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Passivity Analysis and Passification for
Uncertain Signal Processing Systems

Lihua Xie, Senior Member, IEEEMinyue Fu, and Huaizhong Li

Abstract—The problem of passivity analysis finds important popularly used in multirate signal processing [14]. Nonlinear
applications in many signal processing systems such as digital and time-varying systems also arise in many adaptive filtering
guantizers, decision feedback equalizers, and digital and analog problems. Passivity analysis is a major tool for studying

filters. Equally important is the problem of passification, where a bility of h iallv for hiah-ord |
compensator needs to be designed for a given system to becom&tapliity of such systems, especially for high-order systems. In

passive. This paper considers these two problems for a large fact, the passivity analysis approach has been used in control
class of systems that involve uncertain parameters, time delays, problems for a long time to deal with robust stability problems

quantization errors, and unmodeled high-order dynamics. By for systems involving nonlinear/time-varying components. See
characterizing these qnd many other types of uncertainty using 131, [9], [10], [15]-[17], [20], and [21] for references

a general tool called integral quadratic constraints (IQC’s), we P T o o . ) .
present solutions to the problems of robust passivity analysis and  APart from its direct applications, the notion of passivity
robust passification. More specifically, for the analysis problem, is closely related to bounded realness, which is an equally
we determine if a given uncertain system is passive for all admis- important notion in signal processing. In fact, it is well
sible uncertainty satisfying the IQC's. Similarly, for the problem  known that there is a one-to-one relationship between bounded
of robust passification, we are concerned with finding a loop realness and passivity [1]. Consequently, bounded realness

transformation such that a particular part of the uncertain signal - . L . .
processing system becomes passive for all admissible uncertainty. 2nalysis can be converted into passivity analysis and vice

The solutions are given in terms of the feasibility of one or more versa. Bounded real functions find important applications in
linear matrix inequalities (LMI's), which can be solved efficiently.  both single-rate and multirate signal processing [7], [14].
The motivation of our paper stems from the fact that in
l. INTRODUCTION many applications, the system (or subsystem) that is required

. i _ to be passive is not a simple LTI transfer function; rather,
HE NOTION of passivity plays an important role in

often reduces to a subsvstem or a modified Svstem b:tmcertainties include unknown time delays in a communication
u ubsy m Y shnnel, variations in analog components, and unmodeled

passive. For example, it is well known that the suppression I‘ﬁgh order dynamics. Note that if there exists no uncertainty,

limit cycles of a digital quantizer requires a certain dynamighecking if a LTI dynamic system is passive or not is a simple

part of the system to be passive [7]. Another example Wheﬁ]eatter. However, for uncertain systems, it becomes much more

passivity analysis finds important use is the so-called decisign

L . mvolved. In the present paper, we use the so-called integral
feeqpack equalization (DFE) problem. It s shown [6] that a%adratic constraints (IQC’s) introduced in [20] and [21] to
decision feedback equalizer guarantees finite error recoveryillc ine uncertain components. The IQC’s encompass all of
certain passivity conditions are satisfied. P X P

. . the commonly encountered types of uncertainty mentioned
Many signal processing systems are feedback systems con-. ; o : ) .
L . T . ; earlier. More will be said in Section Ill. Our first main
sisting of both a linear time-invariant (LTI) dynamic part . . . - - .
: . : result (in Section 1l1) is a sufficient condition for guaranteeing
and a nonlinear and/or time-varying part. For example, . ) . C
. . : : the uncertain system to be strictly passive for all admissible
differential pulse-code modulation (DPCM) system involves : ; - Lo .
a linear predictor and a quantizer. Time-varving filters arLéncertamty. This sufficient condition is expressed in terms of
P d ying a linear matrix inequality (LMI) that can be solved efficiently.
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<z,y> fnf’o z'(t)y(t)dt S x'(t)y(t) Fig. 1. Interconnected feedback system.
T 7 T 7
<zy>r | fo T OyBd | ¥z By

) oy wm)] oo | u)
far as stability is concerned, is more suitable for passivity and -
stability analysis. This approach is commonly used in stability
analysis of nonlinear control systems; see [3], [10], and [15], u(n) 0 u(n)
for example. It is also used in [6] for analyzing the finite error
recovery problem in the DFE.

The second main result of this paper, which is given in Fig. 2. Digital quantizer.
Section 1V, deals with the passification problem for uncertain
systems. Quite often in a signal processing system (see Fig. 1)pefinition 2—Bounded Realnes#&n operatorH : £5 —
one part of the system is “over passive,” whereas the othet is called bounded realif
part is not passive. This makes the stability analysis difficult.
Our interest then is to find an appropriate loop transformation, (Hu, Hu)p < (u,u)p, YueLs T>0. (3)
which is a kind of compensation that preserves the passivity of
the former while passifying the latter. Passification ofuncertag]m“a”y’ H is called strictly bounded realif there exists
signal systems using four commonly used transformatiogs. ., < 1 such that
will be studied in detail. It is noted that stability analysis
for systems using multipliers and passivity has been studied (Hu, Hu)r < alu,u)y, Yue L5, T > 0. (4)
in numerous papers; see, for example, [2] and [3]. The

multipliers are simply “scalings.” Our results incorporate the Definition 3—Stability: An operator¥ : £5 — £5 is called
commonly used loop transformations and provide a systemag{%bleif Hu € Lo for anyu € Lo.

search using an LMI approach to design the required IOOpConsider the feedback system depicted in Fig. 1, whére

transformations. is a linear operator, ar#, is a (possibly) nonlinear operator.

We also present illustrative examples in Section V t_o demoﬁ‘he following key lemma reveals a sufficient condition for the
strate our results. Some conclusions are drawn in SeCtQ%bility of the interconnected system

VI.

Lemma 1: SupposeH; is linear and strictly passive, and
H, is passive. Then, the mapping frofm,d) to (w,v) is

IIl. PRELIMINARIES ON PASSIVITY stable.
Table | is the table of notation that will be used throughout ~ Proof: See [3, p. 182] and [6]. O
the paper. The passivity conditions given in the lemma above are

In Table I, we denote by.5 (resp.£5) the extended real, usually quite conservative when used directly. Consider the
(resp./s) space, i.e.u € LS (resp.u € £5) if every truncated digital quantizer depicted in Fig. 2. The LTI filter in the upper
u belongs toL, (resp./). Without complicating the notation, Plock is typically not passive even when it is FIR, whereas
we will use L, to denoteLs x Ly X -+ x Lo, etc. the lower block is usually not constrained by a passivity

Definition 1—Passivity:An operatorH : £5 — L5 is called condition (often stronger than passivity). For example, a

passiveif there exists3 (not necessarily positive) such that typical constraint for the quantizer when studying the limit
cycles due to overflow (i.e., saturation) is given bfn) =

(Hu,wyr 2 B, VueLl;, T>0. (1) satw(n)), wheresat-) is a saturation function. Fortunately,

there are several standard transformations we can apply on

a given feedback system so that the resulting system will be

more suitable for Lemma 1. These transformations are depicted
(Hu,w)r > B+ olu,u)p, Yue LS, T>0. (2) InFig. 3(@)—(d). The results are summarized below; see [3],

[10], and [15] for details.

WhenH is a LTI real operator and it is passive (resp. strictly Lemma 2: Given the feedback system in Fig. 1, consider

passive), its transfer function is callpdsitive real(PR) [resp. the transformed versions in Fig. 3. Suppose the operators

strictly positive real(SPR)]. andD are linear and stable, arfl has stable inverse. Then,

Remark 1: Although 3 is allowed to be nonzero in thethe stability of all these systems are equivalent.
definition above, it is known that can be set to zero without For example, consider the overflow limit cycles problem for
loss of generality for linear operators. the quantization system in Fig. 2 [7]. To capture the overflow

Similarly, H is calledstrictly passivef there existd and« > 0
such that
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© (d)

Fig. 3. Transformed feedback systems.

limit cycles, the quantizer is simplified and normalized to be ol
J el
-1, wln)< -1 i A
u(n) = sau(n)) = { v(n), |u(n)] <1 () T A 1/(1+ H(z)- G(2)
1, v(n) > 1. -
Obviously, the quantizer is passive becauge)v(n) > 0. i 1+ H(z) ! sat(”)
Therefore, a direct application of Lemma 1 implies that no
limit cycles exist whenG(z) is SPR. This is a well-known —
result; see [7]. However, this condition is too conservative 1@
in general. To reduce the conservatism, we consider the Fig. 4. Transformed quantizer system.

transformed system in Fig. 4, whefe< « < 1 is a tuning
parameter, and (z) is any stable function wittlL; norm less

. When the signal model under consideration contains no un-
than or equal to 1, i.e.,

certainty, the well-known Kalman—Yakubovich—Popov (KYP)
S A1) < 1 (6) lemma (see [1] for an equivalent frequency domain condition)
0 - is a useful tool for addressing the above two problems. We

whereh(t) is the impulse response corresponding#¢r). In  Shall recall this lemma below. To this end, we introduce the

addition, it is required that + H(x) is invertible. linear time-invariant system
It is known that the lower block of Fig. 4 is passive, whereas (Xo0): ox(t) = Ax(t) + Bw(t) (7)
the upper block approachés + H(z))~(1 + G(z)) when () = Ca(t) + Duw(t) ®)

« — 1. Therefore, the system in Fig. 4 (hence, the one in . ) .
Fig. 2) does not observe limit cycles(if +H(z))~*(14+-G(x)) wherew(t) € R? is the input, andy(t) € R? is the output.
is SPR. Clearly, this is weaker than requirieigz) to be SPR  The transfer function ofX) is given by
because if7(z) is indeed SPR, we can simply chodg¢z) to G(g) = Clol — A)*B+ D.

be zero. We also note that the condition above is a special CRgfe that as the number of inputs is equal to that of outputs,
of a more general result studied by Zames and Falb [22], Whefg apnove transfer function matrix is square.

the feedback block is allowed to be a general monotone and ¢mma 3: [1], [13] The system(3) is strictly positive

odd function (see [12]). L real (see Definition 1) if and only if there exists a symmetric
Another example where the transformation in Fig. 3(a) Sositive definite matrixP satisfying

used is the DFE problem studied in [6]. , ,

We note from the above discussions that two problems arise: Continuous-time:[Clgft;tjr_})é4 _}()g J_r IC),)} <0 (9
1) How do we test whether a given operator is passive or

strictly passive, and 2) how do we find a suitable transfofnd

mation using the combinations in Figs. 3(a)—(d) so that theDiscrete-time:[A/PA_ P (B'ra-cCy } <o.
stability problem of a given feedback system reduces to a B'PA-C —(D+D'-B'PB)
passivity test. (20)
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To conclude this section, we introduce the well-kno&n 3 .
procedure [20], [21], which will be used to handle passivity v
analysis and passification for uncertain signal models in the
following sections.

Lemma 4:Let F(),V1(), .o, V() Yok 1 (), - ooy Vit () 5
be real-valued functionals defined on a gkt Define the W —Y
domain of constraintd as

D= {AeA: V) 20... () >0
Vier1(A) =0,..., Vet(A) = 0}

Fig. 5. Uncertain systenx.

be found in a survey paper [12]. For example, the time-delay

and two conditions uncertaintyé;(t) = z,(t — =;), ¢ = 1, 2,...p, wherer; are the
a) F(\) > 0, VA € D; unknown delays and;(t) = 0 whent¢ < 0, is a particular
b) 311 > 0,...,7% >0, 7441 > 0,..., 724 > 0 such that case of (14). An example of characterizing quantization errors
fetl by (14) can be found in Section V. In addition, the commonly
S(r,\) = F(\) — Zijj()\) >0, YAeA used norm-bounded uncertainty [8], [18], [19], is a special case
et of the 1QC’s (14). In fact, the norm-bounded uncertainties can

be described by the quadratic constraints

Zz(t)”Q? i:1727"'7p' (15)

Then, b) implies a).
Remark 2: The procedure of replacing a) by b) is called the & <

S procedure. This procedure provides a very convenient v\;\/ﬁ/ ) _
of handling inequality and equality constraints and is knownote that both (14) and (15) can effectively represent dynamic

to be conservative in general. Despite of its conservatism, tHacertain structure. However, the significant difference be-
simplicity of this procedure has attracted a lot of applicatiof&#€en (14) and (15) is that (15) are “instantaneous” constraints,
in stability analysis problems and optimization problems; sd¢hereas (14) are weaker “averaged” constraints. We also note
[2], [12], [20], and [21]. In particular, searching for optima[that (14) can often be directly obtained from identification
scaling parameters; is often a convex optimization problem,procedures.

as we will see in the following sections. Definition 4: The uncertain system (11)—(14) is called ro-
bustly passive (resp. robustly strictly passive) if it is passive

Il. PASSIVITY ANALYSIS (resp. strictly passive) for all admissible uncertainty.
Consider the uncertain system Our objective is to analyze the robust strict passivity of the

. uncertain system (11)—(14).
(2): ox(t) :Ax(t)—’_Bw(t)—'_ZFlf‘(t) (11) Before proceeding further, we introduce the short-hand
=1

notation
p
Fi=[Fu1 Fio - Fy
y(t) = Cx(t) + Dw(t) + Y F&(t) (12)

iz:; FQI[FQI F22 F2p] (16)

Zi(t) = Elia:(t) + Egiw(t) + Egzg(t) FE{ = [Eil E{Q s Eip]/
i=1.2,...,p (13) Ey=[E) E) ... E,J (17)

wherez(t) € R™ is the statew(t) € RY is the exogenous £33 = P N o |
input, y(t) € R? is the outputz;(¢t) € R¥ ¢ = 1,2,...,p, E=[E E, Ej (18)

otiti ki oo .

are fictitious outputs, ang;(¢t) € R*, ¢ = 1,2,...,p denote r=(r,. ) J=diag{nl,... 0k} (19)

uncertain variables. The syste(X) is depicted in Fig. 5,
wherez = [z 2, -+ 2], & = 1[4 & - &), and wherer,...,7, are scalars. The vector > 0 if every
U represents the uncertain mapping. The uncertaiitys component ofr is positive.
called admissible if the uncertain variables satisfy the integralBy applying theS procedure stated in the previous section,
quadratic constraints (IQC’s) we have the following result.
lim ST(&®)]2 = @) <0, i=1,2....p. (14) I__emma 5:_The_ uncertain_system of (11_)—(14)_ _is robu_st_ly
T—o0 strictly passive if there exist a symmetric positive definite
In the above A, B,C, D, F\;, F»;, E1;, Es;, and Es; are con- matrix P € R™™ and scaling parameters,...,7, > 0
stant matrices of appropriate dimensions. In addition, note ttgatch that
the number of inputs is assumed to be equal to that of th¥ Continuous time:

is very general. It includes time delays, quantization errors, =1

uncertain parameters, unmodeled dynamics, and many non- P

linear and/or time-varying components. A comprehensive list + > nlllzl* - 1&11*) <o (20)
of uncertain components that can be described by IQC'’s can i=1

outputs. »
Remark 3: The uncertainty represented by the 1QC's (14) 24 P <Ax + Bw+ Z Fu&) — 2w’y + 20w w
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2) Discrete-time: Discrete-time:
? ’ P [Qu E'J
<Aa:+Bw+ZF1i§i> P<Ag;+Bw+ZF1i§i> Log = {]E _J} <0. (25)
i=1 i=1

d) A is stable, and for somé& > 0, either of the following

auxiliary systems is strictly positive real:
—x’Px—2w’y+2aw’w+2n(||zi||2 — &3 <o y Sy yp

i=1 0xq(t) = Az () + [B FL 0we(t) (26)

21
1) C D P 0
holds for somex > 0, for all z € R™, w € R? and¢; € R*, ve®)=| 0 |za()+| 0 17 0 |wa(t)
i=1,2,...,p, such thalz' v’ & --- ] #0. —JE; —JEy, —JE; %J
Proof: Let V(z) = 2’ Pz and integrate the inequality of 27)
(20) from 0 to 7" along any trajectory of (11). Then, we hav%r
T
V[x(T)] - V]z(0)] — 2 / W' (t)y(t) dt ox,(t) = Ara(t) +[B F1J™" Olw,(t) (28)
0 C D FQ .]_1 0
T p T 1 7-1
! . n2 ya(t) = 0 xa(t)+ 0 §J 0 wa(t)'
+ 2a/0 w' (t)w(t) dt—i—;n{/o 2|2 dt B, By By L
T (29)
- [lewlay <o o
0 Moreover, the set of alf satisfying c) is convex, where
Now by takingZ — oo and considering (14) and the fact that -/ is given in (19).
Ti,72,...,7, > 0, we have Proof:
-00 1 T a) <= b): Using the short-hand notation of (16)—(19), (20)
| wtnar= -5Vl +a [ v can be rewritien as
0 0
That is, the system (11)—(14) is robustly strictly passive. 22/ P(Az + Bw + F1§) — 2u/'(Cx + Dw + Fy§)
The discrete-time case can be proven in a similar way. + 2aw’'w + (' B + W' E) + {'ES)J(Evx
.With the gbove Iemma., we present thg first main rgsult of + Eyw+ E3€) —€£'JE<0
this paper, i.e, we establish several equivalent conditions forWhiCh implies

the robust passivity of (11)—(14). P oy

Theorem 1:Consider the uncertain system of (11)—(14). S A I
The following conditions, all guaranteeing the system to befor all z € R", w € R%, & € R¥, i = 1,2,...,p such
robustly strictly passive, are equivalent. that [/ w & - &] # 0.

a) There exist®® = P’ > 0 such that (20) (continuous-time Conversely, if (22) holds, there exist some> 0 such

: . that
context) or (21) (discrete-time context) holds.
b) For some/ > 0 defined in (19), there exisi® = ' > 0 L1, + diag{0, 201, 0} < 0
such that
Continuous-time: which in turn guarantees the satisfaction of (20).
L1.=Q.+EJE<0 (22) b) < ¢): It follows the Schur complements, i.e.,
7 7/
where B(l i‘é} <0~ X; <0, X;+XR'X,<0.
AP+PA PB-C' PF 2 ‘ o
Q.= | BP-C —(D+D) -F ¢) <= d). By considering that£,, < 0 and
F/P —F} .y diag{Il,I,J=* J= Lo diag{l,I,J71, 7} < 0, the

equivalence follows immediately from Lemma 3.

Discrete-time: : . . I
The discrete-time case can be shown in a similar way.

L1g=Qu+FEJE<O (23)  Remark 4: Theorem 1 shows that the robust strict passivity
where of system (11)—(14) is guaranteed if the auxiliary system
A'PA—P A'PB — ' A'PFy (26)—(27) or (28)—(29) is strictly positive real for sonie> 0.
Qu=|B'PA-C —(D+ D' —B'PB) BPF, —F,|. ltcan be observed that all the inequalities in b) and c) of
F/PA F/PB — F} F/PF —J Theorem 1 are jointly linear inP and J. Therefore, all the

inequalities in (22)—(25) are the linear matrix inequalities.

Note that very efficient numerical algorithms exist for solving

LMI's, owing to the recent advancement interior point

algorithmsfor convex optimization. See [2] for a good tutorial

Q. E'J . . . . .

Lo = <0 (24) on this subject and implementations of algorithms. Software
JE —J packages for solving LMI's are also available; see, e.g., [5].

c) For someJ > 0 of (19), there exist® = P’ > 0 such
that
Continuous-time:
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V. PASSIFICATION FORUNCERTAIN SIGNAL SYSTEMS w w [ y
In the previous section, we discussed the robust strict s,
passivity problem for uncertain signal systems. As seen from v Znf
Section I, there are many signal systems where certain trans-
formations are needed to obtain a passivity property for certain Fig. 6. Auxiliary system forD— 17
constructing blocks of the systems; see Figs. 1 and 3. It is
typical in signal processing systems (see Fig. 1) that the lower
block is “over” passive, whereas the upper block is not passi()%> +(X) as
enough. An example of this has been discussed in Fig. 2. In (25): on(t) = An(t) + Bio(t) + FL&(t) (32)
addition, the upper block contains uncertainty. In this section, §(t) = Cn(t) + Di(t) + Foe() (33)
we deal with the following robust passification problefind N
one of the transformations described in Fig. 3 such that the 2 (t) = Evn(t) + Exio(t) + E3¢(t) (34)
passivity property for the lower block is preserved while th@here F,, F, E1, E», E5 are defined in (18) and (19), and
upper block is rendered to be strictly passive for all admissible
uncertainty A= [A 0 } B= [B} F = [Fl} (35)
0 A.l|’ B.|’ 0

First, we assume that the upper block of Fig. 1 is modeled _ _ -
by the system®) given in (11)—(14), i.e.H; = £. Denote ¢ =[C Ce(K)], D=D+D.(K), E =[E 0]
the transformation€, D, or D1 all by 7. We consider a (36)

ISo?/t/:: ET?ELe;;adnifg\;??ﬁgnfz::]at preserve the passivity of tRgparently, the matrice€’ and D are affine inK; all the

y other matrices are known.
T — {T : T(p) = ZmTf(Q) {K1, K2, Ky} € Q} By applying Theorem 1 tdX;), we have the following
A e result.
(30) Theorem 2: The system(X,) is robustly strictly passive if
there exists/ > 0, K € Q, and P = P’ > 0 such that

where T;(p), ¢ = 1,2,...,r are known transfer functions _ .
Continuous-time:

that can be regarded as basis functionsZofand x;, i = - - _ o
1,2,...,v are parameters to be designed that are constrained AP+PA PB-C Pl EJ

in a convex set?, which is typically a hypercube. Note that BP-C —(D+D") -F E;J 37
o icati F'P F} 7 pag| <0 G
the above assumption is reasonable for many applications; see 1 &2 - 3
the example in [6] and Example 2 in the next section. It can JE, JEy JEs  —J
be easily obtained that one particular state space realizatidiscrete-time:
for T'(o) is of the form @’P@— P 7A/P7§ — @/ ) ) A’fﬁl E\J
T(e) = {Ae, Be, Co(K), De(K)} cpbd DD - BEPR) BEL -1 Bl
K = {51, x k) €Q (31) F{{’A F/|PB - F} FPF—-J FE,J
I JE; JE, JE3 —J
where A, B. are known constant matrices, agg(X) and < 0. (38)

D.(K) are affine inK. GivenT, our objective is to choose a
feasible X such that the transformed upper block is robustly Clearly, the LMI (37) or (38) is jointly linear inP, J,
strictly passive. and K. Hence, they can be solved using convex optimization
Remark 5: An alternative design procedure is to find a sééchniques; see [2] for details.
of transforms that render the upper block strictly passive first,Case (c) of Fig. 3:
then select one from the set, if it exists, such that it also In this case, the upper block is a cascaded connection of
preserves the passivity of the lower block. The difficulty witl?~* and H:, and 7 = D. To overcome the difficulty of
this approach is that for a different upper block, the whoféeating D, we will analyze its inverse instead. Our main
design must be redone. Although finding all transformatioridea can be observed from Figs. 6 and 7, whEteis the
that preserve the passivity of the lower block is, in general, alggXiliary system to be defined in Theorem 3. First, it can be
a hard job, there are fortunately many standard lower block8own (see later) that the system in Fig. 7 is the inverse of that
used in the signal processing problems, such as quantizéid;ig. 6. Hence, their strict passivity properties are equivalent.
sector-bounded uncertainties, etc. For these uncertainties, gxt, it can be shown using Theorem 1 that the strict passivity
ious transformations are known; see [6] and [12]. Hence, thé the systenf; D~" is guaranteed ifD~" is such that the
approach we present in the paper should normally work bettgystem in Fig. 7 is strictly passive or, equivalently,is such
We now discuss each transformation in Fig. 3, respethat the system in Fig. 6 is strictly passive.

tively. For notational convenience, we defing(t) = We assume that the matri&® of (3) is invertible, which is
[21(t) - 2z, (1) in fact necessary for the strict passivity of the upper block of
Case (a) of Fig. 3: (&) and (d) (see later).
In this case, the upper block is the sum (6f) and (%), Then, our main result for Case (c) is stated in the following

and7 = C. It is easy to obtain a state space realization faheorem.
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Fig. 7. Inverse system of the system in Fig. 6.

Theorem 3: Consider the system in Fig. 3(c) with; = %
defined in (11)—(14) an® = T(p) defined in (31). ThenD
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wheret, = [u, v,), 9. = [§, #,], and

D LJt 0
D,=1| 0 1t 0 ]
—F, 1J1
The strict positive realness of the system (46)—(47) ensures that
the matrix D, is invertible. It can be shown that the system
(3,) is the inverse of(X;1). Thus, the system in Fig. 6 is
the inverse of the system in Fig. 7. Therefore, the SPR of the

—E;J7!

renders the upper.block of Fig. 3(c) robust!y st_rictly_pass_ive éfystem in Fig. 6 implies that of the system in Fig. 7, which in
for someJ > 0, D is such that the system in Fig. 6 is strlctlyturn guarantees the robust strict passivitylf= H; D1, O

positive real, where the syste(®@,) is given by

Yo = {Aa, B,,Cq, Dy} (39)
with

A,=A—-BD™C

B, =[BD™' 2(F,—BD™'F,) 0] (40)
I -DC

C, = 0 (41)
_2J(E1 — EQD_IC)
[ D! —2D7'F, 0

D, = 0 2J 0 (42)
_2JE2D_1 4J(E3 — EQD_IFQ) 2J

and F, F», Ey, B are the same as in (18) and (19).

Proof: First, note that the strict positive realness of the L
system in Fig. 6 implies thaD is invertible. This can be

observed fromD in (55), which satisfiesD + D’ > 0.

Next, denoteD~'(p) = (A., B., C., D,). Then, a state space

realization for the systerit; D~ is given by(,)

mnit) =[5 5 o+ [P o + [ ]t @

Bc
(1) = [C DC.Jn(t) + DDs(t) + Faé(t) (44)
24(t) = [Br BxColn(t) + EaDet(t) + Bal(t)  (45)

Given D of the form (31), a state space realization for the
system in Fig. 6 is of the form

on(t) = An(t) + Bw.(t) (50)
ua(t) = Cn(t) + Du (1) (5)
wherey. = [y z,/]", w, = [w’ ¢']', and
.~ [A. =B.D7'C
A= | 0 A—BD_IC} (52)
~ [B.D™* —2B.D7'F, 0
B= _BD_]L 2(Fy — BD7'Fy) 0} (53)
X [C.(K) -2D.(K)D~C
C=1 o0 0 (54)
0 2J(E1 — EQD_IC)
X [D.(K)D™! ~D.(K)D71F, 0
D= 0 2J 0 (55)
L 2JE2D71 4J(E3 — EgDing) 2J

Obviously, the matricesi and B are known, whereas the
matricesC' and D are affine in unknown matri¥ .
Now, an LMI for finding P(¢) such that the upper block of
Fig. 3(c) is robustly strictly passive is presented as follows.
Theorem 4: A given D € T defined in (30) and (31)
renders the upper block of the system in Fig. 3(c) robustly

wherez; and¢ satisfy the IQC’s (14). It follows from Theorem strictly passive if there exisf > 0, K € Q, andP =P’ > 0
1 that the systen{X;) is strictly passive for all admissible such that

uncertainties if for some/ > 0 the system

(A BC. BD, F,J!' 0
m =y 5[+ [ BT o)
wa(t) Qa
* [m(tﬂ H (40)
[ C DC.
=10 0 |n()
—E1 —E2D,
DD. F,J! 0 ba(t)
+ 0 1yt 0 [z’ja(t)} (47)
—E;D, —F3J7t Lgt|Le

. _ [AP+PA PB-C
Contmuous-tlme.[ BP_C —(D—i-D’)} <0 (56)
. _ [APA-P (BPA-CY
Dlscrete-tlme.[B,PA _éa —(D . é’Pé)} <0
(57)

holds, whered, B, C, and D are defined in (52)—(55).

Once again, the LMI's above are jointly linear iR, J,
and K.

Case (d) of Fig. 3:

This case is similar to Case (c). The following result can

is strictly passive. It is straightforward to show that the systehe established by a similar way as in Case (c). The details of

(46)—(47) is in fact the system in Fig. 7, whe®; 1)

ox(t) = Ax(t) +[B FiJ ' Olia(t) (48)
C

9.(t) = | 0 |z(t) + Daiia(t) (49)
—FE;

the proof are thus omitted.

Theorem 5: Consider the system in Fig. 3(d) with; = X
given in (11)-(14). A givenD < T defined in (30)—(31)
renders the upper block of the system robustly strictly passive
if for some J > 0, D is such that the system in Fig. 8 is
strictly positive real, where the systefR,) is given in (39).
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u v, = {A4,B,C,D} is SPR. The SPR ofY;) implies that
v D Y D + D’ > 0, which in turn ensures thab=! — D.(K) +
Za (D! — D.(K)) > 0. Hence, the matrixD~! — D.(K) is
invertible, i.e., the well posedness @fis guaranteed.

Now, the inverse system @&,) can be easily obtained as

—— 2nf

Fig. 8. Auxiliary system forx ;D !.
Eb_l = {Ainva Binva C(inva Dinv}
Remark 6: Note that for Case (d), we shall use the followypere
ing different state space realization f&(¢) in (30)
Ay = [A BCC} + [BDc(K)}M(K)l[O D]

T(o) = {Ac, Bo(K),Co, D(K)}, K e (58) 0 A B.(K)
where A. and C. are constant matrices, anB.(K) and L ) o
D.(K) are affine inK. Similar to Case (c), we can easily B =[B1 I1 0], Ciuy= 01 -
show that a state space realization for the system in Fig. 8 —-JT kB
has constantl and C, but B and D are affine inK and J. [M~Y(K)D M YK)F, 0
Applying the KYP lemma on that state space representation, D,,, = 0 %J*l 0
it can be verified that the resulting LMI’s are jointly linear in | —J'E, —JlE; %J—l
P~1 K, andJ. In fact, by applying the Schur complements, it M(K)=1-DD.K),
is easy to show that (56) and (57) are, respectively, equivalent A ‘B + BD(K)M (K)D
to L L L= | BJ(K)M~YK)D
— / — _ p- / -
Continuous-time: PE},A gﬁi B DP ff <0 po_ [P+ BD(K)M™HK)F>
o g —( t D’ 1= B.(K)M Y(K)F;
—P- -p ¢ pLA N _—
Discrete-time:| -CP~! —(D+D') B | <0. Cr=MTHK)[C DC, By =[E1 O]
Ap~t B —pt Apparently, the systeri®; ") is SPR, as i€Y,).
Case (b) of Fig. 3: Next, it can be worked out that the closed-loop system of
This case requires us to fin such thaty, = (I — the upper block of (b) in Fig. 3 is of the form
H1C)™YH, is strictly passive. IfH; is an invertible LTI on(t) :Amvn(t)JrBlw(t)Jrﬁlg(t) (63)

system, the above is equivalent to the fact that the inverse = . 1 R 1
systemX ' = H[* — C is SPR. Note tha®;! is linear U(t) = Can(t) + M (K)Dio(t) + M (K)F2¢(t) (64)
in K. When H; involves uncertainty, we use a similar 27(t) = E1n(t) + Ex(t) + E3(?) (65)
analysis as in Case (c), i.e., we can repladde by an where¢ and z; satisfy the 1QC’s (14).

auxmary system that involves scaling parar.n.ete?r-sbut no Finally, the robust strict passivity of the system (63)—(65)
uncertainty. Consequently, the robust passification problg{)rhowS from the SPR of ;") by employing Theorem 11
b

becomes [inding{land K such that .the auxiliary inverse It can be observed from (59)(62) and Remark 6 that the
system>;” = 7, —C is SPR. As in Cases © and_(d)’LMl’s in Theorem 6 are jointly linear inP~%, J and K.
it is assumed thaD) is invertible. The result is summarized o - 7-The results in Theorems 2—6 provide an LMI

below. e T .
i . ) . approach to the passification of uncertain signal processing
Theorem 6.ConS|derC_ < ngfl_ned in (30) and (58).T_hen, stems. As powerful software packages are now available
C renders the robust strict passivity for the upper block if thegs, solving LMI's [5], the proposed passification techniques
: [y )
eX'Stf] >0, K € andP __P >0 _SUCh that the LMI (56) should be useful in signal processing applications. See also the
(continuous-time) or (57) (discrete-time) holds for illustrative examples of the next section. It should be pointed

A [A—BD'C 0 (59) out, however, that the results may be conservative due to 1) the
1 0 A, use of theS procedure, which provides, in general, a sufficient
R BD-' 2(F, — BD"'F»)J 0 condition for passivity and passification, and 2) the use of a
B = B.(K) 0 0 (60) convex set of transformatiorE. Nevertheless, we believe that
- D-lo c our results provide a feasible way of handling uncertain signal
& N 0 _0 e (61) processing systems.
2(E1 — EQD_IC) —2E5C.
- D' — D.(K) oD, J 0 V. ILLUSTRATIVE EXAMPLES
D= 0 ¢ 9] ? ol In this section, we will present two examples to demonstrate
2Ey (D~ — D(K)) 4(E3 — EaD~LFy)J 2J the applications of the results obtained in the previous sections.
- e first example examines the passivity analysis of a filter
¢ (62) The fi I [ h ivi lysis of a fil

where quantization error exists. Our second example is con-
Proof: Note that the existence of a positive solutiowerned with the robust passification problem for a quantization
P > 0 to the LMI (56) or (57) implies that the systemsystem.
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Example 1: Consider the overflow limit cycle problem as-

sociated with the digital quantizer in Fig. 2. L& z) be of
the form
G(2) T YL
w

_ 0.0375(2% +0.68752 + 1) -
23— 0.875022 + (0.7500 + 6a)z + (—0.625 + 6b)
(66) “

where éa and 66 represent the quantization errors after the
corresponding coefficients are coded by 4 bits. It is known
that |§a| < 27* and that|éb| < 27*.

It can be easily checked that the nominal transfer function Fig. 9. Signal system of example 2.
Go(z) of G(z) (settingbéa = 0 and b = 0) is stable but not
SPR. Next, letH(z) = —Go(z). It is verified that

Therefore, Theorem 1 and the results in Section Il guarantee
Co(z) = (14 Go(2))/(1 + H(2)) that the quantizer system will not have any overflow limit

is SPR and tha}~>% || < 1, where{h,} is the impulse cycles, even when the quantization errdig¢ and é6b are
response of the systerfl(z). Hence, from the discussionsPresent.
in Section II, we conclude that the system does not exhibit Example 2: We consider a quantizer system in Fig. 9,
overflow limit Cyc|es in the nominal case. where the IIR fllterG(z) is given in (66) As discussed
Next, we analyze the effect of the quantization errors. TRarlier, without loop transformation (i.esp = 0), the lower
this end, a state space realization for the transfer function block of the system is passive. However, it can be checked
that the upper block is not strictly passive. Our objective is
Clz) = 1+ G(2)/(1+ H(z)) to find a transformation in the form of Fig. 3(a), i.e., to find
is given by ko, such that the lower block remains passive, whereas the
w(k+1) = (A+ AA)a(k) + Buw(k) (67) upper block is rendered strictly passive for all admissible
uncertainties (quantization errors).

y(k) = Cu(k) + Dw(k) (68) Let ko be a constant. The following lemma characterizes
where the set ofkq such that the lower block remains passive.
0 1 0 Lemma 6: Given the system in Fig. 9, the lower block of
A+ AA= 0 0 1 the system remains passivelif< xo < 1.
0.6625 — éa —0.7242 — 6b 0.9125 Proof: By direct calculation, for any. > 0
C =[0.075 0.0516 0.075], D=1. w(n)o(n) = a(n)[i1(n) — roil(n)]
Denote (1 — ro)%(n), |t1(n)| <1
0 = @1 7’L) — Ko, @1(71) >1
Fi1 = Fio = 0 (69) _(Al(n) + "50)7 zAjl(n) < -1
-2~ It is obvious thati(n)i(n) > 0, Vo = 0,1,2...if 0 < ro <
Ey=[1 0 0, Ei2=[0 1 0] (70) 1. O
Fo; =0, FEo=EFE5 =0, i=12. (71) Next sinceC = kg, the state space realization foin (31) is

Then, the uncertainty\ Az(k) in (67) can be represented by A.=0, B.=0, C.(K)=0, D.K)=ro.
AA.T(k) = F11£1 + F12£2, Whereﬁi(k) = 6ZZZ(I$), Zz(k) =

. Similar to C(z) in Example 1, a state-space realization for
Eyz(k), and |6;] < 1, ¢ = 1,2. Clearly, ¢; and z; satisfy (z) P P

G(z) is of the form (11)—(13) with the 1QC’s (14) and

the IQC’s
o ) . 0 1 0 0
So (I&:l1" = Mlz]17) <0, i=1,2. A=1| o 0 1 |, B=10
We now apply Theorem 1 to check wheth@(z) is SPR 0625 —0.750 0.875 1
for any admissible quantization errofe and 6b. Efficient C =1[0.0375 0.0258 0.0375], D=0

interior-point algorithms are available to solve (25) for som .
P > 0andJ = diag{;, 72} > 0 [11]. These algorithms have%“’Fm’Ell’EIQ’FQ“F”’E21’E22’E31’ and £, are as in

i ) . 69)—(71).
been implemented in Matlab toolbox form [5]. Using the LMI( i i
toolbox on an HP workstation, a solution for (25) is obtained | "eN: the augmented system (32)~(34y @nd( is readily
as.J = diag{0.0422,0.0413}, and obtained. Finally, by applying Theorem 2, five LMI's for
' ’ solving the passification problem are given by (38) and
0.7085 —0.5375 0.2134
P=|-05375 11664 —0.5843|. P>0, J>0, rop>0, 1-£9>0.

0.2134  —0.5843  0.8706 The following result is obtained from the Matlab toolbox [5]:
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ro = 0.5,J = diag{0.2746,0.2690}, and [18] L. Xie, M. Fu, and C. E. de Souza,H.. control and quadratic
. . stabilization of systems with parameter uncertainty via output feedback,”
3.7799 —2.7652  1.2057 0 IEEE Trans. Automat. Contrvol. 37, pp. 1253-1256, 1992.
p —27652 6.0191 —3.0012 0 [19] Y. Wang, L. Xie, and C. E. de Souza, “Robust control of a class of
= 1.2057 —3.0012 4.5663 0 . nggrtaln nonlinear systems3yst. Contr. Lett.vol. 19, pp. 139-149,
0 0 0 60.7533 [20] V. A. Yakubovich, “S-procedure in nonlinear control theoryestnik
. . . - Leningrad Universiteta, Ser. Matematikap. 301-319, 1988.
Hence, the r_eqwred loop transformation#g = 0.5. The 23] __ ™ “Frequency conditions of absolute stability of control systems
transfer function of the transformed upper bloek + G(z) with many nonlinearities,”Automatica i Telemekhanicavol. 28, pp.
is verified to be SPR for all admissible uncertainties. 5-30, 1967.

[22] G. Zames and P. L. Falb, “Stability conditions for systems with
monotone and slope-restricted nonlinearitieS|AM J. Contr, vol. 6,
pp. 89-108, 1968.

VI. CONCLUSION

This paper has studied the problems of robust passivity
analysis and passification for a large class of uncertain syste™- Lihua Xie (SM'96) was born in Fujian, China,

with the uncertainty described by integral quadratic cot
straints. LMI solutions have been presented. In view of rece
development in convex optimization, especially in solvin

in 1964. He received the B.E. and M.E. degrees
in control engineering from Nanjing University of

Science and Technology, Nanjing, China, in 1983
and 1986, respectively, and the Ph.D. degree in elec-

LMI's (see [2]), our results offer efficient solutions to thes -- trical engineering from the University of Newcastle,
bl Applicati fth roblems in sianal pr i —_— Callaghan, Australia, in 1992.

problems. Applica '0”59 ese PQ ems In signal p ocess_ From April 1986 to January 1989, he was a

systems have been studied. In particular, we note that passi Teaching Assistant and then a Lecturer in the De-

analysis is an important tool in studying robust stabilit T partment of Automatic Control, Nanjing University

of Science and Technology. He joined the Nanyang

of S|gnal processing systems ”_1\/.0|V'ng no_nllnear eIememr%chnological University, Singapore, in 1992, where he is currectly a Senior
Examples of such systems (digital quantizers) have besturer at the School of Electrical and Electronic Engineering. His current
presented. research interests include filtering and signal processing, robust control and
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estimation, model reduction, and nonlinear systems.
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