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Performance Analysis for Subband Identification
Damián Marelli and Minyue Fu, Senior Member, IEEE

Abstract—The so-called subband identification method has been
introduced recently as an alternative method for identification of
finite-impulse response systems with large tap sizes. It is known
that this method can be more numerically efficient than the clas-
sical system identification method. However, no results are avail-
able to quantify its advantages. This paper offers a rigorous study
of the performance of the subband method. More precisely, we aim
to compare the performance of the subband identification method
with the classical (fullband) identification method. The compar-
ison is done in terms of the asymptotic residual error, asymptotic
convergence rate, and computational cost when the identification
is carried out using the prediction error method, and the optimiza-
tion is done using the least-squares method. It is shown that by
properly choosing the filterbanks, the number of parameters in
each subband, the number of subbands, and the downsampling
factor, the two identification methods can have compatible asymp-
totic residual errors and convergence rate. However, for applica-
tions where a high order model is required, the subband method is
more numerically efficient. We study two types of subband identifi-
cation schemes: one using critical sampling and another one using
oversampling. The former is simpler to use and easier to under-
stand, whereas the latter involves more design problems but offers
further computational savings.

Index Terms—Filterbanks, multirate systems, performance
analysis, subband adaptive filtering, system identification.

I. INTRODUCTION

THIS paper studies the use of the so-called subband identi-
fication method for identification of linear time-invariant

systems. This is a relatively new approach and is intended to re-
place the classical linear system identification technique for ap-
plications where the system model is a finite-impulse-response
(FIR) filter with a large tap size.

The key idea of the subband identification method is to divide
the given input and output signals of the system to be identified
into a number of subbands in the frequency domain by using
filterbanks and downsamplers. A subband model of the system
is then identified in each subband. There are two main types
of subband identification schemes: one using critical-sampling
and another using oversampling. Critical-sampling refers to the
scheme where the number of subbands is equal to the downsam-
pling factor, whereas in the oversampling scheme, the number
of subbands is larger than the downsampling factor. For com-
parative purposes, we will refer to the classical system identifi-
cation method as fullband identification. See [1] and [2] for an
introduction to fullband identification. In comparison with the
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fullband identification method, the subband method offers two
main advantages.

1) Lower computational cost: This is mainly due to the fact
that the signal rate for each subband is much slower com-
pared with that of the fullband signals, and each subband
model requires a much smaller tap size. These features are
partly counterbalanced by the extra computation required
for forming subband signals, but through a careful choice
of the design parameters (including the number of sub-
bands, filterbanks, and subband models), significant com-
putational savings can be achieved using subband identi-
fication.

2) Better numerical properties: Because each subband
model requires a much smaller tap size (compared with
the fullband model), a much better level of numerical
stability can be obtained in the subband method for the
identified model parameters.

These advantages have been recognized in various ways in
the literature. Subband identification has been used in speech
signal processing applications where long FIR models are
often required. For examples, see [3]–[9]. In general, there is
a crossing of aliases between subband channels due to filter
overlaps; see [3]. There are two main approaches to cope with
this problem. The first approach uses critical sampling by
applying nonoverlapping filterbanks, which results in spectral
gaps between subbands; see [4]. To overcome this problem,
[5] used auxiliary channels, with the corresponding extra
computational cost. Finally, [6] introduced the use of adaptive
cross-terms between subbands. However, these cross-terms
increase the computational cost and slow the convergence rate.
The second approach uses oversampling. For example, [7]
analyzed the existence of exact solutions of the identification
problem without cross-terms. In [8], Gabor expansion is used
to design the filterbanks, which restricts the flexibility for
the filterbanks. Finally, [9] studied the performance of the
oversampling case under a number of simplifying assumptions.

However, the research work available in the literature is far
from enough to quantify the advantages of the subband identi-
fication method. Since there are a number of design parameters
available for subband identification (as pointed out earlier) and
there are a number of performance indices (such as computa-
tional cost, asymptotic residual error and convergence rate), the
subband method may or may not be outperformed by the full-
band method when measured on a particular performance index.
As a result of this, exact comparison with the fullband method
is rather difficult. To make the problem more complicated, it is
not trivial to know how to optimize the design parameters.

The purpose of this paper is to deal with the aforementioned
matters, that is, we aim to quantify the advantages of the
subband identification method and study the problem of how to
optimize the subband design parameters. To this end, we first
give an introduction to the subband identification approach. We
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will show why this approach can be more numerically efficient
than the fullband approach for applications where a high order
model is required. Second, we compare the performance of the
subband identification technique with that of the traditional
fullband identification technique in terms of the asymptotic
residual error, asymptotic convergence rate, and computational
cost. This comparison is done under the assumption that
the identification is carried out using the prediction error
method and the optimization is done using the least-squares
method. This comparison is used to demonstrate the potential
power of the subband technique. We study the two types of
subband identification schemes, i.e., critical-sampling and
oversampling. The former scheme is simpler to use and easier
to understand, whereas the latter scheme involves more design
problems but offers further computational savings.

This paper is a companion paper of [10], where we studied the
asymptotic properties of a subband identification scheme. The
results of [10] are used in this paper. Although we have tried to
make this paper independent of [10], readers who are interested
in detailed studies may find it necessary to read [10] as well.
This paper is also partly based on our previous work [11]–[13].
In [11], we studied the critical sampling case. In [12], we investi-
gated the design of the filterbanks that minimize the asymptotic
residual error in both critical-sampling and oversampling cases.
Finally, [13] is an earlier and simpler version of this paper.

The outline of the paper is as follows. In Section II, we give
a review of the fullband identification technique and discuss re-
sults from our previous paper [10] that are relevant to subband
identification. In Section III, we introduce the subband identi-
fication method together with its different analysis approaches.
In Section IV, we deal with the conditions for the subbands to
be decoupled. In Section V, we introduce the formal assump-
tions for our study. In Section VI, we provide expressions for the
performance indices mentioned above (i.e., asymptotic residual
error, asymptotic convergence rate and computational cost). In
Section VII, we consider design issues to optimize the perfor-
mance indices in the critical-sampling case, and in Section VIII,
we do the same for the oversampling case. Finally, in Section IX,
we give an example to illustrate the performance of the subband
identification technique.

II. FULLBAND IDENTIFICATION

In this section, we give a short review of the well-known
theory of linear system identification (see [1] and [2]), which we
call the fullband identification method. The setting of the iden-
tification problem is illustrated in Fig. 1, where is the input
signal, is the output of the system, is the measured
output, is the measurement noise, ( is the forward
shift operator, i.e., ) is the transfer function
of the system, is the model of the system, and is
the prediction error. The column vector represents the
parameters of the model.

A. Some Definitions on Random Processes

The following definitions are needed for our development.
See [10] for a more detailed exposition.

Convention 1: All the random processes and linear systems
considered in this paper are assumed to be discrete-time, scalar,

Fig. 1. Block diagram of fullband identification.

and complex, unless explicitly specified otherwise. The super-
script denotes complex conjugate, denotes the set of inte-
gers, denotes the set of positive integers, and denotes the
set of complex numbers.

Definition 1: Let , and let and ,
be two random processes. They are said to be jointly strongly

ergodic of th order if the following conditions hold.

1) They have uniformly bounded th moments (i.e., there

exists such that , ,

and likewise for , where denotes the expecta-
tion operator).

2) For any , there exists such that

(1)

where , and

(2)

Definition 2: Let and , , be two random
processes. They are said to be jointly quasistationary if there is
the following.

1) They have uniformly bounded second-order moments.
2) For all , the following limit exists:

(3)

If in addition, the following limit exists:

for all and , then and are said
to be jointly quasistationary by phases. If they further satisfy
that for all and

then they are said to be almost stationary. Finally, if they further
satisfy that for all

then they are said to be stationary.
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Definition 3: A random process is strongly ergodic (or qua-
sistationary, etc.) if it is jointly strongly ergodic (or jointly qua-
sistationary, etc.) with itself. In addition, a collection of random
processes is strongly ergodic (or quasistationary, etc.) if every
two random processes in the collection (including a random
process with itself) are jointly strongly ergodic (or jointly qua-
sistationary, etc.).

Definition 4: Let , be a quasistationary random
process. The auto-correlation of is defined by

(4)

The power of is defined by

(5)

and the power spectra of is defined by

(6)

provided the infinite sum exists.

B. Formal Assumptions

Notation 1: Define the prediction error
, and denote its power by . Let

opt

Assumption 1: The signals , , and sat-
isfy the following.

1) The collection formed by the signals , and
is strongly ergodic of second order and quasista-

tionary.
2) is independent of and .
3) is stationary and has zero mean (i.e.,

).
4) . ( denotes the set of all

such that ).
5) There exists such that , .
Assumption 2: The model is an FIR model of tap size
. The set of parameters is assumed to satisfy ,

where is assumed to be compact (i.e., close and bounded).
The set satisfies

int (7)

where int denotes the interior (i.e., excluding the boundary)
of . The identification criterion is the prediction error method,
i.e., the optimal vector of parameters up to time (denoted by

) is chosen as follows:

(8)

(note that is a set), where

(9)

Then, is computed using the least-squares (LS) algorithm,
i.e.,

(10)

where

(11)

(12)

The superscript above denotes transpose conjugate.

C. Performance Indices

Asymptotic residual error: We know from [10] that under the
Assumptions 1 and 2

opt w.p. 1 (13)

In this paper, we are not interested in a bound on opt but in a
bound on the difference between the errors of the fullband and
the subband methods. This bound is studied in Section VI.

Asymptotic convergence rate: From [10], we have the fol-
lowing result: Suppose Assumptions 1 and 2 are satisfied. If
and are large enough, and is small enough, then

dif (14)

where dif , and is the power of
the noise signal .

Computational cost: We assume that the LS solution (10) is
implemented using a recursive least-squares (RLS) algorithm.
The computational cost depends on the particular RLS algo-
rithm used, ranging from to . Fast algorithms
should be used for applications with a high order model, but
they tend to be difficult to implement and sensitive numerically;
see [14] for a summary of RLS algorithms. For comparative
purposes, we consider a reasonably efficient algorithm in [14,
Table 6.2, p. 358] called fast RLS algorithm (version A). For
that algorithm, the computational cost, measured in terms of
number of multiplications per sample, is given by

(15)

Remark 1: In this paper, we assume that the parameter opti-
mization method is the LS algorithm [(10)–(12)]. This was done
in order to guarantee that (8) is satisfied for all . If a
different optimization algorithm such as the LMS algorithm is
used, then the results of this paper are still valid in the following
sense.

1) The asymptotic residual error will be the same, provided
the LMS estimate converges asymptotically to
with zero error.

2) The asymptotic convergence rate will consist of two
terms: one for the convergence of to ,
which is the one studied in this paper, and another for the
convergence of to .

3) The computational cost will be obviously reduced further
by the use of the LMS algorithm.
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Fig. 2. Subband identification (direct representation).

III. SUBBAND IDENTIFICATION

A. Overview of the Method

The scheme of subband identification is depicted in Fig. 2.
As we mentioned in Section I, the idea of subband identifi-
cation is to split both signals and into subbands
using the analysis filterbanks
and , respectively. These sub-
band signals are downsampled, and the results are denoted
by two vector signals and

. The subband parametric
model is identified in order
to reconstruct :
the subband equivalent of . The prediction error

is
then formed. Finally, an upsampler and synthesis filterbank

are used to reconstruct .
We can give now some intuitive explanation about why sub-

band identification can be advantageous compared to fullband
identification. To this end, we consider the three key properties
mentioned above: asymptotic residual error, convergence
rate, and computational cost. For simplicity, we assume the
critical-sampling case (i.e., ). First, we point out that
in each subband, the frequency response of the system is much
smoother. Therefore, each subband model requires a much
lower tap size, compared with the fullband model. It turns out
that it is reasonable to take the tap size for each subband model
to be plus a small number of taps, which we will
ignore here. This guarantees that the subband identification
method has a negligible asymptotic residual error. Second, we
note that the number of samples in each subband is reduced by
a factor of . This means that the convergence rate remains
roughly the same. Third, the computational cost will be
times smaller, because both the tap size and the number of
samples in each subband is reduced by a factor of , and there
are subbands. For RLS algorithms with complexity more
than , there will be more savings offered by the subband
approach. The analysis above clearly shows the advantage of
the subband approach. However, we have not taken into account
the extra computation required for forming the subband signals.
As we will see later, this is a major design issue that determines
the efficiency of the subband approach. Nevertheless, we have
seen the possibility of using subbands to save computations.

B. Analysis Methods for Subband Identification

There are three representations for analyzing the subband
scheme when the signals are assumed to belong to ,

where denotes the set of all such that
. The first one is the direct representa-

tion and corresponds to the scheme in Fig. 2. The other two
equivalent representations are the alias representation and the
polyphase representation [15]. In this work, we will only use
the direct representation and the alias representation, which are
introduced below.

Direct representation: This scheme is depicted in Fig. 2. Let
the input signals be , and the impulse re-
sponses of the filters be , , . We define the
following linear maps between fullband and subband domains:

where the superscript denotes the adjoint operator. In addition,
we define the norm of by

The norms of and are defined in a similar way.
It is straightforward to verify that the conditions for the sub-

band identification scheme to satisfy , for all
, are

(16)

(17)

where is the identity operator. Note that
and are operators. Note also that to
satisfy (16) and (17), , , and may need to be
noncausal.

Alias representation: In this representation, we use -trans-
formed representations of systems and signals. We also use the
notation

(18)

The scheme is depicted in Fig. 3, where

is the alias representation of the signal (similar represen-
tations for , , and )

...
...

. . .
...

is the so-called alias matrix of the analysis filterbank (sim-
ilar notation for ), and

diag

can be interpreted as the alias representation of the system
model .

In this approach, (16) and (17) can be expressed as

(19)

(20)
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Fig. 3. Alias representation of subband identification.

IV. DECOUPLING CONDITION

In general, (16) requires the subband model to be
a full (i.e., nondiagonal) matrix. This complicates the identifi-
cation process substantially. To simplify the computation, the
filterbank should be designed to reduce the number of
nonzero terms in . In this section, we analyze the ideal
case where the subband channels are decoupled, which implies
that is a diagonal matrix. We have the following result.

Theorem 1: Consider the subband identification scheme of
Fig. 2. Let be defined such that for each ,

has its support on a (possibly disjoint) segment
, i.e.,

.

Let be defined in a similar way such that . If there
exists a branch (see Appendix A for definition) such that

maps into a segment satisfying

(21)

then all the diagonal matrices that satisfy (16) are given
by

diag (22)

undefined
(23)

where denotes the complement set operation, i.e.,
. The converse is also true, i.e., if the subband

identification scheme yields a diagonal solution, then the anal-
ysis filterbank satisfies the conditions above, and therefore,
all the diagonal solutions satisfy (22) and (23).

This result is a slight generalization of the result in [7]. The
only modification we have is that in [7], the filterbanks and

are assumed to be identical. See Appendix B for proof.
Corollary 1: If , and , then

is given by

(24)

where denotes the convolution operation, and is the
ideal bandpass filter

.
(25)

See Appendix B for proof.
Support of ideal analysis filterbanks: From (21), it is clear

that the decoupling of subbands implies that the supports
and have measure less than or equal to . The filters

, are typically approximated using FIR
filters. Since the tap size has a negative influence on the com-
putational cost, it is desirable to minimize it. In order to do that,
it is required that and that be a connected
subset of of measure . In addition, (20) requires
that the union of equals . In summary, the filters
and need to meet the following conditions.

C1) , for each .
C2) is a connected subset of , for each

.
C3) has a measure equal to , for each

.
C4) .

If , then these four requirements imply that
are simply a set of nonoverlapping ideal bandpass filters with
the passband having a bandwidth of . In the case where

, the filters are still ideal bandpass filters with the
same bandwidth for the passband, but in this case, their supports
are allowed to overlap. It is clear from this discussion that the
order of the FIR filters required to approximate the filters
is lower in the oversampling case than in the critical-sampling
case.

Remark 2: Since, from condition C2, the sets are con-
nected sets of measure , it follows that the filters and

are complex. If real filters need to be used, condition C2
needs to be violated so the sets can be split into two sym-
metric sets of measure . In this case, in terms of computa-
tional cost, the extra length of the real filters will be compen-
sated by the fact that the filtering consists of multiplications of
real numbers instead of complex. Therefore, no significant com-
putational saving will be achieved, but this is possible to do only
in the critical-sampling configuration since the sets need to
equal the range of some branch and, from Proposition
3 in Appendix A, two symmetric sets that are the range of some
branch cannot have partial overlapping as needed for oversam-
pling.

V. FORMAL ASSUMPTIONS

In this section, we introduce the formal assumptions required
for the analysis of the subband identification method.

Notation 2: Let us denote by
the downsampled version of . We define

, and denote by
the signal obtained by upsampling followed by

filtering with and summing up the resulting signals. For
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each subband, we define the prediction error by
, denote its power by , and take

opt

opt opt (26)

We define the fullband equivalent prediction error by
, denote its power by , and take

opt

opt opt

Assumption 3: The signals and satisfy As-
sumption 1 but are strengthened as follows:

1) The collection formed by the signals and
is quasistationary by phases.

2) The signal is almost stationary.
Assumption 4: The two analysis filterbanks are the same

[i.e., ]. The filters are FIR with the same
tap size , and the filters are FIR with the same tap
size . The synthesis filterbank satisfies the perfect
reconstruction condition (17). The impulse responses satisfy

and for all .
There exists such that

where is given by (18).
Assumption 5: The subband model is a diagonal ma-

trix diag , where
. Each satisfies Assumption

2, i.e., is an FIR model of tap size with
, where is assumed to be compact. The set

satisfies

int

As in the fullband case, the identification criterion is the predic-
tion error method [i.e., (8) and (9)], and the parameter optimiza-
tion method is the LS algorithm [i.e., (10)–(12)].

Assumption 6: The system is linear and time-invariant
with impulse response satisfying .

Remark 3: Note that Assumption 6 is satisfied if is ra-
tional and stable.

VI. PERFORMANCE INDICES

As mentioned in Section I, we will evaluate the performance
of the subband identification method by comparing it with that
of the fullband method. The comparison will be based on three
performance indices: asymptotic residual error, asymptotic con-
vergence rate, and computational cost. In this section, we will
provide expressions for these three indices. These are general
expressions in the sense that they are valid for both critical sam-
pling and oversampling. In Sections VII and VIII, we will pro-
vide the final expressions of the performance indices for each
particular case.

Asymptotic Residual Error: In the fullband method, the se-
quence of random variables converges, with probability
one, to the deterministic constant opt, which is the global
minimum of . In the subband method, still con-
verges, with probability one, to a deterministic constant ,
but it does not equal opt in general. The following theorem
states this fact formally, and its corollary gives the conditions
that guarantee opt.

Theorem 2 [10, Th. 5]: Consider the subband identification
scheme of Fig. 2, together with Assumptions 3–6. Then, there
exists a deterministic constant such that

w.p. 1.

Corollary 2: If (critical-sampling case), the anal-
ysis filterbank is paraunitary (i.e., ), and the
synthesis filterbank is given by

(27)

(i.e., ), then

opt (28)

Proof: See Appendix C.
Remark 4: If , (28) cannot be guaranteed in general.

However, it can be guaranteed by introducing a modification in
the identification criterion. This modification was proposed in
[16].

As stated in Section II, we are not interested in a bound on
but in a bound on the difference between and the

asymptotic residual error of the fullband method. With the abuse
of notation, we will denote the fullband asymptotic residual
error (13) by . For technical simplicity, we will provide
this bound under the assumption that the input signal has
a flat power spectra.

Theorem 3: Consider the subband identification scheme of
Fig. 2 together with Assumptions 3–6. Suppose that is iden-
tified using the fullband method with an FIR fullband model of
tap size . Denote the asymptotic residual error of the fullband
method by . Let the FIR subband models

be given by

(29)

where , and . (Here, denotes
the smallest integer greater than or equal to .) If has a
flat power spectra, then

(30)

where

(31)
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and

(32)

(33)

sinc (34)

where is defined in Theorem 1, and sinc .
Proof: See Appendix C.

Corollary 3: In order to minimize , the analysis filter-
bank needs to be the paraunitary filterbank that minimizes

, and the synthesis filterbank has to be given by (27).
Proof: See Appendix C.

Remark 5: From (29), the tap size of the subband models is
given by

(35)

where the first parameters are noncausal. Note that this non-
causality can be removed in implementation by inserting delays
in the subband models.

Remark 6: From Theorem 1 and Corollary 1, we know that
if the filterbanks satisfy conditions C1–C4 and the subband
models are given by [where is given
by (24)], then the asymptotic residual error is zero.
However, these filterbanks and subband models have an infinite
tap size. Since we will use FIR approximations (Assumptions
4 and 5 ), (30) indicates that the bound of is
made of two components.

E1) error due to FIR approximation of the subband filters
;

E2) error due to FIR approximation in the diagonal subband
terms .

Asymptotic Convergence Rate: As in the fullband case, we
define dif .

Theorem 4 [10, Th. 7]: Consider the subband identification
scheme of Fig. 2 together with Assumptions 3–6. Then, for large

and and small

dif (36)

where is the power of the noise signal .
Corollary 4: In order to maximize the convergence rate, the

analysis filterbank needs to be paraunitary, and the syn-
thesis filterbank has to be given by (27). In this case, for large

and and small

dif (37)

Proof: The proof is similar to the proof of Corollary 3.

Computational cost: Recall that we use an RLS implemen-
tation for computing . Then, from (15), we have that the
computational cost, measured in the amount of multiplications
per fullband sample, is

(38)

In Sections VII and VIII, we will use the expressions of the
performance indices given in this section to give design issues
for the critical-sampling case and the oversampling case. In each
case, we provide the folowing:

1) the ideally required analysis and synthesis fil-
terbanks;

2) issues for practical implementation: optimal values for
, , , , and and optimization criteria for the

design of the FIR filterbanks.

VII. CRITICAL-SAMPLING CASE

In the critical-sampling case , the number of sub-
bands is minimal. This eliminates the information redundancy,
which saves computational cost. In addition, it can be guar-
anteed that the minimum asymptotic residual is achieved (see
Corollary 2).

Ideal filterbanks: Since , given an analysis filterbank
, the option for the synthesis filterbank that satisfies

the perfect reconstruction condition (17) is unique. Therefore,
we just need to provide a choice for the analysis filterbank .

From Corollaries 3 and 4, in order to minimize the asymptotic
residual error and maximize the asymptotic convergence rate,
the filterbank has to be paraunitary and minimize , and

has to be given by (27) (which, in this case, is the only
possibility). Ideally, we want to choose such that .
This is achieved if satisfies conditions C1–C4.

Proposition 1: Consider the subband identification scheme
of Fig. 2. Let satisfy conditions C1–C4.
Then, is paraunitary if and only if there exists such
that

(39)

Proof: See Appendix C.
In view of Proposition 1, if C1–C4 are satisfied, then is

paraunitary if and only if (39) is satisfied. It is straightforward to
verify that C1–C4 and (39) are satisfied by the filters in Fig. 4.

Issues for practical implementation: The ideal filters of Fig. 4
will be approximated by using linear-phase FIR filters whose
frequency responses cannot have zero amplitude in their stop-
band. As a consequence, . Then, needs to be the pa-
raunitary filterbank that minimizes . The synthesis filterbank

is given by (27), and the number of parameters of the sub-
band models is taken as in (35).

Since the filters , will be approxima-
tions of the filters in Fig. 4, we have and .
Therefore, if has a flat power spectra, we obtain from
(30) that
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Fig. 4. Analysis filterbank for the critical-sampling case.

From (37) and (35), for large and , small , and

dif (40)

For given values of and , the required is uniquely
specified. Hence, we can express as a function of
and . From (34) and , we have

sinc

From (31), we see that if we choose some desired values for
and , the required tap size and subband parameters

can be computed numerically. In addition, from (27), we
have . Then, (38) becomes

(41)

Let us summarize the analysis above. We can see that the con-
vergence rate (40) is independent of the design parameters, and
it equals that of the fullband method. The choices of and
influence the asymptotic residual error for the subband method.
Hence, they need to be small. However, they should not be too
small, or the computational cost will be too high. Then, for fixed
values of and , we can numerically optimize to minimize
the computational cost while keeping the asymptotic residual
error and convergence rate compatible with those of the full-
band method.

VIII. OVERSAMPLING CASE

The disadvantage of the critical-sampling case is that the fil-
ters need a sharp transition band. Consequently, the re-
quired filter length is considerably long, which contributes neg-
atively to the computational cost. The idea of oversampling is to
increase the value of to allow the use of filters that are easier
to approximate. Of course, more computational cost is required
to cope with the extra subbands caused by oversampling, but it
turns out that this extra cost can be overweighed by the savings
on the filterbank approximations.

Ideal filterbanks: In contrast to the critical-sampling case, for
a given analysis filterbank , there are infinitely many syn-
thesis filterbanks that satisfy the perfect reconstruction condi-
tion (17).

Following the reasoning introduced for the critical-sampling
case, in order to minimize the asymptotic residual error, maxi-
mize the asymptotic convergence rate, and making ,
needs to satisfy C1–C4 and (39), and has to be given by
(27). In view of Proposition 1, it can be verified that the two

Fig. 5. Analysis filterbank for the oversampling case.

conditions on are satisfied by the filters in Fig. 5, where
the shape of the transition bands is proportional to .

Issues for practical implementation: As in the critical-sam-
pling case, the ideal analysis filters will be approximated
by linear-phase FIR filters that are the paraunitary filters that
minimize . The synthesis filters are given by (27), and

is also taken as in (35).
As in the critical-sampling case, if has a flat power

spectra, then

Furthermore, for large and , small , and
, we have

dif

In addition, in this case, we can numerically evaluate
the required tap size and subband parameters

. Then, (38) becomes

(42)

Therefore, for given values of and , we can numerically
optimize and to minimize the computational cost while
having asymptotic residual error and convergence rate compat-
ible with those of the fullband method.

IX. SIMULATIONS

In Sections VII and VIII, we state that both the critical sam-
pling case and the oversampling case can have the same perfor-
mance as the fullband method, in terms of asymptotic residual
error and convergence rate, but with less computational cost.
Furthermore, we expect that the computational savings are more
significant in the oversampling case since it includes the crit-
ical-sampling case as a particular case. In order to illustrate these
points, we identify a linear, time-invariant system using the three
methods.

The transfer function of the system is shown in Fig. 6, with
. The power of the input signal is ,

the output power is , and the noise power is .
We use a tap size of for the fullband method. This

choice of means that the fullband model ignores the part
of the impulse response after , resulting in an asymp-
totic residual error of approximately opt . In order to
bound the error of the subband method, we adopt
and .
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Fig. 6. System impulse response.

Fig. 7. Computational cost versusM .

Fig. 8. Evolution of the identification error power.

With these parameters, we optimize the values of and to
minimize the computational cost for the critical-sampling case
(41) and the oversampling case (42). The computational cost as
a function of is shown in Fig. 7. The plot of the computational
cost of the oversampling case is obtained by using the optimal
value of for each value of .

The optimal values are for the critical-sam-
pling case and , for the oversampling case.
With these values we have, for the critical-sampling case

, , , and for the oversampling case: ,
, .

The evolution of is shown in Fig. 8. We see that the
asymptotic residual error and asymptotic convergence rate are
compatible. However, the computational costs are 1800 (multi-
plications per fullband sample) for the fullband method, 1233
for the critical-sampling subband method, and 464 for the over-
sampling subband method.

X. CONCLUSION

In this paper, we have analyzed the performance of the de-
coupled subband identification method in its two versions (the

critical-sampling case and the oversampling case) by comparing
them with the classical time-domain identification method (the
fullband method). The comparison is based on three perfor-
mance indices: asymptotic residual error, asymptotic conver-
gence rate, and computational cost. We have provided selec-
tion criteria for the filterbanks, the number of parameters of
each subband model, the number of subbands, and the down-
sampling factor. We have shown that the asymptotic residual
error and asymptotic convergence rate of the two versions of
the subband method are compatible with those of the fullband
method. However, if the impulse response of the system to be
identified is large enough, the computational costs of the sub-
band methods are smaller. Furthermore, more computational
savings can be achieved in the oversampling case. We expect
that subband identification methods find applications in var-
ious acoustic and speech signal processing problems as well as
in wideband communications problems, where high-order FIR
models are required.

APPENDIX A
ROOTS OF AND ITS BRANCHES

While using the alias representation, sometimes we meet the
expression (the -th root of ). We know that if
is given by , , , then there are
values for given by

In order to avoid ambiguities, we need the notion of branches.
Definition 5: Let be a map.

Then, the -branch of the th root of is the map
defined by

Therefore, a branch is a map that sends every to one of its
possible th roots, and the decision is based on the angle .

We have the following two useful equalities.
Proposition 2: Let . If are two branches

of , then

(43)

(44)

where .
Equation (43) means that if we are adding up all the th roots,

the sum is independent of the branch. Equation (44) means that
we can replace by for a similar summation (note that

in general).
Notation 3: In view of (43), we will denote the th root of
by .
Proposition 3: Let be a branch such that

. If is symmetric (i.e., if , then )
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and is a connected subset of , then there exists
such that

(45)

Proof: Let . Since is the range of a branch, then
for . In addition, because

is symmetric, and for
. Since is connected, it is straightforward

to see that the only possibilities for are the ones given by (45)
.

APPENDIX B
PROOFS FOR SECTION IV

Proof of Theorem 1: Denote by because
its dependence on is irrelevant in this theorem. Let

. Using the alias representation (Fig. 3),
we have that for

(46)

(47)

Suppose (21) holds. Recall that by using , we implicitly
mean that the expression is independent of the branch used (in
view of (43)). This means that in (46) and (47), we can replace

by the branch . Then

(48)

(49)

If we impose the subband model to be a diagonal matrix,
then (49) becomes

(50)

where we used the notation . By comparing
(48) and (50), we conclude that if we want

, , then all the possible diagonal
solutions are given by (23).

For the converse, suppose that there exists a diagonal
such that , . Then, from (46)
and (47), we have

which can be true only if (21) holds.
Proof of Corollary 1: If and

, then

(51)

In addition, from [15, eq. (4.1.4), p. 102], we know that for a
given

(52)

Then

(53)

Hence, (24) follows from (51) and (53).

APPENDIX C
PROOFS FOR SECTIONS VI AND VII

Lemma 1 [10, Lemma 8]: Let
, be an array of quasistationary random

processes, and let , sat-
isfy . Let
be generated from by upsampling by a factor
of . Let be defined by

(i.e., is generated
from by filtering followed by downsampling by a
factor ). Let , and
let be generated from in the same way as
is generated from . If there exists such that

, where , then

where . Further, if ,
then .

Proof of Corollary 2: Since is paraunitary, then
and are isometric isomorphisms. Using

Lemma 1 and (13), we get

Proof of Theorem 3: From [10, Th. 4], we have in every sub-
band

opt w.p. 1 (54)

Therefore, in the context of this proof, we will assume that the
set of parameters is given by opt opt , and
we will eliminate from the notation the dependence on the set
of parameters. We split the proof into seven steps.

Step 1) Let be the parametric model used for the full-
band method, and denote opt . In
order to prove (30), we will provide a bound of the
asymptotic residual error dif obtained when the
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subband method is used to identify . Then, it
will be straightforward that

dif

Step 2) Assume for a moment that . In view of
the alias representation (Fig. 3), we have, for

Then

Therefore, in the time domain

where denote the downsam-
pling and upsampling operators, respectively.

Step 3) Now, let be the random process satisfying
Assumption 3. Since is almost stationary, it is
straightforward to verify that is also almost
stationary. It follows that

(55)

From (52), (55), and the fact that is white, we
get

and from (43), we have

(56)

where is the branch defined in Theorem 1.
Step 4) Consider the ideal subband (IIR) model

given by (24), and suppose we truncate it to have the
same support as does. Denote this truncated
version by . From (54) and (56), we have that

Then

(57)

Step 5) Since , we have

(58)
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where is given by (25). Now, by Holder’s
inequality, we get

From (58), we obtain

where

In view of conditions C1–C4, the only possibility for
is sinc for some . It

is straightforward to show that

sinc

(59)

Finally

(60)

Step 6) Since, for , the identified model
is a truncation of the ideal model

, we can take the
following approximation:

(61)

Step 7) Finally, putting together (33), (57), (60), and (61),
we have

where . Then

We know that if , then

. Then, from Lemma 1, we get

Lemma 2: Consider the subband identification scheme in
Fig. 2. Then, we have that

(62)

(63)

Further, the inequalities in (62) and (63) will become equalities
if , , and , where

(64)
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Proof: Filterbanks can be interpreted as a particular case
of the so-called frame decomposition. The frame theory is de-
veloped in [17], and its connection with filterbanks is treated in
[18]. The proof of this Lemma follows the proof of [17, Sec.
3.3.2, p. 67] which is done for frame decomposition.

Proof of Corollary 3: We will assume that .
Then, we will look at the analysis and synthesis fil-
terbanks whose associated operators and minimize the
2-norm of . In view of Lemma 1, this is equivalent to min-
imizing the power .

From the perfect reconstruction condition (16), must be a
left inverse of . In order to minimize the 2-norm of , we must
have that cancels the orthogonal complement of the range of

. It follows that

with (65)

From (62) and (63), and . In
addition, ; then, from (30), we must have that

in order to minimize the asymptotic residual error. This, in
turn, means that is a scaled isometry, or equivalently, is
paraunitary. In addition, from (30), we have that needs to
minimize .

Finally, since is a scaled isometry, (65) implies
, or equivalently, .

Proof of Proposition 1: We define as in (64). Condi-
tions C1–C4 imply that , and . Then,
from Lemma 2

Then, (39) follows since being paraunitary is equivalent to
being a scaled isometry.

REFERENCES

[1] L. Lennart, System Identification: Theory for the User, second
ed. Upper Saddle River, NJ: Prentice-Hall, 1999.

[2] T. Söderström and P. Stoica, System Identification. New York: Pren-
tice-Hall, 1989.

[3] A. Gilloire, “Experiments with sub-band acoustic echo cancellers for
teleconferencing,” in Proc. IEEE Int. Conf. Acoustics, Speech, Signal
Process., 1987, pp. 2141–2144.

[4] H. Yasukawa, S. Shimada, and I. Furukawa, “Acoustic echo canceller
with high speech quality,” in Proc. IEEE Int. Conf. Acoustics, Speech,
Signal Process., 1987, pp. 2125–2128.

[5] V. S. Somayazulu, S. K. Mitra, and J. J. Shynk, “Adaptive line enhance-
ment using multirate techniques,” in Proc. IEEE Int. Conf. Acoustics,
Speech, Signal Process., vol. 2, May 1989, pp. 928–931.

[6] A. Gilloire and M. Vetterlli, “Adaptive filtering in subbands with crit-
ical sampling: Analysis, experiments, and application to acoustic echo
cancellation,” IEEE Trans. Signal Processing, vol. 40, pp. 1862–1875,
Aug. 1992.

[7] W. Kellermann, “Analysis and design of multirate systems for cancella-
tion of acoustical echoes,” in Proc. IEEE Int. Conf. Acoustics, Speech,
Signal Process., 1988, pp. 2570–2573.

[8] Y. Lu and J. Morris, “Gabor expansion for adaptive echo cancellation,”
IEEE Signal Processing Mag., vol. 16, pp. 68–80, Mar. 1999.

[9] M. R. Petraglia and S. K. Mitra, “Performance analysis of adaptive filter
structures based on subband decomposition,” in Proc. IEEE Int. Symp.
Circuits Syst., vol. 1, 1993, pp. 60–63.

[10] D. Marelli and M. Fu, “Asymptotic properties of subband identifica-
tion,” IEEE Trans. Signal Processing, vol. 51, pp. 3128–3142, Dec.
2003.

[11] , “A comparative study on subband identification,” in Proc. IEEE
Conf. Decision Contr., vol. 3, Dec. 2000, pp. 2409–2415.

[12] , “Optimized filterbank design for subband identification with over-
sampling,” in Proc. IEEE Int. Conf. Acoustics, Speech, Signal Process.,
2001.

[13] , “System identification using subband signal processing,” in Proc.
IEEE Conf. Decision Contr., vol. 4, Dec. 2001, pp. 3485–3490.

[14] J. G. Proakis, C. M. Raider, F. Ling, and C. L. Nikias, Advanced Digital
Signal Processing. New York: Maxwell Macmillan Int., 1992.

[15] P. P. Vaidyanathan, Multirate Systems and Filterbanks. Englewood
Cliffs, N.J: Prentice-Hall, 1993.

[16] D. Marelli and M. Fu, “Convergence properties of subband identifica-
tion,” in Proc. Asian Contr. Conf., 2002.

[17] I. Daubechies, Ten Lectures on Wavelets. Philadelphia, PA: SIAM,
1992.

[18] M. Vetterli and J. Kovačević, Wavelets and Subband
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