAV norm can be expressed as a linear program (LP), as explained in
Section 4.2 later.

4.1 Semide�nite Programming (SDP)

A semide�nite program (SDP) consists of a linear cost function which we wish to minimize and a
linear matrix inequality (LMI) which expresses the constraints:�

minimize x cTx

subject to Ê(x) � 0; Ê(x) � Ê0 +
PL

i=1 xiÊi;
(22)

where x 2 RL is the variable, and the fÊig are a set of of square symmetric matrices of equal
dimension. The expression for Ê(x) above is called an a�ne matrix expression. With Ê(x) � 0 it is
meant that the a�ne matrix Ê(x) has to be nonnegative de�nite, ie.

zT Ê(x)z � 0; 8z 2 Rm; Ê(x) 2 Rm�m:

LMIs can be stacked diagonally. If, in the above example, we wish the variables to simultaneously
meet

Ê(n)(x) � 0; 8n 2 f1; 2; � � � ; Ng;

11
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Figure 10: Speci�cation function, Hdr(!)
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Figure 11: Interference function, G(!)
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Figure 12: Filter error function
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Figure 13: Total system error function, E(!)
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the constraint matrices can be stacked as one LMI �E(x) like so:

�E(x) =

0
BBB@

Ê(1)(x) 0 � � � 0

0 Ê(2)(x) � � � 0
...

...
. . .

...

0 0 � � � Ê(N)(x)

1
CCCA : (23)

There are quite a few e�cient algorithms for SDPs available. We have chosen to use one written by
Stephen Boyd and Lieven Vandenberghe, see [10]. This is a package speci�cally written for SDPs in C,
using optimized library routines5 for the numerical linear algebra involved. The package is integrated
with Matlab through the external interface, MEX.

To minimize the spectral (MSV) norm the original problem is recast into an SDP using Schur
complements:

minimize �kE
(n)(�)kMSV

can be written as8<
:

minimize �; 

subject to

�
I E(n)(�)

E(n)(�)T I

�
> 0

()

8>><
>>:

minimize x qTx; q =
�
1 0 � � � 0

�T
; x =

�
 �

�T
subject to Ê(n)(x) > 0; Ê(n)(x) =

�
I E(n)(�)

E(n)(�)T I

�
:

(24)

Compared to Equation 1 we have changed the notation slightly. Where the error function normally
can be regarded as a function of frequency, E(!), it is here seen as a function of the �lter coe�cients,
E(�), and since a discretization over frequencies will be needed sooner or later, it has been done now,
and therefore E(n)(�) denotes the error function evaluated at the frequency point !n. Furthermore,
the a�ne form of E is used, see Subsection 2.3.

The spectral norm has to be minimized simultaneously for all frequencies, so the Ê(n)(x); 8n 2
f1; 2; � � � ; Ng are therefore stacked as in Equation 23 above to yield the �nal optimization problem:�

minimize x qTx

subject to Ê(n)(x) > 0; 8n 2 f1; 2; � � � ; Ng

()

�
minimize x qTx

subject to �E(x) > 0; �E(x) as in Eq. 23
(25)

When the spectral norm is applied for all frequencies like in equation 25, it is commonly called the
H1-norm.

Experiment
A series of examples were ran using this method. The results are very consistent and the algorithm

used is e�ciently coded and seems to work very well for all problems attempted. Therefore we present
only a typical result here.

We re-use the speci�cation and interference functions of Example 3.5, Figures 10 and 11. The
example 2-channel �lter has 69 taps in its diagonal elements, and 29 taps in its o�-diagonal elements.
Using the algorithms of [10], the optimization took 325s to run on a DEC AlphaStation. The resulting
plot can be seen in Figures 14{17.

5Speci�cally Netlib's BLAS and LAPACK, which for DEC AlphaStations are available as an optimized, and paral-
lelized if necessary, library, lmdx.
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Discussion
As previously mentioned, since the performance of the �lter has to be optimized over a dense set of

frequencies, we tend to end up with very large matrices in the a�ne expression. Even if they are also
very sparse, it is still a big problem that takes a long time to run even on very powerful workstations.

A few attempts were made with exchange algorithms. Instead of minimizing the error function
norm for all frequencies, a few are chosen over which the error function norm is optimized. A new
set of frequencies, which are the frequencies for which the error function norm is maximal, is selected
and a new cycle is employed. The method is fairly hard to implement, since it is not known how
many extrema to look for in the error function norm. If a fairly large number of extrema are chosen,
the algorithm can still start to oscillate between to di�erent sets of extremal frequencies. There are
a number of more systematic methods available, such as [5] and [3], but the method still has to be
dropped due to its notoriously bad performance, in particular when the number of channels grow
large.

One might also question the optimality criterion. A quick look at Figure 16 reveals that the error
is not very well distributed over frequencies, and even if the solution is clearly optimal in the H1

sense, it remains unclear whether this is actually the kind of optimality we want.
Finally, we point out a SDP approach to minimization of the spectral norm without the discretiza-

tion of frequencies. This approach involves the use of a well-known bounded real lemma in the systems
theory to replace ! with a positive-de�nite matrix P . The subsequent problem is a �nite dimensional
SDP problem and a numerical solution of polynomial complexity exists. The details of this approach
can be found in [2]. However, this approach is not applied in our study because the dimension of P , is
typically too large, rendering the numerical solution infeasible. This approach seems to be appliable
only to cases where the tap sizes are quite small.

4.2 Linear Programming (LP)

A linear program (LP), which is a special case of the semide�nite program described above, consists
of a linear cost function and a set of linear constraints and looks like this in its standard form:

�
minimize x qTx

subject to Ax = b; x � 0
;

8>><
>>:

q 2 R1�n

x 2 Rn

A 2 Rm�n

b 2 Rm

(26)

The linear programming approach can be utilized to minimize the Chebyshev norm of a vector. If
we for instance have an over-determined system of linear equations,

A� = d;

8<
:

A 2 Rm�n

� 2 Rn

d 2 Rm

; m > n;

it can be approximated in the Chebyshev sense by solving the optimization problem8<
:

minimize �; 

subject to

�
A� � d � 1
A� � d � �1

;  � 0

()

8<
:

minimize �; 

subject to

�
A �1
�A �1

��
�



�
�

�
d

�d

�
;  � 0

(27)

In the above expressions, 1 is used to denote a column vector consisting of ones only.
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Figure 14: Filter error function
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Figure 15: Total system response
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Figure 16: Total system error
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Figure 17: System error spectral norm
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When applied to multi-channel �lter design, we want to minimize the MAV norm over all elements
and all frequencies:

minimize �

�
max
n

�
max
i;j

��FGij(!n)�Hdrij (!n)
���� ;

where !n; n = 1; 2; � � � ; N is a \dense" frequency set. Obviously, this problem can be restated as8>>>><
>>>>:

minimize �+;��;s; 

subject to

�
A �A �1

�A A �1
I

�0BB@
�+

��


s

1
CCA =

�
d

�d

�
;

8>><
>>:

 � 0
�+ � 0
�� � 0
s � 0

;
(28)

where A is related to Equation 10, d denotes the speci�cation function Hdr evaluated for all !ns and
written in column format, and col� = �+ � ��.

Note that we are e�ectively minimizing a Chebyshev norm, since all matrices are now written in
column format. The MAV norm is hereby minimized indirectly.

Experiment
A fair few simulation were carried through using the linear programming approach. The SDP

solver package was used for the LPs as well due to its ease of use and stable behavior. The downside
is however performance|you would expect dedicated LP solvers to run faster.

In �gures 18{21, plots of a test run using the speci�cation and interference functions of Example 3.5,
Figures 10 and 11, are found. The �lter has 69 taps in its diagonal elements and 29 taps in its o�-
diagonal elements. Using the LP algorithms of [10], the optimization took 708s to run on a DEC
AlphaStation.

Discussion
As for the SDP approach, since the performance of the �lter has to be optimized over a dense

set of frequencies, we tend to end up with very large matrices. The sparsity for the LP matrices are
only around 10%, but they are on the other hand much smaller that the a�ne SDP matrices, and the
number of nonzero elements are roughly the same.

Have a closer look at Figure 20. Evidently, all the error functions alternates between the same
extremal values. The number of alternations di�er between the channels, so clearly, this approach
distribute the approximation error in a very uniform way.

5 The Multi-Channel Remez Exchange Algorithm

In this section we explore the possibilities of applying the general idea of the Remez exchange algorithm
(as described in the beginning of Section 3.2) more or less unmodi�ed to the multi-channel problem.

It has to be emphasized that a new, working algorithm is not presented, but a few very promising
simulations were carried through nevertheless.

The purpose of this section is to present an idea, or a concept, that, in the opinion of the authors,
would be worth exploring further. The general approach is to boldly assume that the same theory
holds for multi-channel �lters as do for one-channel ones. Therefore, we assume that there exists a
solution, in some aspect optimal, for which all the matrix elements of the error function of the �nal
multi-channel �lter alternates. However, the necessary theoretical extensions required to support the
above assumptions are never made.

To be precise, We \enforce"

FGij(!ijn)�Hdrij (!ijn) = (�1)n�ij ; n = 1; 2; : : : ; Lij + 2 (29)

simultaneously for all matrix elements (i; j). Please note that there are di�erent !ns for di�erent
channels. For each channel (i; j), we would expect to �nd Lij + 2 alternations in the error function.
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Figure 18: Filter error function
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Figure 19: Total system response
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Figure 20: Total system error
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Figure 21: System error MAV norm

There are also di�erent �s, one for each element. So, if Equation 29 holds, the system is optimal only
in the sense that each element in the matrix transfer function H(!) alternates between its extremum
values. What sort of optimality in a strict mathematical sense this might equal to is not further
investigated. Also note that the extremum values will be di�erent for the di�erent elements.

What distinguishes this problem from the one-channel problem is the fact that the matrix-valued
interference function G(!) introduces inter-channel interference, ie. the problem cannot be solved
simply by solving an equation system like Equation 15 for each element, but has to be treated \holis-
tically", simultaneously, treating all elements together.

The algorithm used forms one single equation system from the condition in Equation 29 by using
the column operator as explained in Section 2.3. The resulting system is of the form

�
A �

�� �

�

�
= b; (30)

where � are the �s from Eq. 29 above, written as a column vector, � is a matrix corresponding to
the (�1)n factor from the same equation, A is the big matrix related to Equation 10, � are all the
�lter coe�cients from all the �lter matrix elements, written as one single vector, and b is Hdr for all
frequencies and all matrix elements, written as one single vector as well.

Just like in the one-channel case, the system is solved (it is full-rank as long as G(!) is nonsingular
and the frequency vectors !ij contain no repeated values (Eq. 13)), after which the new error function
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Figure 22: An interference function and a �lter

is evaluated. New \extremal" frequencies are found, individually for each matrix element, in the same
fashion as for one-channel �lters (Section 3.2), and a new A matrix is formed. The above procedure
is repeated until the \extremal" frequencies do not change any longer.
Constant Interference Function

An interesting special case is when G is constant, ie. does not vary with frequency. In this particular
case, the problem can be decoupled. To show this, we write Equation 29 in its full matrix form (please
note that � is a matrix):

F (!n)G�Hdr(!n) = (�1)n� () F (!n)�Hdr(!n)G
�1 = (�1)n�G�1 (31)

Clearly, since now F (!n) stands by itself, the problem is decoupled and can be solved as an independent
problem for each matrix element (Chapter 3.1 & 3.2).

Experiment

Example 5.1 A big multi-channel Remez algorithm example. This is a really huge example.
The �lter has 69 taps in its diagonal and 29 in its o�-diagonal elements and ten channels. The
resulting equation system to be solved by the script has 1800 equations and variables, which means
that the size of the system matrix exceeds three million elements! The matrix is sparse, but only to
a limited extent|roughly 10%. In this context it has to be emphasized that the problem described
in practise is far too big for any other method (as included in this report) to handle. The proposed
algorithm however converged to an \optimal" (with the limitations as discussed above) solution in eight
iterations and less than two minutes only! The resulting overall system magnitude response and error
functions can be seen in Figures 23 and 24, respectively. Only a diagonal element and an o�-diagonal
element have been displayed in order to save space.

Discussion
The algorithm proposed above works well for many simulated examples, especially when the cross-

channel interference is not severe. However, reality is a bit cruel. For a fair few simulations with
di�erent tap lengths and di�erent interference and requirement functions, the algorithm simply did
not converge. Simple observation of the simulation script in verbose mode (which means that the error
function is plotted for each step in the algorithm) suggests that the reason might be inter-channel
interference, in the sense that the elements converge with di�erent speeds and therefore, a slowly-
converging element might disrupt the convergence of a faster-converging one, eventually causing an
oscillation where a large error propagates back and forth between elements. A very interesting project
would be to have a look at di�erent techniques to control this.
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Figure 23: System response for diagonal and o�-diagonal elements
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Figure 24: Error function for diagonal and o�-diagonal elements
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6 Conclusions

Encouraged by the excellent performance of the Remez Exchange Algorithm when optimizing global
performance of systems via Linear-Phase FIR Digital Filters in the one-channel domain, the possibil-
ities to increase the performance accordingly for Multi-channel global optimization of systems were
explored. Led by the results from this quest, a closer look was taken on the one-channel Remez
algorithm. A few points are worth making:

� The problem already have an analytical solution for the least-squares norm [2]. Due to the
down-sides of that norm (the Gibbs e�ect etc.), other norms are still of signi�cant interest, even
if iterative methods have to be applied for these.

� The general optimization algorithms available for solving linear and semide�nite programs are
not e�cient for solving these problems. Generally, one can observe that only a small fraction of
all the frequencies that is optimized for, are required, had the \correct", ie. extremal frequencies
been selected and non-extremal frequencies discarded in the optimization process.

� A very e�cient algorithm for the multi-channel domain was proposed, but it does not work all
the time. Further investigation into this algorithm is required.
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