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Abstract. We consider the problem of approximating the global minimum of a general quadratic progran
(QP) withn variables subject ta ellipsoidal constraints. Fan= 1, we rigorously show that anrminimizer,
where errok € (0, 1), can be obtained in polynomial time, meaning that the number of arithmetic operations is &
polynomial inn, m, and log1/¢). Form > 2, we present a polynomial-tin{é — m—lz)-approximation algorithm as

well as a semidefinite programming relaxation for this problem. In addition, we present approximation algorithn
for solving QP under the box constraints and the assignment polytope constraints.
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1. Introduction
Consider the general quadratic programming (QP) problem

1
Minimize q(x) := ExTQx+ c'x

P
Q Subjectto x € F,

whereQ € ™" andc € K" are given data, an# is a full-dimensional convex set iR".
Throughout this paper, we assuthas bounded and has nonempty interior. QP is a generic
problem in optimization theory and practice. Economic equilibrium, combinatorial opti-
mization, numerical partial differential equation, and general nonlinear programming ar
all sources of QP problems. In particular, many nonlinear programming methods requil
solving a sequence of QP subproblems.
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If Q is positive semi-definite, that is, for any givdre ®",
d'Qd > 0,

then (QP) is a convex optimization problem and it can be solved in polynomial time, e.g
see Vavasis (1991) and references therein. In this paper we consider general noncon
QP problems for whicl@ has at least one negative eigenvalue. In this case, (QP) become
a hard problem—an NP-complete problem (see, Garey and Johnson, 1968; Pardalos
Rosen, 1987; Sahni, 1974; Vavasis, 1991).

Ifthe feasible sef is nonempty and bounded, then (QP) has a minimizer and a maximizel
Let z andz denote their minimal and maximal objective values afferespectively. An
e-minimal solution ore-minimizer,e € [0, 1], for (QP) is defined as ax e F such that

OI(_X)—ZSG.
z-2

(Vavasis (1993) discussed the importance to have the t2rm 2) in this criterion for
continuous optimization.) According to this definition, any feasible solution F is a
1-minimizer.

It turns out that finding aa-minimizer for (QP) is a hard problem fere (0, 1). Indeed,
whenF is a polytope, Bellare and Rogaway (1995) showed that there exists a constat
say%, such that no polynomial-time algorithm exists to computé{minimal solution for
(QP), unles? = NP. They also showed that there exists a constant0 such that QP
has no polynomial timeg(l — 2~ log’ n)-approximation algorithm, unle$P c P, whereP
denotes the class of languages recognizable in quasi-polynomial time.

So far there have been several algorithms available for “solving” general polytope
constrained QP problems; these include the principal pivoting method of Lemke-Cottle
Dantzig (e.g., Cottle and Dantzig, 1968), the active-set method (e.g., Gill et al., 1981
the interior-point algorithm (e.g., Kamath et al., 1992; Ye, 1992), and other special-cas
methods (e.g., Murty, 1988; Pardalos and Rosen, 1987). These algorithms usually genet
a sequence of points that converges to a stationary or Karush-Kuhn-Tucker (KKT) poit
associated with (QP). To our knowledge, there have been no approximation bounds dev
oped for these methods. Consequently, the solutions delivered by these algorithms are
guaranteed to be a good approximate global minimizer of (QP).

There are also several approximation algorithms developed for QP when the feasik
region is a polytope. Pardalos and Rosen (1987) developed a partitioning and linear pt
gramming based algorithm with an approximation boune: o (Q, ¢, F), whereo, a
function of the QP data, is betweepi4land 1. Recently, Vavasis (1993) and Ye (1992)
developed a polynomial-time algorithm to compute(ar- niz)-minimal solution.

The objective of this paper is to develop new interior point polynomial-time approxima-
tion algorithms for the class of QPs witfi defined bym ellipsoidal constraints:

1
]—'::{xes}t“:di—ciTx—ExTQixzo, i:l,...,m}, (1.1)

where eacl); € iR"™*" is a symmetric positive semidefinite matrex,e R" is a vector and
d is a scalar. Here and throughout this paper, the term “polynomial time approximatio
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algorithm” means an algorithm whose running time is a polynomial, of, log(1/8) and
log(1/¢), wheres is the ratio of the radius of the largest inscribing sphere over that of
the smallest circumscribing sphere&f The quantitys can be thought of as a condition
number of the problem. Our definition of polynomial time approximation algorithm is
consistent with the traditional notion of polynomial time algorithm for linear programming.
This is because any polynomial approximation algorithm for linear programming can b
turned into a polynomial time algorithm by settiag= 2-- and notingg = O(2%), where

L is the data length in binary encoding.

Our interest in the approximation algorithms for the QP problem with multiple ellipsoid
constraints is two fold. First, Celis et al. (1984) and Powell-Yuan (1991) proposed trust
region algorithms for equality constrained nonlinear programming problem whereby Q|
problems with two ellipsoid constraints (i.e, = 2 in (1.1)) are solved at each iteration.
As a solver for the subproblems, any effective method for solving the above QP problel
will yield a fast trust region algorithm for the general nonlinear programming problem.
Second, for the single ball constrained case (ire= 1), we know from Section 2 that the
QP problem is polynomial time solvable. However, for the aaise- 2, neither is there
a known polynomial time algorithm for computing the global minimum of the above QP
problem, nor do we know if the problem is NP-hard. (Indeed, the complexity status of thi
two-sphere constrained QP problem remains open.) This leads us to design approximat
algorithms for the two ellipsoid constrained QP problem. In genera,if arbitrary, the
QP problem with multiple ellipsoid constraints includes the polytope constrained QP as
special case since a polytope is a degenerate form of (1.1)Qyite: 0. Thus, finding
the global minimum for the case with generalis NP-hard. In fact, even the problem
of finding ane-minimizer (fore € (0, 1)) with generalm is hard since a subclass of the
problem, namely the polytope constrained QPSs, is known to be hard to approximate.

The main contributions of this paper are as follows. Wimeg 1, we rigorously show that
ane-minimizer of the QP can be obtained in polynomial tim® (n®log(1/¢)) arithmetic
operations. We show this by a binary section type method (Section 2) and by convertir
the problem to a semidefinite program which is known to be polynomial time solvable
(see Section 6). Fam > 2, we present a semidefinite programming relaxation of this
problem (Section 6). We also preséht— #)-approximation algorithms for this problem
(Section 3). This algorithm is based on inscribing the feasible re§iby a single ellipsoid
and computing a global minimu(x) of the objectiveq(x) over this ellipsoid. We show
thatifthe inscribing ellipsoid is sufficiently centerediinthenq(X) is a good approximation
of the global minimum ofj(x) overF. Using the same technique of inscribing ellipsoid, we
further develop several approximation algorithms for solving QP under the box constrain
and the assignment polytope constraints (see Sections 4 and 5).

2. The single-ellipsoid constrained QP problem

In this section we consider the ball-constrained QP problem,BQ®here
F=Br)=XxeR":|x| <r},

radiusr is a given positive number, arjd|| denoted_, norm. By an affine transformation,
the single-ball constrained QP can be used to solve a single-ellipsoid constrained QP.
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We begin with a brief history of this problem. There is a class of nonlinear programming
algorithms called model trust region methods. In these algorithms, a quadratic functic
is used as an approximate model of the true objective function around the current itera
Then the main step is to minimize the model function. In general, however, the model s e;
pected to be accurate or trusted only in a neighborhood of the current iterate. Accordingl
the quadratic model is minimized inlg-norm neighborhood, which is a ball, around the
current iterate.

The model-trust region method is due to Levenberg (1963) and Marquardt (1963). The:
authors considered only the case whérés positive definite. Mag'(1977) proposed an
algorithm with a convergence proof for this case. Gay (1981) and Sorenson (1982) propos
algorithms for the general case, also see Dennis and Schnabel (1983). These algoritt
work very well in practice, but no complexity result was established for this problem then

It is well known (Gay, 1981; Sorenson, 1982) that the solutiasf problem BQRr)
satisfies the following necessary and sufficient conditions:

(Q+uhx=-c
p > max0, —i} (2.1)
and
x| =r,
where denotes the least eigenvalue of mat@x SinceQ is not positive semi-definite,

we must have. < 0.
Let u* andx* satisfy conditions (2.1). It has been shown thatis unique and

lcll

W< A+ e (2.2)
It is also known that

|A| < nmax{|q;j [},
whereq;; is the(i, j)th component of matrixQ. Thus, we have

* 0. licll

O=u’ =u i=nmaxgl} + =, (2.3)
where. is a computable upper bound. It is further proved that Ye (1992)

1 1 1

SP2A = SrPp =a0 =g < SrP Al +rcl. (2.4)

We now analyze the complexity of solving BQP. A simple bisection method was
proposed by Vavasis and Zippel (1990) and Ye (1992). For any givelenote solutions
of the top linear equations by, in conditions (2.1), i.e.,

X, 1= —(Q+puhtc, Vu> Il (2.5)

For any givenu we can check to see i > |A| by checking the positive definiteness
of matrix Q + w1, which can be solved aslaDL" decomposition. These facts lead to a
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bisection method to search for the rootj&f, | = r overthe interval € [|A], u°] c [0, 1°].
Obviously, for a giver’ € (0, 1), au such that, say & u — u* < €' u*/8, can be obtained
in O(log(®/*) + log(1/€’)) bisection steps, and the cost of each step(is®) arithmetic
operations (for performing DL decomposition).

The remaining question is what would be sufficient to generate aaminimizer of
g(x) over the ballB(r). Let 1 denote the right end point of the interval generated by the
bisection search. Them, > u*. If u = p*, then we get an exact solution. Thus, we
assumer > p* > |A|. By the positive semi-definiteness @f+ n*1, we have

1% ll < Xl =T
We consider two cases.

Case |. In the first case we assume

<1 8\/_>,u >|A] or u* >|M+8\/_

Using the relation (2.5) and simplifying, we obtain

X 12 = 1% 12 = XT(e) (= (Q + 1 D(Q + 1) 2(Q + 1 1))X,e
= X" () — Q4+ uh)™ = (= uHZ(Q + 1) 72Xy

Next we consider a diagonalization @fand bound the resulting diagonal entries of the
above expression by using the smallest eigenvalukhis gives

* *\2
e = el = (2(5?—_ |Z|)) - (EZ = &G)Z) e I
_ ( 2(n — p1*) B (m— p*)? >||x e
(o — )+ (= A) (=) + @ —a)2) "
_ (=) + 20 — (e — 2D 2
(= ) + (u* = |A])?

. (1 (1 — |A)? ) )
=(1- r
(1 — u*) + (u* — |A]))2

< <1 _ (Eﬂ*/s«/ﬁ)z > r2
B (n — p*) +ep/8/m2 )~

where the in last step we used the assumptib |A| + sLﬁ“* Therefore, if we have
n—u* <e'u*/8, then

12 < (2/ne'/e) + (,\/ﬁe;/e)zrz < 2‘/ﬁelrz. (2.6)
1+ (V/ne'/e)) €

2
(X0 17 = 11X,
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On the other hand, note that

1
a(X,) — A(Xe) = =X1 QX +¢Tx, — %o T QX — CTX,e

1 1
= E(qu + 0T (X — X,e) + 5(Qx,ﬂ + 0T (X — Xu)

1 T 1 *y T
= _EMXM (X — Xyr) — EM Xy (X — Xpp0)

1 1
= =5 (1 = X 6 = %) = Sl = 1 1. (2.7)

Now we use the bound (2.6), the assumption- u* < ¢'pn*/8 and the fact|x, | <
IX,|l = r to obtain:

n /
A(X) — G < ur2€/8 + rm*%

= <e’/4+ @)mz/z

2 ’
< ( ’ fé )(q<0> —q(x).

where the last step is due to (2.4). Thus, if we select

2
, €

€< —,
—2/n+1/4
thenx, is feasible for BQR) and

q(X.) — g(X.) < €(q(0) — q(x™)),

i.e., X, is ane-minimizer tox*.

Case Il. In this case, we have

1- Al or A
( 8[)“<|| u<||+u8¢—

Again, if we haveu — u* < €'u*/8, thenu—|A| < €’ u*/8+u*e/8/n. However, unlike
Case |, we find|x,, || is not sufficiently close to. When we observe this fact, we do the
following computation, essentially due to Vavasis and Zippel (1990), to enhgnce

Letq, [lgll = 1, be an eigenvector associated with the eigenvalu&hen, one of
the unit vectorej, j=1,...,n —m, must haveleTq| > 1//n. (In fact, we can use
any unit vectorg to replacee, as long a;y” q > 1//n. A randomly generated
will do it with high probability.) Now we solve foy from

(Q+ul)y =e¢
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and let
X =X, +ay,

whereq is chosen such thd| = r. Note we have
(Q+ubh)x = —c+ ey,

and in the computation of, andy, matrix Q + x| needs to be factorized only once.
It is easy to show that

1
W= s =

and
lor| < 2r (u— AN < 2r (€' */8+ epn™/8y/N)y/n.

Then, we have from (2.7)

gx) — q(X,»)
1 1
= E(Qx +0) T (X — X,+) + E(QX‘” +0) T (X — X,)

1 T 1 1.+
= E(Qx+c—aej) (x—xﬂ*)+§aej (X — Xy#) — EM Xypr (X = Xyi)

1 1 1

1 * T 1 T
= —E(,U«X + W X)) (X = Xyr) + Eaei (X = X,r)

1 1
- _E(M — wHXT (X = X,0) + EaejT(x — X+,

where the last step follows froffx| = ||x,-|| =r. Now we usex — pu* < €'n*/8 and
the preceding upper bound arto estimate the right hand side:

A(X) — QX)) < r2p*e’/8+ 2(¢'u*/8+ epn*/8/mr2y/n

= (€'/4+ JNE'J2+ €/2)u*r?/2
< (€/4+ ne'J2+ €/2)(q(0) — q(x*)),

where the last step is due to (2.4). Thus, if we choose

6/

<<
- Jn+1/2
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thenx is feasible for BQR) and

g(x) — q(X,s) < €(@(0) —q(x*)) <e(z—-2),

i.e.,x is ane-minimizer ofq(x) over5(r).
Hence, the bisection method will terminate witheminimizer of BQRr) in at most

O(log(u°/n*) + log(1/€) + logn)

steps, or in a total 0® (n3(log(u®/u*) + log(1/€) + logn)) arithmetic operations.

Theorem 1. Thetotal running time of the bisection algorithm for generating-aninimal
solution to the ball-constrained QP is bounded byn&log(1.°/1.*) + log(1/€) + logn))
arithmetic operations.

The polynomial complexity in Theorem 1 can be further improved. In particular, we (Ye,
1994) developed a Newton-type method for solving (BQJPand established an arithmetic
operation boun®(n®log(log(u®/u1*) + log(1l/€"))) toyield au suchthatO< u—pu* < €.

To compute are-minimizer of BQRr), we first find an approximatg to the absolute
value of the least eigenvalyg| and an approximate eigenvectpto the trueg, such that
0< u—|A| <€ andq’q > 1—¢'. Thisapproximation can be done@(n®log(log(1/¢)))

arithmetic operations. Then, we will ugéo replacee; in Case Il (i.e.]|x, |l <r)toenhance
x(u) and generate a desired approximation. Otherwise, we kriow p and, using the

method in (Ye, 1994), we will generate,ac (u, u®) such thatjy — u*| < €p*/8 in
O(n®log(log(u®/u*) + log(1/€'))) arithmetic operations.

3. The multiple-ellipsoid constrained QP

In this section we consider the QP problem

1
Minimize X) = =x"Qx+c'x
| q(x) 5 Qx+ (3.1)
Subjectto x € F,

whose feasible regioft is defined by the intersection of multiple ellipsoids, namely,
1
f::{xefﬁ“:di—ciTx—EXTQixzo, i=1,...,m}, (3.2)

where eacl); € %"*" is a symmetric positive semidefinite matrex,e %" is a vector and
d; is a scalar. We continue to assume tiatontains an interior point and is bounded. To
simplify notations, we define

1
gi(X) :=di —ciTx—ExTQix, i=1...,m
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Also, sinceF is bounded, we may assume without loss of generalitythigtcontained in
the unit ball and thag; = 1 — x"x.

The approximation algorithms developed below and in the next two sections are all bas
on the following idea: we approximate the feasible regioby an inscribing ellipsoid with
radiusr, and minimize the objective functiom(x) over this ellipsoid to obtain a global
minimizerx*(r). We then use*(r) as an approximate global minimizer fg¢x) over F.

If the inscribing ellipsoid has the property that when its radius is enlargBdhe ellipsoid
containsF, then we can use the following theorem to show tkidt) is a(1 — (r/R)?)-
minimizer of q(x) over F. This theorem first appeared in (Ye, 1992) and will be used
frequently in the remainder of this paper.

Theorem2. Letx*(r)and x*(R) be minimizers of BO®) and BORR), where R>r > 0,
respectively. Then

a(0) — q(x*(r)) > (r/R(@(0) — q(x*(R)))
or

q(x* () — q(x*(R)) < (1 — (r/R*)(@(0) — q(x*(R))).
We also derive the following corollary.

Corollary 1. Let x*(r) and x*(R) be minimizers of BQ®) and BQRR), where R>
r > 0, respectively. Moreovetet X be ae-minimizer of BQFr) and

g(x) — q(x*(r)) < e(q(0) — q(x*(r))).
Then for any zsuch that gx*(R)) < z < q(x*(r))
qx) —z< (11— (1 —-e)(r/RQO) — 2.

Proof: We have

qX) — q(x*(r)) + q(x*(r)) — z

< €(q(0) —q(x*(r))) +q(x*(r)) — z

= —(1-6e)(@Q0) —q(x*(r)) +q(0) — z
—(1-¢e)a (0 —qx*(R)) +(q(0) - 2)
-1-€)a@0 -2+ @O -2
(1-1-ew)(q() —2),

qx) —z

IA

where

L 90 —ae ()
" 90 -0 (R)’

According to Theorem 2, we have> (r/R). 0
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Theorem 2 shows that the larger is the rafi®, the closer is the approximate minimizer
X*(r) to the global minimum ofj(x) overF. This suggests thatwe should find two ellipsoids
of the same orientation and center, one contaiffivgth radiusR while the other contained
in F with radiusr, so that the ratio /R is maximized. In what follows, we shall use the
analytic centeibased inscribing ellipsoid fgf and show that when we increase the radius
r to R = mr, then the inscribing ellipsoid becomes a containing ellipsoi#f oivherem is
the number of quadratic inequalities definig This result should be contrasted with the
result of Lowner-John (Schrijver, 1986, p. 205) which says that for each full dimensiona
compact convex body ift" there exists a pair of inscribing and circumscribing ellipsoids
which are concentric and anedilation of each other. Thus, whem < n, itis better to use
the analytic center based ellipsoids.

We introduce some notations. Liefx) denote the following logarithmic barrier function
for F:

L(x) :=—) loggi(x) = Zlog (d. c’ x——x Qi )
i=1

It can be seen thdt(x) is strictly convex and approachasx near the boundary aof.
It is in fact self-concordantn the terminology of Nesterov and Nemirovskii (1993). The
gradient and the Hessian bfx) are given by

T\ G+ Qi

Vi) =y — =2 (3.3)
; Gi (x)
T /@ + Qx)E +Qix)T Qi

V2L(x) = ( + > . (3.4)
; 92 (%) gi (X)

For eaclr > 0 and each interior poirgin F, let us define an ellipsoid centeredzat
EZzr)={XeR:x—2"VL@Xx—-2) <r}.

E(z 1) is the so called Dikin ellipsoid a and is known thaE(z; 1) c F for all zin the
interior of 7 (see Nesterov and Nemirovskii, 1993). The analytic centéf of defined to
be the unique minimizex € F of the logarithmic barrier functioh (x). The Dikin ellipsoid
atX is denoted byE (X; 1). Next we show tha# C E(X; m).

Theorem 3. There holds
E(X;1) Cc F C E(X; m).

Proof: The containmenE(X; 1) C F has been established in (Nesterovand Nemirovskii,
1993). It remains to prove the second containment. Fixxaay/. To simplify notations,
we dropx andX in g;j (x), gi (X), VL(X), etc., and denote them lay, §;, VL respectively.
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We also denot\; = Z(x — X)T Qi (x — X). Notice that

4 +Q.
Z

Multiplying both sides byx — x) yields

Xm: €+ Qix)T(x —X)
i=1 gi

=0.

By Taylor expansion, we have
—(C+ QX (Xx—X) = Vg (x— %)
_ 1 _ _
=6 —G +5(x- )T Qi(x — X)
=0 —0 + A

Substituting this into the previous relation we obtain

which implies

Squaring both sides and notigg > 0 (sincex € F) gives

m2_2<9.+A.> 22(9.+A.>(g;;_rjAj>

i=1 9 i#j

- 4 <gi~|_-Ai> '
=i 9

This further implies

39

(3.5)

(3.6)
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where the second equality follows from (3.5). Furthermore, the equality (3.5) implies

Xm:7=m—%fm» (3.7)

H
«Q
©«

where the last step is due ¢p > 0, for alli. Combining the relations (3.6) and (3.7) and
noting (3.4) yields

(X —X)TV2L(X)(X — X) =

Zm: (((Ci + QT (X =X))? n x=%"Q (X—Y))

i—1 g2(X) gi (%)
-y (M - 1)2 Ly
i=1 Gi i—1 Oi
<m’—m+m=nm
This shows thak € E(X; m) as desired. O

Theorem 3 shows that the Dikin ellipsoid at the analytic certkas the property that
when its radius is enlargem times it contains the feasible regiofi Thus, Theorem 2
and Corollary 1 imply that the minimizer @f(x) over the Dikin ellipsoidE(X; 1) at the
analytic centek is a(1 — 1/m?)-minimizer ofq(x) over F. The remaining issue is how
to find the analytic center of.

The following is a column generation algorithm for computing eapproximate analytic
center ofF. This algorithm is adopted from (Luo and Sun, 1995).

The column generation algorithm.
— Step 1
Q1is defined by the quadratic inequali@y(x) > 0 or equivalently|x||? < 1. Formally,
let
Ql={xeR":1—|x|?=>0}
and let
x'=0en".
Thenx! is the analytic center aR?.

— Stepk(2<k<m)
Let xk-1 be an approximate analytic center of the set

QFli=(xeR":g(x) >0, i=1... k=1
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in the sense that
(VL1 )T (V2L () VL (x1) < 0.01

where

L_1(X) := —zlog (di —c'x— %XTQiX>.
Let x§ := x*~* and check if

X e Q= Q1N {x e R":gu(x) >0}
and if it satisfies

(9L(66)T (VL)) L) < 001

where
K 1
L(X) 1= — ; log (di —¢'x— ExT Qi x).

If yes, x§ is an approximate analytic center @f; setx® = x§ and go to stefx + 1.
Else do the following.

(Inner loop for step k)

e StepAlLetj =0and
dlj = max{dk, 16\/(ng(x5‘))TV2|_k_1(x'j‘)ng(x}‘) + 0y — gk(x}‘)} )

Define

Qk=1xen: d—¢x=3xTQx=0, i=1..k-11 (38
di —cix — IxTQux > 0.
e Step B Perform the following damped Newton iterations (initialized(“Fl)t
XMW= x — O.6(V2Li(x))_1VL|£(x) (3.9)
until
(VLLO®) T (V2L (™) 'L (x"*) < 0.01
whereLlj((x) denotes the logarithmic barrier function @f. Set

X[ 1= X",
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Checkifd} = dy. Ifyes, therx! is an approximate analytic center®f; setx* = x¥,
exit the inner loop and return to St&pt 1.
Else, define

d) = max{dk, di — 0.0l(d,i — Gk — é(x}‘)T Qk(x}‘))}
and updatéz‘]? by (3.8); return to Step B.

— Stepm+1
Let x™ be an approximate analytic center of the set

Q"= F
in the sense that
(VLOX™)T(V2L(x™)~tVL(x™) < 0.01

whereL (x) is the logarithmic barrier function af. Perform the following damped
Newton iterations (initialized at™)

XMW= x — 0.6(V2L (X)) 1VL(x) (3.10)
until

(VLX) T (V2L (X)) "1y L (x"™%) < ((2 — v/2)€)2. (3.11)

SupposeF contains &-ball in its interior. Then, the analysis of (Luo and Sun, 1995)
shows that the steps 1 up mo will take at mostO(mlog(1/8)) Newton iterations (3.9),
or O(n®mlog(1/4)) arithmetic operations. Also, due to the quadratic convergence of the
Newton iterations (3.10), Step + 1 of the above Column Generation Algorithm takes
at mostO(log log(1/¢)) Newton iterations, 00O (n®loglog(1/¢)) arithmetic operations.
Thus, the above Column Generation Algorithm findseaapproximate analytic center
X, of F in a total of O(n®(mlog(1/8) + loglog(1/¢))) arithmetic operations, which is
polynomial inm, n and log1/¢).

Once we have computed, we can construct the Dikin ellipsoid(X,; 1) and use the
polynomial time algorithm described in Section 2 to minim@e) over E(X.; 1). The
minimizer, sayx., of q(x) overE(X.; 1) can be shown to be a good approximate minimizer
of q(x) overF. The proofis based on the fact that the Dikin ellipsBitk,; 1), when scaled
upm(1+ ¢) times, containsF. This property is similar to the one described in Theorem 3
for the ellipsoidE(X; 1).

Theorem 4. For all € € (0,1 — 1/+/2] and all m > 1, there exists a polynomial-time
approximation algorithm for computing aii — mé%))z)-minimizer of gx) overF.

Proof: The approximation algorithm consists of two stages: first we compute an ap
proximate analytic centex, (in the sense (3.11)) using the Column Generation Algorithm
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described above; second we apply the bisection algorithm described in Section 2 to mir
mize q(x) over the Dikin ellipsoidE (X.; 1). We show below that this algorithm generates
an(l — (1 —e)/(m(1 + €))?)-minimizer ofq(x) overF in polynomial time.

SincexX. is ane-approximate center of, we have from (3.11) that

(VLE)T(VPL(R)) VLX) < (2= V2)e)? < (V2 - D)%,
By a lemma of Nesterov (1995), it follows that
(X — X)T(VZL (X)) THX — %) < €2

This shows thak € E(X.; €). Then, by the well known result on the self-similarity of
Hessian matrix?2L (x) over the Dikin ellipsoids, we obtain

(14 X (VALEX)) ™ = (VEL(R) ™ = (1— €)* (V2L () %
Thus, we have from Theorem 3 that
FCEX M S A+e)EX;m) = EX; m(1+¢)).

SinceE(x; 1) € F, it follows from Theorem 2 and Corollary 1 that theminimizer of
g(x) over E(X.; 1) with

qx) — q(x*(1) < e(@X) — q(x*(1)))

isan(1— (1 —¢€)/(m(1+ €))?)-minimizer ofq(x) overF.

By the discussion following Column Generation Algorithm, we see the work requirec
to computex, is O(n®(mlog(1/8) + loglog 1/¢)). Furthermore, the work required to
compute ar-minimizer ofq(x) over E(X.; 1) is equal toO(n3(log(u°/u*) + log(1/€) +
logn)), whereu®, u* are defined in (2.2) and (2.3). This shows that we can compute ar
(1 — (1 —¢e)/(M(L + €))?)-minimizer ofq(x) overF in polynomial time. m]

Form = 2, i.e., for the two-ellipsoid constrained QP problem, Theorem 4 implies that
we can compute afl — (1 — €)/(2(1 + €))?)-minimizer in polynomial time. To the best
of our knowledge, this is the first polynomial approximation algorithm for this problem.

4. The box constrained QP problem

In this section, we consider another special QP problem whereby
F=C={XeR X[l < 1}.

Clearly,
B(1) C F C B(/n).
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Thus, we have
qx*(1) = z = q(x*(v/n)),

where the notatiow*(r) for anyr > 0 denotes a global minimizer of BQB.
Now, we can apply the algorithms in Section 2 to approximately solve BQP(1) and obtai
anx with

q(x) —q(x*(1) < €(@(0) — q(x*(1))).

According to Corollary 1, if we choose = 1/n, then we can generate &h — 1/n +
1/n?)-minimizer for the cubic-constrained QP problenxin® log (log (1°/1*) + logn))
arithmetic operations.

5. The assignment-polytope constrained QP problem

In this section, we consider the assignment-polytope constrained QP whereby
, m m
F = {x e xij=1 Y xj=1 i j=1...m x; zo}
i=1 j=1
= {x € SRmZ:XiJ > 0} npP,

whereP denotes the subset
5 m m
P = {xemm Y =LY xj=1 ] =1,...,m}.
i=1 =1

Obviously, the vector = %e, wheree € 5™ is the vector of all one’s, is a feasible point
in 7. Moreover, we have

{ 1 1
XxXeP:|x——e X——e
m m

1
5—}C}'C{xe73:
m

<2(m-— 1).} (5.1)

This is because

Ix — (L/myel* = [Ix]|? — 2(1/m)e’ x + (1/m)ym?

=[x|I?—2+m<2m—2.
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Letd = x — (1/m)e € K™, then we can

Minimize q(d) := %dT Qd+c'd

m
Subjectto » dij=0, j=1....m,
|;11
Zdi.jzo, i:l,...,m,
=t
df <1/m.

Let N be an orthonormal basis spanning the null space of the equality constraints, whe
NN = |, and letQ = NTQN andé = N'c. Thend = Ny for somey and the above
problem can be rewritten as

1 .4
Minimize 5yTQx—i-éTy
Subjectto |y|| < 1/m.

This is exactly the single ball-constrained problem discussed earlier in Section 2. Thus,
we choose = 1/m, then we can generateﬁ’aminimizer, sayx, of this ball-constrained
problem in

O(m°log (log (1°/1*) + logmy))

arithmetic operations. By the containment relation (5.1) and using an argument similar 1
thatin Section 5, we can deduce thas an(1—1/m?(2m—2) 4+ 1/m3(2m— 2))-minimizer
for the assignment polytope-constrained QP problem; the details are omitted.

6. The multiple-ellipsoid constrained QP as a semidefinite program

In this section we revisit the problem of (multiple) ellipsoid constrained QP problem. We
present two results. First, we give an alternative formulation of the QP problem with a sing|
ball constraint. This reformulation is in terms of a semidefinite program (SDP) which is
similar to that of the recent work by Polijak et al. (1995), Rendl-Wolkowicz (1994) and
Fujie-Kojima (1995). However, compared to the proof in this reference, our derivation i
simpler and is based on a well-known result in the systems and control literature. Secor
we propose a SDP relaxation for the QP problem with multiple ball constraints using |
scheme called S-procedure (Yakubovich, 1977). This relaxation provides a polynomi
time computable lower bound for the global minimum of a multiple ellipsoid constrainec
problem.

6.1. The single-ball constrained QP: A SDP formulation

Consider the QP problem with

F={xeR":x—a)P(x—a) <1} (6.1)
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whereP = PT > 0is a symmetric and positive-definite matrixifi* ", anda € %". Denote
by z the minimum ofq(x) subject taF in (6.1).
Given the QP problem above, let us construct the following SDP problem:

Minimize p
P c—uPa
Subject to ( TQ+MT H T )zo
c'—pua'P p—p+pa Pa
uw=>0 (6.2)

whereu andp are variables. Here, for any square matriséandN the notationM > N
meansM — N is positive semidefinite. Denote ythe minimum ofp obtained above.
Then, we have the following result:

Theorem 5. The minimum Zor the QP problem with a single ball constraiftin (6.1)
and the minimunp for the SDP problem irt6.2) are related by

p =~z (6.3)
Proof: The proof of the result hinges on the following lemma due to Yakubovich (1977)
which is well-known in the systems and control area; see also (Boyd et al., 1994, Se
tion 2.6.3).

Lemma l. Letq(x)and q(x) be quadratic functions of the variablei":

a(x)=x Qx+2¢'x+d, i=01 (6.4)

where Q = QiT. Suppose there existg & R" such that g(xg) > 0. Then go(x) > 0O for
all x satisfying g(x) > 0if and only if there exists some > 0 such that

Qo(X) — pua(x) =0, VxeR" (6.5)

Furthermore (6.5) holds if and only if the following holds

Qo ©Co Qi &
(Cg do)—,L(CI dl>zo. (6.6)

Now let us return to Theorem 5. Given apywe take
Q) =g +p, @) =1-(x—-a) P(x—a).
Obviously,g: (@) > 0. Using Lemma 1 above, we know thgix) > — p for all x satisfying

(x —a)TP(x — a) < 1ifand only if there exists some > 0 such that (6.2) holds. That
is,z > —p if and only if there exists some > 0 such that (6.2) holds. Hencez —p.
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On the other hand, suppoge> —p. Then, there exists > 0 such tha — e > —p.
That is,qo(X) — € + p > O for all x satisfyinggi(x) > 0. Using Lemma 1 above again,
there existgt > 0 such that

Q+ uP c—uPa
¢’ _ a"P ey T =0
2z (p—€)—pn+upa Pa

which violates the definition gf. Hence, we must have= —p. O

When the ellipsoid (6.1) is centered at the origin, iee= 0, Theorem 5 specializes to a
result by Rendl and Wolkowicz (1994) which states thi given by the minimum of the
following SDP problem:

Maximize 2. —t

§
Subject to (t c )le. 6.7)
c Q

wherei andt are variables. This equivalence can be established by simply taking i
andt = 21 + p and permuting the rows of and columns of the constraint matrix in (6.7).
This change of variables followed by the permutation of the rows and columns conver
(6.7) into (6.2) witha = 0. Note that the constraipt > 0 in (6.2) is the same as < 0;
the latter is implicit in (6.7) becaus® — Al must be positive semidefinite arf@ has a
negative eigenvalue. For additional details of on the relation between the solution of
semidefinite relaxation and of a quadratic program, see Fujie and Kojima (1995).

We should point out that Theorem 5 only implies that éxactglobal minimumz of
a ball-constrained QP can be obtained viadRactglobal minimump of the SDP (6.2).
Although the latter can be approximated using interior point methods, it is not clear hoy
to convert are-minimizer of the SDP into an approximate minimizer of the original ball-
constrained QP.

6.2. The multiple-ellipsoid constrained QP: A SDP relaxation

Consider the QP problem with multiple ellipsoid constraints described by

F={xeR": x—a)'Px—ag)<1 i=1...,m (6.8)
whereP, = F>iT >0anda € ®",i =1,..., m. Asalways, we shall assume ti#atontains
an interior point. For any = (ty, 2, ..., Tm) With

m
ZTi:l’ rizO,izl,Z,...,m,
i=1
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we define

f@ﬁ=x:§:MX—afRu—a)§4. (6.9)

i=1
Obviously, we have
F C F(r) (6.10)
and F () has non-empty interior. The relaxation method of usi@) to replacer is

called S-procedure and has been used popularly in the systems and control literature;
(Yakubovich, 1977). If we denote kg(t) the global minimum ofj(x) on F(z) and define

m
Z* = max ;(t):Zq:l, >0 i=12...,m}, (6.11)
i=1
it follows thatz* is a lower bound of, i.e.,

<z (6.12)

Now we define a related SDP problem as follows:

Minimize p
Subject to Q+ Zile iR €= Zim:l wiRa
= 6.13
=Y wia' B o= i + Y mid Pay (6.13)
i >0 i=12....,m
with p andui, i = 1,2, ..., masvariables. Also denote Ipythe minimump of the above

SDP. We then have the following result:

Theorem 6. Consider the QP problem with multiple constraints described@®). The
lower bound 2 as defined in6.11) and the minimurnp for the SDP problem in6.13) are
related by

*

p=-Z. (6.14)

Furthermore p = —zwhen m= 1. In other words the SDP relaxatior{6.13) is tight for
m=1

Proof: The proof is similar to that of Theorem 5. Given gnywe take

W00 =40 +p, QOO =1-Y zH(x—a) P(x—a),

i=1
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Note that the sefx : qi(x) > 0} = F(r) has non-empty interior. Using Lemma 1, we
know thatq(x) > —p for all x satisfyingqgi; (x) > 0 if and only if there exists some > 0
such that

( Q+uY L wk c—uX " nPa )}0

(6.15)
' —uyLiuag' R p—utpyilina’Ra

holds. That isz(t) > —p if and only if there exists some > 0 such that (6.15) holds.
Maximizing z(t) with respect tor implies thatz > —p if there exists som@ > 0 such
that (6.15) holds. Denote ky* the minimump subject to (6.15) and

m
w=0 1>0 Y r=L1 (6.16)
i=1

We havez* > —pt.

On the other hand, suppoge> —p'. Then, there exists > 0 andr satisfying (6.16)
such thatz(r) — € > p'. Thatis,qo(X) — € + p* > 0 for all x satisfyingg; (x) > 0. Using
Lemma 1 again, there exists some> 0 such that

Q+nuY il uh c—uXil tRa
T m ATl 1 m AT . zo
c'—uyiLinag B ptl—e—p+pud il na Py

which violates the definition of'. Hencez* = —p?.
Finally, we substitute the variableg; for ui,i = 1, ..., m. Then, the constraints (6.16)
are equivalent to

m
w=0 wi=0 Y ui=pu (6.17)
i=1

Itfollows that (6.15) and (6.17) are the same as the constraints in (6.13) once we eliminate
Naturally,p = p*.
The last statement in the theorem is identical to Theorem 5. |
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