
P1: SRG

Journal of Combinatorial Optimization KL560-03-Fu February 14, 1998 10:52

Journal of Combinatorial Optimization 2, 29–50 (1998)
c© 1998 Kluwer Academic Publishers. Manufactured in The Netherlands.

Approximation Algorithms
for Quadratic Programming

MINYUE FU∗
Department of Electrical and Computer Engineering, The University of Newcastle, Newcastle, NSW 2308,
Australia

ZHI-QUAN LUO†

Department of Electrical and Computer Engineering, McMaster University, Hamilton, Ontario, Canada L8S 4K1

YINYU YE ‡

Department of Management Sciences, The University of Iowa, Iowa City, Iowa 52242, U.S.A.

Received July 1996; Accepted May 1997

Abstract. We consider the problem of approximating the global minimum of a general quadratic program
(QP) withn variables subject tom ellipsoidal constraints. Form= 1, we rigorously show that anε-minimizer,
where errorε ∈ (0, 1), can be obtained in polynomial time, meaning that the number of arithmetic operations is a
polynomial inn, m, and log(1/ε). Form≥ 2, we present a polynomial-time(1− 1

m2 )-approximation algorithm as
well as a semidefinite programming relaxation for this problem. In addition, we present approximation algorithms
for solving QP under the box constraints and the assignment polytope constraints.
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1. Introduction

Consider the general quadratic programming (QP) problem

Minimize q(x) := 1

2
xT Qx+ cT x

(QP)
Subject to x ∈ F ,

whereQ ∈ <n×n andc ∈ <n are given data, andF is a full-dimensional convex set in<n.
Throughout this paper, we assumeF is bounded and has nonempty interior. QP is a generic
problem in optimization theory and practice. Economic equilibrium, combinatorial opti-
mization, numerical partial differential equation, and general nonlinear programming are
all sources of QP problems. In particular, many nonlinear programming methods require
solving a sequence of QP subproblems.

∗Supported by the Australian Research Council.
†Supported in part by the Department of Management Sciences of the University of Iowa where he performed this
research during a research leave, and by the Natural Sciences and Engineering Research Council of Canada under
grant OPG0090391.
‡Supported in part by NSF grants DDM-9207347 and DMI-9522507, and by the Iowa Business School Summer
Grant.



P1: SRG

Journal of Combinatorial Optimization KL560-03-Fu February 14, 1998 10:52

30 FU, LUO AND YE

If Q is positive semi-definite, that is, for any givend ∈ <n,

dTQd ≥ 0,

then (QP) is a convex optimization problem and it can be solved in polynomial time, e.g.,
see Vavasis (1991) and references therein. In this paper we consider general nonconvex
QP problems for whichQ has at least one negative eigenvalue. In this case, (QP) becomes
a hard problem—an NP-complete problem (see, Garey and Johnson, 1968; Pardalos and
Rosen, 1987; Sahni, 1974; Vavasis, 1991).

If the feasible setF is nonempty and bounded, then (QP) has a minimizer and a maximizer.
Let z and z̄ denote their minimal and maximal objective values overF , respectively. An
ε-minimal solution orε-minimizer,ε ∈ [0, 1], for (QP) is defined as anx ∈ F such that

q(x)− z

z̄− z
≤ ε.

(Vavasis (1993) discussed the importance to have the term(z̄ − z) in this criterion for
continuous optimization.) According to this definition, any feasible solutionx ∈ F is a
1-minimizer.

It turns out that finding anε-minimizer for (QP) is a hard problem forε ∈ (0, 1). Indeed,
whenF is a polytope, Bellare and Rogaway (1995) showed that there exists a constant,
say1

4, such that no polynomial-time algorithm exists to compute an1
4-minimal solution for

(QP), unlessP = NP. They also showed that there exists a constantδ > 0 such that QP
has no polynomial time,(1− 2− logδ n)-approximation algorithm, unlessNP⊂ P̃, whereP̃
denotes the class of languages recognizable in quasi-polynomial time.

So far there have been several algorithms available for “solving” general polytope-
constrained QP problems; these include the principal pivoting method of Lemke-Cottle-
Dantzig (e.g., Cottle and Dantzig, 1968), the active-set method (e.g., Gill et al., 1981),
the interior-point algorithm (e.g., Kamath et al., 1992; Ye, 1992), and other special-case
methods (e.g., Murty, 1988; Pardalos and Rosen, 1987). These algorithms usually generate
a sequence of points that converges to a stationary or Karush-Kuhn-Tucker (KKT) point
associated with (QP). To our knowledge, there have been no approximation bounds devel-
oped for these methods. Consequently, the solutions delivered by these algorithms are not
guaranteed to be a good approximate global minimizer of (QP).

There are also several approximation algorithms developed for QP when the feasible
region is a polytope. Pardalos and Rosen (1987) developed a partitioning and linear pro-
gramming based algorithm with an approximation boundε = σ(Q, c,F), whereσ , a
function of the QP data, is between 1/4 and 1. Recently, Vavasis (1993) and Ye (1992)
developed a polynomial-time algorithm to compute an(1− 1

n2 )-minimal solution.
The objective of this paper is to develop new interior point polynomial-time approxima-

tion algorithms for the class of QPs withF defined bym ellipsoidal constraints:

F :=
{

x ∈ <n : di − cT
i x − 1

2
xT Qi x ≥ 0, i = 1, . . . ,m

}
, (1.1)

where eachQi ∈ <n×n is a symmetric positive semidefinite matrix,ci ∈ <n is a vector and
di is a scalar. Here and throughout this paper, the term “polynomial time approximation
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algorithm” means an algorithm whose running time is a polynomial ofn, m, log(1/δ) and
log(1/ε), whereδ is the ratio of the radius of the largest inscribing sphere over that of
the smallest circumscribing sphere ofF . The quantityδ can be thought of as a condition
number of the problem. Our definition of polynomial time approximation algorithm is
consistent with the traditional notion of polynomial time algorithm for linear programming.
This is because any polynomial approximation algorithm for linear programming can be
turned into a polynomial time algorithm by settingε = 2−L and notingδ = O(2−L), where
L is the data length in binary encoding.

Our interest in the approximation algorithms for the QP problem with multiple ellipsoid
constraints is two fold. First, Celis et al. (1984) and Powell-Yuan (1991) proposed trust-
region algorithms for equality constrained nonlinear programming problem whereby QP
problems with two ellipsoid constraints (i.e.,m = 2 in (1.1)) are solved at each iteration.
As a solver for the subproblems, any effective method for solving the above QP problem
will yield a fast trust region algorithm for the general nonlinear programming problem.
Second, for the single ball constrained case (i.e.,m= 1), we know from Section 2 that the
QP problem is polynomial time solvable. However, for the casem = 2, neither is there
a known polynomial time algorithm for computing the global minimum of the above QP
problem, nor do we know if the problem is NP-hard. (Indeed, the complexity status of the
two-sphere constrained QP problem remains open.) This leads us to design approximation
algorithms for the two ellipsoid constrained QP problem. In general, ifm is arbitrary, the
QP problem with multiple ellipsoid constraints includes the polytope constrained QP as a
special case since a polytope is a degenerate form of (1.1) withQi = 0. Thus, finding
the global minimum for the case with generalm is NP-hard. In fact, even the problem
of finding anε-minimizer (for ε ∈ (0, 1)) with generalm is hard since a subclass of the
problem, namely the polytope constrained QPs, is known to be hard to approximate.

The main contributions of this paper are as follows. Whenm= 1, we rigorously show that
anε-minimizer of the QP can be obtained in polynomial time−O(n3 log(1/ε)) arithmetic
operations. We show this by a binary section type method (Section 2) and by converting
the problem to a semidefinite program which is known to be polynomial time solvable
(see Section 6). Form ≥ 2, we present a semidefinite programming relaxation of this
problem (Section 6). We also present(1− 1

m2 )-approximation algorithms for this problem
(Section 3). This algorithm is based on inscribing the feasible regionF by a single ellipsoid
and computing a global minimumq(x̄) of the objectiveq(x) over this ellipsoid. We show
that if the inscribing ellipsoid is sufficiently centered inF , thenq(x̄) is a good approximation
of the global minimum ofq(x) overF . Using the same technique of inscribing ellipsoid, we
further develop several approximation algorithms for solving QP under the box constraints
and the assignment polytope constraints (see Sections 4 and 5).

2. The single-ellipsoid constrained QP problem

In this section we consider the ball-constrained QP problem, BQP(r ), where

F = B(r ) := {x ∈ <n : ‖x‖ ≤ r },
radiusr is a given positive number, and‖·‖ denotesL2 norm. By an affine transformation,
the single-ball constrained QP can be used to solve a single-ellipsoid constrained QP.
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We begin with a brief history of this problem. There is a class of nonlinear programming
algorithms called model trust region methods. In these algorithms, a quadratic function
is used as an approximate model of the true objective function around the current iterate.
Then the main step is to minimize the model function. In general, however, the model is ex-
pected to be accurate or trusted only in a neighborhood of the current iterate. Accordingly,
the quadratic model is minimized in aL2-norm neighborhood, which is a ball, around the
current iterate.

The model-trust region method is due to Levenberg (1963) and Marquardt (1963). These
authors considered only the case whereQ is positive definite. Mor´e (1977) proposed an
algorithm with a convergence proof for this case. Gay (1981) and Sorenson (1982) proposed
algorithms for the general case, also see Dennis and Schnabel (1983). These algorithms
work very well in practice, but no complexity result was established for this problem then.

It is well known (Gay, 1981; Sorenson, 1982) that the solutionx of problem BQP(r )
satisfies the following necessary and sufficient conditions:

(Q+ µI )x = −c

µ ≥ max{0,−λ} (2.1)

and

‖x‖ = r,

whereλ denotes the least eigenvalue of matrixQ. SinceQ is not positive semi-definite,
we must haveλ < 0.

Letµ∗ andx∗ satisfy conditions (2.1). It has been shown thatµ∗ is unique and

µ∗ ≤ |λ| + ‖c‖
r
. (2.2)

It is also known that

|λ| ≤ n max{|qi j |},
whereqi j is the(i, j )th component of matrixQ. Thus, we have

0≤ µ∗ ≤ µ0 := n max{|qi j |} + ‖c‖
r
, (2.3)

whereµ0 is a computable upper bound. It is further proved that Ye (1992)

1

2
r 2 |λ| ≤ 1

2
r 2µ∗ ≤ q(0)− q(x∗) ≤ 1

2
r 2 |λ| + r ‖c‖. (2.4)

We now analyze the complexity of solving BQP(r ). A simple bisection method was
proposed by Vavasis and Zippel (1990) and Ye (1992). For any givenµ, denote solutions
of the top linear equations byxµ in conditions (2.1), i.e.,

xµ := −(Q+ µI )−1c, ∀µ > |λ|. (2.5)

For any givenµ we can check to see ifµ ≥ |λ| by checking the positive definiteness
of matrix Q + µI , which can be solved as aL DLT decomposition. These facts lead to a
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bisection method to search for the root of‖xµ‖ = r over the intervalµ ∈ [|λ|, µ0] ⊂ [0, µ0].
Obviously, for a givenε′ ∈ (0, 1), aµ such that, say 0≤ µ−µ∗ ≤ ε′µ∗/8, can be obtained
in O(log(µ0/µ∗)+ log(1/ε′)) bisection steps, and the cost of each step isO(n3) arithmetic
operations (for performingL DLT decomposition).

The remaining question is whatε′ would be sufficient to generate anε-minimizer of
q(x) over the ballB(r ). Letµ denote the right end point of the interval generated by the
bisection search. Then,µ ≥ µ∗. If µ = µ∗, then we get an exact solution. Thus, we
assumeµ > µ∗ ≥ |λ|. By the positive semi-definiteness ofQ+ µ∗ I , we have

‖xµ‖ < ‖xµ∗‖ = r.

We consider two cases.

Case I. In the first case we assume(
1− ε

8
√

n

)
µ∗ ≥ |λ| or µ∗ ≥ |λ| + ε

8
√

n
µ∗.

Using the relation (2.5) and simplifying, we obtain

‖xµ∗‖2− ‖xµ‖2 = xT(µ∗)(I − (Q+ µ∗ I )(Q+ µI )−2(Q+ µ∗ I ))xµ∗
= xT(µ∗)(2(µ− µ∗)(Q+ µI )−1− (µ− µ∗)2(Q+ µI )−2)xµ∗ .

Next we consider a diagonalization ofQ and bound the resulting diagonal entries of the
above expression by using the smallest eigenvalueλ. This gives

‖xµ∗‖2− ‖xµ‖2 ≤
(

2(µ− µ∗)
(µ− |λ|) −

(µ− µ∗)2
((µ− |λ|))2

)
‖xµ∗‖2

=
(

2(µ− µ∗)
(µ− µ∗)+ (µ∗ − |λ|) −

(µ− µ∗)2
((µ− µ∗)+ (µ∗ − |λ|))2

)
‖xµ∗‖2

= (µ− µ∗)2+ 2(µ− µ∗)(µ∗ − |λ|)
((µ− µ∗)+ (µ∗ − |λ|))2 r 2

=
(

1− (µ∗ − |λ|)2
((µ− µ∗)+ (µ∗ − |λ|))2

)
r 2

≤
(

1− (εµ∗/8
√

n)2

((µ− µ∗)+ εµ∗/8√n)2

)
r 2,

where the in last step we used the assumptionµ∗ ≥ |λ| + ε

8
√

n
µ∗. Therefore, if we have

µ− µ∗ ≤ ε′µ∗/8, then

‖xµ∗‖2− ‖xµ‖2 ≤ (2
√

nε′/ε)+ (√nε′/ε)2

(1+ (√nε′/ε))2
r 2 ≤ 2

√
nε′

ε
r 2. (2.6)
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On the other hand, note that

q(xµ)− q(xµ∗) = 1

2
xT
µ Qxµ + cT xµ − 1

2
xT
µ∗Qxµ∗ − cT xµ∗

= 1

2
(Qxµ + c)T (xµ − xµ∗)+ 1

2
(Qxµ∗ + c)T (xµ − xµ∗)

= −1

2
µxT

µ (xµ − xµ∗)− 1

2
µ∗xT

µ∗(xµ − xµ∗)

= −1

2
(µ− µ∗)xT

µ (xµ − xµ∗)− 1

2
µ∗(‖xµ‖2− ‖xµ∗‖2). (2.7)

Now we use the bound (2.6), the assumptionµ − µ∗ ≤ ε′µ∗/8 and the fact‖xµ‖ ≤
‖xµ∗‖ = r to obtain:

q(xµ)− q(xµ∗) ≤ µ∗r 2ε′/8+ r 2µ∗
√

nε′

ε

=
(
ε′/4+ 2

√
nε′

ε

)
µ∗r 2/2

≤
(
ε′/4+ 2

√
nε′

ε

)
(q(0)− q(x∗)),

where the last step is due to (2.4). Thus, if we select

ε′ ≤ ε2

2
√

n+ 1/4
,

thenxµ is feasible for BQP(r ) and

q(xµ)− q(xµ∗) ≤ ε(q(0)− q(x∗)),

i.e.,xµ is anε-minimizer tox∗.

Case II. In this case, we have(
1− ε

8
√

n

)
µ∗ < |λ| or µ∗ < |λ| + µ∗ ε

8
√

n
.

Again, if we haveµ−µ∗ < ε′µ∗/8, thenµ−|λ| < ε′µ∗/8+µ∗ε/8√n. However, unlike
Case I, we find‖xµ‖ is not sufficiently close tor . When we observe this fact, we do the
following computation, essentially due to Vavasis and Zippel (1990), to enhancexµ.

Let q, ‖q‖ = 1, be an eigenvector associated with the eigenvalueλ. Then, one of
the unit vectorej , j = 1, . . . ,n − m, must have|eT

j q| ≥ 1/
√

n. (In fact, we can use
any unit vectorq to replaceej as long asqTq ≥ 1/

√
n. A randomly generatedq

will do it with high probability.) Now we solve fory from

(Q+ µI )y = ej
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and let

x = xµ + αy,

whereα is chosen such that‖x‖ = r . Note we have

(Q+ µI )x = −c+ αej ,

and in the computation ofxµ andy, matrix Q+ µI needs to be factorized only once.
It is easy to show that

‖y‖ ≥ 1√
n(µ− |λ|)

and

|α| ≤ 2r (µ− |λ|)√n ≤ 2r (ε′µ∗/8+ εµ∗/8√n)
√

n.

Then, we have from (2.7)

q(x)− q(xµ∗)

= 1

2
(Qx+ c)T (x − xµ∗)+ 1

2
(Qxµ∗ + c)T (x − xµ∗)

= 1

2
(Qx+ c−αej )

T (x− xµ∗)+ 1

2
αeT

j (x − xµ∗)− 1

2
µ∗xT

µ∗(x − xµ∗)

= −1

2
µxT (x − xµ∗)+ 1

2
αeT

j (x − xµ∗)− 1

2
µ∗xT

µ∗(x − xµ∗)

= −1

2
(µx + µ∗xµ∗)T (x − xµ∗)+ 1

2
αeT

j (x − xµ∗)

= −1

2
(µ− µ∗)xT (x − xµ∗)+ 1

2
αeT

j (x − xµ∗),

where the last step follows from‖x‖ = ‖xµ∗‖ = r . Now we useµ− µ∗ < ε′µ∗/8 and
the preceding upper bound onα to estimate the right hand side:

q(x)− q(xµ∗) ≤ r 2µ∗ε′/8+ 2(ε′µ∗/8+ εµ∗/8√n)r 2√n

= (ε′/4+√nε′/2+ ε/2)µ∗r 2/2

≤ (ε′/4+√nε′/2+ ε/2)(q(0)− q(x∗)),

where the last step is due to (2.4). Thus, if we choose

ε′ ≤ ε√
n+ 1/2

,



P1: SRG

Journal of Combinatorial Optimization KL560-03-Fu February 14, 1998 10:52

36 FU, LUO AND YE

thenx is feasible for BQP(r ) and

q(x)− q(xµ∗) ≤ ε(q(0)− q(x∗)) ≤ ε(z̄− z),

i.e.,x is anε-minimizer ofq(x) overB(r ).
Hence, the bisection method will terminate with anε-minimizer of BQP(r ) in at most

O(log(µ0/µ∗)+ log(1/ε)+ logn)

steps, or in a total ofO(n3(log(µ0/µ∗)+ log(1/ε)+ logn)) arithmetic operations.

Theorem 1. The total running time of the bisection algorithm for generating anε-minimal
solution to the ball-constrained QP is bounded by O(n3(log(µ0/µ∗)+ log(1/ε)+ logn))
arithmetic operations.

The polynomial complexity in Theorem 1 can be further improved. In particular, we (Ye,
1994) developed a Newton-type method for solving (BQP(r )) and established an arithmetic
operation boundO(n3 log(log(µ0/µ∗)+ log(1/ε′))) to yield aµsuch that 0≤ µ−µ∗ ≤ ε′.
To compute anε-minimizer of BQP(r ), we first find an approximateµ to the absolute
value of the least eigenvalue|λ| and an approximate eigenvectorq to the trueq, such that
0≤ µ−|λ| ≤ ε′ andqTq ≥ 1−ε′. This approximation can be done inO(n3 log(log(1/ε′)))
arithmetic operations. Then, we will useq to replaceej in Case II (i.e.,‖xµ‖< r ) to enhance
x(µ) and generate a desired approximation. Otherwise, we knowµ∗ > µ and, using the
method in (Ye, 1994), we will generate aµ∈ (µ,µ0) such that|µ − µ∗| ≤ ε′µ∗/8 in
O(n3 log(log(µ0/µ∗)+ log(1/ε′))) arithmetic operations.

3. The multiple-ellipsoid constrained QP

In this section we consider the QP problem

Minimize q(x) := 1

2
xT Qx+ cT x

Subject to x ∈ F ,
(3.1)

whose feasible regionF is defined by the intersection of multiple ellipsoids, namely,

F :=
{

x ∈ <n : di − cT
i x − 1

2
xT Qi x ≥ 0, i = 1, . . . ,m

}
, (3.2)

where eachQi ∈ <n×n is a symmetric positive semidefinite matrix,ci ∈ <n is a vector and
di is a scalar. We continue to assume thatF contains an interior point and is bounded. To
simplify notations, we define

gi (x) := di − cT
i x − 1

2
xT Qi x, i = 1, . . . ,m.
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Also, sinceF is bounded, we may assume without loss of generality thatF is contained in
the unit ball and thatg1 = 1− xT x.

The approximation algorithms developed below and in the next two sections are all based
on the following idea: we approximate the feasible regionF by an inscribing ellipsoid with
radiusr , and minimize the objective functionq(x) over this ellipsoid to obtain a global
minimizerx∗(r ). We then usex∗(r ) as an approximate global minimizer forq(x) overF .
If the inscribing ellipsoid has the property that when its radius is enlarged toR the ellipsoid
containsF , then we can use the following theorem to show thatx∗(r ) is a (1− (r/R)2)-
minimizer of q(x) overF . This theorem first appeared in (Ye, 1992) and will be used
frequently in the remainder of this paper.

Theorem 2. Let x∗(r )and x∗(R)be minimizers of BQP(r )and BQP(R),where R> r > 0,
respectively. Then,

q(0)− q(x∗(r )) ≥ (r/R)2(q(0)− q(x∗(R)))

or

q(x∗(r ))− q(x∗(R)) ≤ (1− (r/R)2)(q(0)− q(x∗(R))).

We also derive the following corollary.

Corollary 1. Let x∗(r ) and x∗(R) be minimizers of BQP(r ) and BQP(R), where R>
r > 0, respectively. Moreover, let x̄ be aε-minimizer of BQP(r ) and

q(x̄)− q(x∗(r )) ≤ ε(q(0)− q(x∗(r ))).

Then, for any zsuch that q(x∗(R)) ≤ z≤ q(x∗(r ))

q(x̄)− z≤ (1− (1− ε)(r/R)2)(q(0)− z).

Proof: We have

q(x̄)− z = q(x̄)− q(x∗(r ))+ q(x∗(r ))− z

≤ ε(q(0)− q(x∗(r )))+ q(x∗(r ))− z

= −(1− ε)(q(0)− q(x∗(r ))+ q(0)− z

= −(1− ε) α (q(0)− q(x∗(R)))+ (q(0)− z)

≤ −(1− ε) α (q(0)− z)+ (q(0)− z)

= (1− (1− ε)α)(q(0)− z)),

where

α := q(0)− q(x∗(r ))
q(0)− q(x∗(R))

.

According to Theorem 2, we haveα ≥ (r/R)2. 2
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Theorem 2 shows that the larger is the ratior/R, the closer is the approximate minimizer
x∗(r ) to the global minimum ofq(x)overF . This suggests that we should find two ellipsoids
of the same orientation and center, one containingF with radiusRwhile the other contained
in F with radiusr , so that the ratior/R is maximized. In what follows, we shall use the
analytic centerbased inscribing ellipsoid forF and show that when we increase the radius
r to R= mr, then the inscribing ellipsoid becomes a containing ellipsoid ofF , wherem is
the number of quadratic inequalities definingF . This result should be contrasted with the
result of Lowner-John (Schrijver, 1986, p. 205) which says that for each full dimensional
compact convex body in<n there exists a pair of inscribing and circumscribing ellipsoids
which are concentric and aren-dilation of each other. Thus, whenm< n, it is better to use
the analytic center based ellipsoids.

We introduce some notations. LetL(x) denote the following logarithmic barrier function
for F :

L(x) := −
m∑

i=1

loggi (x) = −
m∑

i=1

log

(
di − cT

i x − 1

2
xT Qi x

)
.

It can be seen thatL(x) is strictly convex and approaches+∞ near the boundary ofF .
It is in fact self-concordantin the terminology of Nesterov and Nemirovskii (1993). The
gradient and the Hessian ofL(x) are given by

∇L(x) =
m∑

i=1

ci + Qi x

gi (x)
(3.3)

∇2L(x) =
m∑

i=1

(
(ci + Qi x)(ci + Qi x)T

g2
i (x)

+ Qi

gi (x)

)
. (3.4)

For eachr ≥ 0 and each interior pointz in F , let us define an ellipsoid centered atz

E(z; r ) := {x ∈ <n : (x − z)T∇2L(z)(x − z) ≤ r }.

E(z; 1) is the so called Dikin ellipsoid atz and is known thatE(z; 1)⊂F for all z in the
interior ofF (see Nesterov and Nemirovskii, 1993). The analytic center ofF is defined to
be the unique minimizer̄x ∈F of the logarithmic barrier functionL(x). The Dikin ellipsoid
at x̄ is denoted byE(x̄; 1). Next we show thatF ⊂ E(x̄;m).

Theorem 3. There holds

E(x̄; 1) ⊂ F ⊂ E(x̄;m).

Proof: The containmentE(x̄; 1) ⊂ F has been established in (Nesterov and Nemirovskii,
1993). It remains to prove the second containment. Fix anyx ∈ F . To simplify notations,
we dropx andx̄ in gi (x), gi (x̄), ∇L(x̄), etc., and denote them bygi , ḡi , ∇ L̄ respectively.
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We also denote1i = 1
2(x − x̄)T Qi (x − x̄). Notice that

0= ∇ L̄ =
m∑

i=1

ci + Qi x̄

ḡi
.

Multiplying both sides by(x − x̄) yields

m∑
i=1

(ci + Qi x)T (x − x̄)

ḡi
= 0.

By Taylor expansion, we have

−(ci + Qi x̄)
T (x − x̄) = ∇ ḡT

i (x − x̄)

= gi − ḡi + 1

2
(x − x̄)T Qi (x − x̄)

= gi − ḡi +1i .

Substituting this into the previous relation we obtain

0=
m∑

i=1

gi − ḡi +1i

ḡi
,

which implies

m=
m∑

i=1

gi +1i

ḡi
. (3.5)

Squaring both sides and notinggi ≥ 0 (sincex ∈ F ) gives

m2 =
m∑

i=1

(
gi +1i

ḡi

)2

+ 2
∑
i 6= j

(
gi +1i

ḡi

)(
gj +1 j

ḡ j

)

≥
m∑

i=1

(
gi +1i

ḡi

)2

.

This further implies

m∑
i=1

(
gi +1i

ḡi
− 1

)2

=
m∑

i=1

(
gi +1i

ḡi

)2

− 2
m∑

i=1

(
gi +1i

ḡi

)
+m

≤ m2− 2
m∑

i=1

(
gi +1i

ḡi

)
+m

= m2− 2m+m

= m2−m, (3.6)
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where the second equality follows from (3.5). Furthermore, the equality (3.5) implies

m∑
i=1

1i

ḡi
=m− gi

ḡi
≤ m, (3.7)

where the last step is due togi ≥ 0, for all i . Combining the relations (3.6) and (3.7) and
noting (3.4) yields

(x − x̄)T∇2L(x̄)(x − x̄) =
m∑

i=1

(
((ci + Qi x̄)T (x − x̄))2

g2
i (x̄)

+ (x − x̄)T Qi (x − x̄)

gi (x̄)

)

=
m∑

i=1

(
gi +1i

ḡi
− 1

)2

+
m∑

i=1

1i

ḡi

≤ m2−m+m= m2.

This shows thatx ∈ E(x̄;m) as desired. 2

Theorem 3 shows that the Dikin ellipsoid at the analytic centerx̄ has the property that
when its radius is enlargedm times it contains the feasible regionF . Thus, Theorem 2
and Corollary 1 imply that the minimizer ofq(x) over the Dikin ellipsoidE(x̄; 1) at the
analytic center̄x is a(1− 1/m2)-minimizer ofq(x) overF . The remaining issue is how
to find the analytic center ofF .

The following is a column generation algorithm for computing anε-approximate analytic
center ofF . This algorithm is adopted from (Luo and Sun, 1995).

The column generation algorithm.

— Step 1
Ä1 is defined by the quadratic inequalityg1(x) ≥ 0 or equivalently‖x‖2 ≤ 1. Formally,
let

Ä1 = {x ∈ <n : 1− ‖x‖2 ≥ 0}

and let

x1 = 0 ∈ <n.

Thenx1 is the analytic center ofÄ1.

— Stepk (2≤ k ≤ m)
Let xk−1 be an approximate analytic center of the set

Äk−1 := {x ∈ <n : gi (x) ≥ 0, i = 1, . . . , k− 1, }



P1: SRG

Journal of Combinatorial Optimization KL560-03-Fu February 14, 1998 10:52

APPROXIMATION ALGORITHMS FOR QUADRATIC PROGRAMMING 41

in the sense that

(∇Lk−1(x
k−1))T (∇2Lk−1(x

k−1))−1∇Lk−1(x
k−1) ≤ 0.01

where

Lk−1(x) := −
k−1∑
i=1

log

(
di − cT

i x − 1

2
xT Qi x

)
.

Let xk
0 := xk−1 and check if

xk
0 ∈ Äk := Äk−1 ∩ {x ∈ <n : gk(x) ≥ 0}

and if it satisfies(∇Lk
(
xk

0

))T(∇2Lk
(
xk

0

))−1∇Lk
(
xk

0

) ≤ 0.01

where

Lk(x) := −
k∑

i=1

log

(
di − cT

i x − 1

2
xT Qi x

)
.

If yes, xk
0 is an approximate analytic center ofÄk; setxk = xk

0 and go to stepk + 1.
Else do the following.

(Inner loop for step k)

• Step A: Let j = 0 and

d j
k := max

{
dk, 16

√(∇gk
(
xk

j

))T∇2Lk−1
(
xk

j

)∇gk
(
xk

j

)+ dk − gk
(
xk

j

)}
.

Define

Äk
j =

x ∈ <n : di − cT
i x − 1

2xT Qi x ≥ 0, i = 1, . . . , k− 1,

d j
k − cT

k x − 1
2xT Qkx ≥ 0.

 . (3.8)

• Step B: Perform the following damped Newton iterations (initialized atxk
j )

xnew := x − 0.6
(∇2L j

k(x)
)−1∇L j

k(x) (3.9)

until (∇L j
k(x

new)
)T(∇2L j

k(x
new)

)−1∇L j
k(x

new) ≤ 0.01

whereL j
k(x) denotes the logarithmic barrier function ofÄk

j . Set

xk
j := xnew.
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Check ifd j
k = dk. If yes, thenxk

j is an approximate analytic center ofÄk; setxk = xk
j ,

exit the inner loop and return to Stepk+ 1.
Else, define

d j
k := max

{
dk, d

j
k − 0.01

(
d j

k − cT
k xk

j −
1

2

(
xk

j

)T
Qk
(
xk

j

))}
and updateÄk

j by (3.8); return to Step B.

— Stepm+ 1
Let xm be an approximate analytic center of the set

Äm := F
in the sense that

(∇L(xm))T (∇2L(xm))−1∇L(xm) ≤ 0.01

whereL(x) is the logarithmic barrier function ofF . Perform the following damped
Newton iterations (initialized atxm)

xnew := x − 0.6(∇2L(x))−1∇L(x) (3.10)

until

(∇L(xnew))T (∇2L(xnew))−1∇L(xnew) ≤ ((2−
√

2)ε)2. (3.11)

SupposeF contains aδ-ball in its interior. Then, the analysis of (Luo and Sun, 1995)
shows that the steps 1 up tom will take at mostO(m log(1/δ)) Newton iterations (3.9),
or O(n3m log(1/δ)) arithmetic operations. Also, due to the quadratic convergence of the
Newton iterations (3.10), Stepm+ 1 of the above Column Generation Algorithm takes
at mostO(log log(1/ε)) Newton iterations, orO(n3 log log(1/ε)) arithmetic operations.
Thus, the above Column Generation Algorithm finds anε-approximate analytic center
x̄ε of F in a total of O(n3(m log(1/δ) + log log(1/ε))) arithmetic operations, which is
polynomial inm, n and log(1/ε).

Once we have computed̄xε , we can construct the Dikin ellipsoidE(x̄ε; 1) and use the
polynomial time algorithm described in Section 2 to minimizeq(x) over E(x̄ε; 1). The
minimizer, sayxε , of q(x) overE(x̄ε; 1) can be shown to be a good approximate minimizer
of q(x) overF . The proof is based on the fact that the Dikin ellipsoidE(x̄ε; 1), when scaled
upm(1+ ε) times, containsF . This property is similar to the one described in Theorem 3
for the ellipsoidE(x̄; 1).

Theorem 4. For all ε ∈ (0, 1− 1/
√

2] and all m ≥ 1, there exists a polynomial-time
approximation algorithm for computing an(1− 1−ε

(m(1+ε))2 )-minimizer of q(x) overF .

Proof: The approximation algorithm consists of two stages: first we compute an ap-
proximate analytic center̄xε (in the sense (3.11)) using the Column Generation Algorithm
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described above; second we apply the bisection algorithm described in Section 2 to mini-
mizeq(x) over the Dikin ellipsoidE(x̄ε; 1). We show below that this algorithm generates
an(1− (1− ε)/(m(1+ ε))2)-minimizer ofq(x) overF in polynomial time.

Sincex̄ε is anε-approximate center ofF , we have from (3.11) that

(∇L(x̄ε))
T (∇2L(x̄ε))

−1∇L(x̄ε) ≤ ((2−
√

2)ε)2 < (
√

2− 1)4.

By a lemma of Nesterov (1995), it follows that

(x̄ − x̄ε)
T (∇2L(x̄ε))

−1(x̄ − x̄ε) ≤ ε2.

This shows that̄x ∈ E(x̄ε; ε). Then, by the well known result on the self-similarity of
Hessian matrix∇2L(x) over the Dikin ellipsoids, we obtain

(1+ ε)2(∇2L(x̄ε))
−1 º (∇2L(x̄))−1 º (1− ε)2(∇2L(x̄ε))

−1.

Thus, we have from Theorem 3 that

F ⊆ E(x̄;m) ⊆ (1+ ε)E(x̄ε;m) = E(x̄ε;m(1+ ε)).

SinceE(x̄ε; 1) ⊆ F , it follows from Theorem 2 and Corollary 1 that theε-minimizer of
q(x) over E(x̄ε; 1) with

q(x)− q(x∗(1)) ≤ ε(q(x̄ε)− q(x∗(1)))

is an(1− (1− ε)/(m(1+ ε))2)-minimizer ofq(x) overF .
By the discussion following Column Generation Algorithm, we see the work required

to computex̄ε is O(n3(m log(1/δ)+ log log 1/ε)). Furthermore, the work required to
compute anε-minimizer ofq(x) overE(x̄ε; 1) is equal toO(n3(log(µ0/µ∗)+ log(1/ε)+
logn)), whereµ0, µ∗ are defined in (2.2) and (2.3). This shows that we can compute an
(1− (1− ε)/(m(1+ ε))2)-minimizer ofq(x) overF in polynomial time. 2

For m = 2, i.e., for the two-ellipsoid constrained QP problem, Theorem 4 implies that
we can compute an(1− (1− ε)/(2(1+ ε))2)-minimizer in polynomial time. To the best
of our knowledge, this is the first polynomial approximation algorithm for this problem.

4. The box constrained QP problem

In this section, we consider another special QP problem whereby

F = C := {x ∈ <n : ‖x‖∞ ≤ 1}.
Clearly,

B(1) ⊂ F ⊂ B(√n).
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Thus, we have

q(x∗(1)) ≥ z≥ q(x∗(
√

n)),

where the notationx∗(r ) for anyr > 0 denotes a global minimizer of BQP(r ).
Now, we can apply the algorithms in Section 2 to approximately solve BQP(1) and obtain

anx with

q(x)− q(x∗(1)) ≤ ε(q(0)− q(x∗(1))).

According to Corollary 1, if we chooseε = 1/n, then we can generate an(1− 1/n +
1/n2)-minimizer for the cubic-constrained QP problem inO(n3 log(log(µ0/µ∗)+ logn))
arithmetic operations.

5. The assignment-polytope constrained QP problem

In this section, we consider the assignment-polytope constrained QP whereby

F :=
{

x ∈ <m2
:

m∑
i=1

xi, j = 1,
m∑

j=1

xi, j = 1, i, j = 1, . . . ,m, xi, j ≥ 0

}

:=
{

x ∈ <m2
: xi, j ≥ 0

}
∩ P,

whereP denotes the subset

P :=
{

x ∈ <m2
:

m∑
i=1

xi, j = 1,
m∑

j=1

xi, j = 1, i, j = 1, . . . ,m

}
.

Obviously, the vectorx = 1
me, wheree ∈ <m2

is the vector of all one’s, is a feasible point
in F . Moreover, we have

{
x ∈ P :

∥∥∥∥x − 1

m
e

∥∥∥∥ ≤ 1

m

}
⊂ F ⊂

{
x ∈ P :

∥∥∥∥x − 1

m
e

∥∥∥∥ ≤ √2(m− 1).

}
(5.1)

This is because

‖x − (1/m)e‖2 = ‖x‖2− 2(1/m)eT x + (1/m)m2

= ‖x‖2− 2+m≤ 2m− 2.
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Let d = x − (1/m)e∈ <m2
, then we can

Minimize q(d) := 1

2
dT Qd+ cTd

Subject to
m∑

i=1

di, j = 0, j = 1, . . . ,m,

m∑
j=1

di, j = 0, i = 1, . . . ,m,

‖d‖ ≤ 1/m.

Let N be an orthonormal basis spanning the null space of the equality constraints, where
NTN = I , and letQ̂ = NTQN and ĉ = NTc. Thend = Ny for somey and the above
problem can be rewritten as

Minimize
1

2
yTQ̂x+ ĉTy

Subject to ‖y‖ ≤ 1/m.

This is exactly the single ball-constrained problem discussed earlier in Section 2. Thus, if
we chooseε = 1/m, then we can generate a1m-minimizer, sayx̄, of this ball-constrained
problem in

O(m6 log(log(µ0/µ∗)+ logm))

arithmetic operations. By the containment relation (5.1) and using an argument similar to
that in Section 5, we can deduce thatx̄ is an(1−1/m2(2m−2)+1/m3(2m−2))-minimizer
for the assignment polytope-constrained QP problem; the details are omitted.

6. The multiple-ellipsoid constrained QP as a semidefinite program

In this section we revisit the problem of (multiple) ellipsoid constrained QP problem. We
present two results. First, we give an alternative formulation of the QP problem with a single
ball constraint. This reformulation is in terms of a semidefinite program (SDP) which is
similar to that of the recent work by Polijak et al. (1995), Rendl-Wolkowicz (1994) and
Fujie-Kojima (1995). However, compared to the proof in this reference, our derivation is
simpler and is based on a well-known result in the systems and control literature. Second,
we propose a SDP relaxation for the QP problem with multiple ball constraints using a
scheme called S-procedure (Yakubovich, 1977). This relaxation provides a polynomial
time computable lower bound for the global minimum of a multiple ellipsoid constrained
problem.

6.1. The single-ball constrained QP: A SDP formulation

Consider the QP problem with

F = {x ∈ <n : (x − a)TP(x − a) ≤ 1} (6.1)



P1: SRG

Journal of Combinatorial Optimization KL560-03-Fu February 14, 1998 10:52

46 FU, LUO AND YE

whereP= PT > 0 is a symmetric and positive-definite matrix in<n× n, anda ∈ <n. Denote
by z the minimum ofq(x) subject toF in (6.1).

Given the QP problem above, let us construct the following SDP problem:

Minimize ρ

Subject to

(
Q+ µP c− µPa

cT − µaT P ρ − µ+ µaT Pa

)
º 0

µ ≥ 0 (6.2)

whereµ andρ are variables. Here, for any square matricesM andN the notationM º N
meansM − N is positive semidefinite. Denote byρ the minimum ofρ obtained above.

Then, we have the following result:

Theorem 5. The minimum zfor the QP problem with a single ball constraintF in (6.1)
and the minimumρ for the SDP problem in(6.2) are related by

ρ = −z (6.3)

Proof: The proof of the result hinges on the following lemma due to Yakubovich (1977)
which is well-known in the systems and control area; see also (Boyd et al., 1994, Sec-
tion 2.6.3).

Lemma 1. Let q0(x) and q1(x) be quadratic functions of the variable x∈ <n:

qi (x) = xT Qi x + 2cT
i x + di , i = 0, 1 (6.4)

where Qi = QT
i . Suppose there exists x0 ∈ <n such that q1(x0) > 0. Then, q0(x) ≥ 0 for

all x satisfying q1(x) ≥ 0 if and only if there exists someµ ≥ 0 such that

q0(x)− µq1(x) ≥ 0, ∀ x ∈ <n (6.5)

Furthermore, (6.5) holds if and only if the following holds:(
Q0 c0

cT
0 d0

)
− µ

(
Q1 c1

cT
1 d1

)
º 0. (6.6)

Now let us return to Theorem 5. Given anyρ, we take

q0(x) = q(x)+ ρ, q1(x) = 1− (x − a)T P(x − a).

Obviously,q1(a) > 0. Using Lemma 1 above, we know thatq(x) ≥ −ρ for all x satisfying
(x − a)T P(x − a) ≤ 1 if and only if there exists someµ ≥ 0 such that (6.2) holds. That
is, z≥ −ρ if and only if there exists someµ ≥ 0 such that (6.2) holds. Hence,z≥ −ρ.
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On the other hand, supposez > −ρ. Then, there existsε > 0 such thatz− ε ≥ −ρ.
That is,q0(x) − ε + ρ ≥ 0 for all x satisfyingq1(x) ≥ 0. Using Lemma 1 above again,
there existsµ ≥ 0 such that(

Q+ µP c− µPa

cT − µaT P (ρ − ε)− µ+ µaT Pa

)
º 0

which violates the definition ofρ. Hence, we must havez= −ρ. 2

When the ellipsoid (6.1) is centered at the origin, i.e.,a = 0, Theorem 5 specializes to a
result by Rendl and Wolkowicz (1994) which states thatz is given by the minimum of the
following SDP problem:

Maximize 2λ− t

Subject to

(
t cT

c Q

)
º λI . (6.7)

whereλ andt are variables. This equivalence can be established by simply takingλ = −µ
andt = 2λ + ρ and permuting the rows of and columns of the constraint matrix in (6.7).
This change of variables followed by the permutation of the rows and columns converts
(6.7) into (6.2) witha = 0. Note that the constraintµ ≥ 0 in (6.2) is the same asλ ≤ 0;
the latter is implicit in (6.7) becauseQ − λI must be positive semidefinite andQ has a
negative eigenvalue. For additional details of on the relation between the solution of a
semidefinite relaxation and of a quadratic program, see Fujie and Kojima (1995).

We should point out that Theorem 5 only implies that theexactglobal minimumz of
a ball-constrained QP can be obtained via theexactglobal minimumρ of the SDP (6.2).
Although the latter can be approximated using interior point methods, it is not clear how
to convert anε-minimizer of the SDP into an approximate minimizer of the original ball-
constrained QP.

6.2. The multiple-ellipsoid constrained QP: A SDP relaxation

Consider the QP problem with multiple ellipsoid constraints described by

F = {x ∈ <n : (x − ai )
T Pi (x − ai ) ≤ 1, i = 1, . . . ,m} (6.8)

wherePi = PT
i > 0 andai ∈ <n, i = 1, . . . ,m. As always, we shall assume thatF contains

an interior point. For anyτ = (τ1, τ2, . . . , τm) with

m∑
i=1

τi = 1, τi ≥ 0, i = 1, 2, . . . ,m,
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we define

F(τ ) =
{

x :
m∑

i=1

τi (x − ai )
T Pi (x − ai ) ≤ 1

}
. (6.9)

Obviously, we have

F ⊂ F(τ ) (6.10)

andF(τ ) has non-empty interior. The relaxation method of usingF(τ ) to replaceF is
called S-procedure and has been used popularly in the systems and control literature; see
(Yakubovich, 1977). If we denote byz(τ ) the global minimum ofq(x) onF(τ ) and define

z∗ = max

{
z(τ ) :

m∑
i=1

τi = 1, τi ≥ 0, i = 1, 2, . . . ,m

}
, (6.11)

it follows thatz∗ is a lower bound ofz, i.e.,

z∗ ≤ z. (6.12)

Now we define a related SDP problem as follows:

Minimize ρ

Subject to

(
Q+∑m

i=1µi Pi c−∑m
i=1µi Pi ai

cT −∑m
i=1µi aT

i Pi ρ −∑m
i=1µi +

∑m
i=1µi aT

i Pi ai

)
º 0

µi ≥ 0, i = 1, 2, . . . ,m

(6.13)

with ρ andµi , i = 1, 2, . . . ,m as variables. Also denote byρ the minimumρ of the above
SDP. We then have the following result:

Theorem 6. Consider the QP problem with multiple constraints described by(6.8). The
lower bound z∗ as defined in(6.11) and the minimumρ for the SDP problem in(6.13) are
related by

ρ = −z∗. (6.14)

Furthermore, ρ = −z when m= 1. In other words, the SDP relaxation(6.13) is tight for
m= 1.

Proof: The proof is similar to that of Theorem 5. Given anyρ, we take

q0(x) = q(x)+ ρ, q1(x) = 1−
m∑

i=1

τi (x − ai )
T Pi (x − ai ).
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Note that the set{x : q1(x) ≥ 0} = F(τ ) has non-empty interior. Using Lemma 1, we
know thatq(x) ≥ −ρ for all x satisfyingq1(x) ≥ 0 if and only if there exists someµ ≥ 0
such that(

Q+ µ∑m
i=1 τi Pi c− µ∑m

i=1 τi Pi ai

cT − µ∑m
i=1 τi aT

i Pi ρ − µ+ µ∑m
i=1 τi aT

i Pi ai

)
º 0 (6.15)

holds. That is,z(τ ) ≥ −ρ if and only if there exists someµ ≥ 0 such that (6.15) holds.
Maximizing z(τ ) with respect toτ implies thatz ≥ −ρ if there exists someµ ≥ 0 such
that (6.15) holds. Denote byρ1 the minimumρ subject to (6.15) and

µ ≥ 0, τi ≥ 0,
m∑

i=1

τi = 1. (6.16)

We havez∗ ≥ −ρ1.
On the other hand, supposez > −ρ1. Then, there existsε > 0 andτ satisfying (6.16)

such thatz(τ )− ε ≥ ρ1. That is,q0(x)− ε + ρ1 ≥ 0 for all x satisfyingq1(x) ≥ 0. Using
Lemma 1 again, there exists someµ ≥ 0 such that(

Q+ µ∑m
i=1 τi Pi c− µ∑m

i=1 τi Pi ai

cT − µ∑m
i=1 τi aT

i Pi ρ1− ε − µ+ µ∑m
i=1 τi aT

i Pi ai

)
º 0

which violates the definition ofρ1. Hence,z∗ = −ρ1.
Finally, we substitute the variablesµτi forµi , i = 1, . . . ,m. Then, the constraints (6.16)

are equivalent to

µ ≥ 0, µi ≥ 0,
m∑

i=1

µi = µ. (6.17)

It follows that (6.15) and (6.17) are the same as the constraints in (6.13) once we eliminateτ .
Naturally,ρ = ρ1.

The last statement in the theorem is identical to Theorem 5. 2
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