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Abstract. In this paper we study a probabilistic approach which is an alternative 
to the classical worst-case algorithms for robustness analysis and design of uncer- 
tain control systems. That is, we aim to estimate the probability that a control 
system with uncertain parameters q restricted to a box Q attains a given level, of 
performance y. Since this probability depends on the underlying distribution, we 
address the following question: What is a "reasonable" distdbution so that the 
estimated probability makes sense? To answer this question, we define two worst- 
case criteria and prove that the uniform distribution is optimal in both cases. In 
the second part of the paper we turn our attention to a subsequent problem. That 
is, we estimate the sizes of both the so-called "good" and "bad" sets via sam- 
pling. Roughly speaking, the good set contains the parameters q e Q with a per- 
formance level better than or equal to y while the bad set is the set of parameters 
q e Q with a performance level worse than y. We give bounds on the minimum 
sample size to attain a good estimate of these sets in a certain probabilistic sense. 

Key words. Randomized algorithms, Robustness analysis, Uncertain parameters. 

1. Introduction and Preliminaries 

C o n s i d e r  a m e a s u r a b l e  f u n c t i o n  u(q) :  R"---~ R, w h e r e  q = [ql,q2,.. . ,q,]'  a n d  

e a c h  qi is r e s t r i c t ed  to  a b o u n d e d  in te rva l .  W i t h o u t  loss o f  genera l i ty ,  we n o r m a l -  

ize e a c h  qi i n t o  t he  i n t e r v a l  [ - � 8 9 1 8 9  a n d  def ine  Q = [ - �89189  ]" c R n. T h e  fo l l owing  

t w o  p r o b l e m s  a re  o f  i n t e r e s t  in  r o b u s t n e s s  ana lys i s :  

Problem 1. T o  f ind qmax E Q such  t h a t  

u(qmax) - m a x  u(q) 
qeQ 
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or, for given error bound e > 0, to find q �9 Q such that 

lU(qmax) - -  u(q)l _< e. 

Problem 2. 

for all q �9 Q. 

For given performance level 7 > 0, to check whether 

u(q) < 7 

Note that by proper formulation, if the vector q represents the uncertain param- 
eters entering into a control system, many robustness analysis questions belong to 
either one of the above two problems. For instance, for single-input single-output 
systems, if u(q) is equal to the maximum real part of the roots of the closed loop 
polynomial, then u(qmax) determines whether the system is robustly stable. On the 
other hand, if u(q) is equal to the Hm norm of the sensitivity function, then u(q) 
smaller than 7 for all q �9 Q implies that robust performance is attained. Several 
robustness problems which can be formulated in either one of the two cases 
described above are listed in Section 4. Additional problems of this type are for- 
mulated in [6] in the classical M - A setting. 

With these motivations, we now introduce the 
given 7 > 0, define the good set Qg(7) -~ Q and the 

Qb(7) "-- {g �9 Q : u(q) > 

Qg(Y)-{q �9 Q:  u(q) < 

good set and the bad set. For 
bad set Qb(y) ~- Q as 

9}; 
~}. 

Roughly speaking, the good set Qg(y) contains the parameters q e Q with a per- 
formance level better than or equal to 7 and the bad set Qb(7) is the set of 
parameters q �9 Q with a performance level worse than 7. Obviously, the union of 
these two sets coincides with Q. 

Recently, it has been shown that several key problems in robustness, including 
/z calculation and stability of interval matrices, are NP-hard; see, e.g., [2], [3], [8], 
and [10]. Therefore, several researchers took a different direction leading to a 
probabilistic-based approach; e.g., [1], [6], [11], [13], [14], and [16]. The key idea in 
this framework is to solve Problems 1 and 2 previously described in a probabilistic 
sense. For example, we can say that the probability that u(q) < 7 is at least 1 - d, 
where fi �9 (0, 1). Similarly, for e �9 (0, 1), given ~ �9 Q we estimate 

lu(qmax) - u(~)] ~ e 

with probability 1 - d .  Following the terminology in [15], we call e the accuracy 
and 1 - c5 the confidence parameter. One interesting feature of this probabilistic 
setting is that, unlike its deterministic counterpart, the complexity of randomized 
algorithms may not increase exponentially with the number of parameters; see 
Lemma 3.1, the discussion in Section 5, and [6], [I1], [14], and [15]. A drawback 
of this setting, however, is that the results obtained depend on the specific choice 
of the underlying probability measure. Taking ~.~ as a probability measure, the 
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probability distribution function is given by 

F(q) = Probr{x < q} = f ~(dx), 
d x ~q  

where the vector inequality applies elementwise and the subscript F indicates the 
underlying probability measure. The probability of the bad set Qb(Y) is 

I :(dq). F(Qb(y)) -- VrobF{q 6 Qbcr)} = Qb(Y) 

Observe now that F(Qb(~')) can be interpreted as the "weighted" volume of the 
set Qb(Y). That is, 

f 
Volv(Qb(y)) = / ~(dq). 

J Qb(r) 

Then, for given u(.) and performance level 7, we may ask the following question: 
How do we calculate F(Qb(y))? This probability can be easily estimated by using 
some classical results such as the Bernoulli [9] or Chernoff bounds [4]. In particu- 
lar, let q l ,q2 , . . . ,  qN be i.i.d, random samples in Q generated according to the 
given distribution F. Define an indicator function 

f I if qi ~ Qb(Y); 
Zi ( 0 otherwise. 

Then, invoking the Chernoff bound [4], for any t, 3 e (0, 1), we conclude that if 

1 2 
N > 2-~e21n~, 

then 

ProbF ~ zi--F(Qb(y)) _<e >_ 1--di. 

The interpretation of this result is the following: If e and 6 are "small," the esti- 
mated probability (1 IN) ~iu__l zi is a very accurate estimate of the true probability 
F(Qb(~')). We also observe that the number of samples required to compute this 
estimate is linear in both 1/e 2 and ln(1/6). 

We notice that without some reasoning attached to the chosen probability mea- 
sure, the quantity F(Qb(y)) is meaningless. To argue this, consider two extreme 
cases. First, we select the probability measure .~ such that ~(dq) = 0 if q ~ Qb()'). 
Then F(Qb(y)) = 0. On the other hand, if the probability measure is chosen such 
that ~(dq) = 0 if q ~ Qg(y), then 

1 - f ,~(dq)  = I - r ( Q g ( } , ) )  = 1.  F(Qb(y)) 
d Q,(~) 

This simple example shows that, for an arbitrarily chosen probability measure, 
the probability of q being in the bad set does not mean too much. This brings 
a key question of the randomized approach in robustness analysis: What is a 
"reasonable" distribution so that the results obtained make sense? 



186 Er-Wei Bai, R. Tempo, and Minyue Fu 

In this direction, Barmish and Lagoa [1] have shown that the uniform distribu- 
tion F ~  is the worst-case distribution in a certain class. More precisely, let q be a 
vector of independent random variables and let ~r c R n be a closed, convex, and 
centrally symmetric set. Then 

min ProbF{q ~ ~r} = ProbF~ {q ~ ~f}, 
F 

where the minimization is carried out in the set of  all probability distributions 
satisfying two conditions: (1) F is absolutely continuous so that the probability 
density function f ( q ) ,  

n 

dF(q) _ f ( q )  = 1-I f i(qi),  
dq i=l 

is well defined; (2) the marginal density functions fi(qi) are  nondecreasing and 
symmetric. In the same paper [1], this result is then applied to robustness analysis 
of an affine polynomial family, taking s as the so-called value set. However, the 
fact that ~f needs to be convex and centrally symmetric seems a critical require- 
ment which is generally not satisfied for the sets Qg(~,) and Qb(~'). Given these 
motivations, the first objective in this paper is to show that the uniform distribu- 
tion F~i has several interesting properties among all distributions. In addition, in 
this paper, the mapping u(-) is nonlinear, which in turn means that the set ~ dis- 
cussed above is not necessarily convex and centrally symmetric. 

We now briefly summarize the main results of this paper. In Section 2 we study 
two worst-case optimality criteria. First, we prove a connection between the 
worst-case distribution, in a min-max sense, and the weighted volume of the bad 
set; see Theorem 2.1 and related comments. Secondly, we prove that the uniform 
distribution Funi is "optimal" in the sense that it requires the minimum number of 
samples to attain a certain confidence 1 - fi for all functions u(.) in the class q/z. of 
Lipschitz continuous functions. In Section 3 we compute the minimum sample 
size N required to estimate the probability that the volume of the bad set is 
smaller than a certain percentage of the volume of  the set Q. As in the case of 
the Chernoff bound, N is independent of the number of uncertain parameters. In 
Section 4 we then apply these results to uncertain control systems. In particular, 
we show how a number of problems in robustness analysis can be reformulated 
in this setting and we present a numerical example showing the efficacy of this 
approach. In Section 5 we discuss some issues and drawbacks of the existing 
results and, in particular, we study cases when the bound N grows with the prob- 
lem size. Finally, in Section 6 we provide conclusions. The proofs of the results of 
Section 2 are given in the Appendix. 

2. Worst-Case Properties of the Uniform Distribution 

First, we define the set of allowable probability measures. Let ~ be the set of all 
probability measures that are absolutely continuous with respect to the Lebesgue 
measure. 
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As discussed in the Introduction, the probability distribution 
f~gq ~'(dx) and the probability of the set Qs ~- Q is 

ProbF{q E Q~} = [ ~(dq) = F(Q~), 
,1 9_, 

which can be interpreted as the weighted volume of the set Q,. That is, 

VOlF(Qs) = I ~'(dq). 
Q., 

Clearly, the uniform distribution ~ - ~  E 9 ~ satisfies 

dq, q~Q, 
:uni(dq)= O, q • Q, 

and 

is F(q)= 

f 
VOlF,,~ (Q~) = Funi (Q~) = / dq. 

J G 

For given u(.) and performance level y, the goal is to describe the bad set Qb(Y) 
or, at least, its size. As previously discussed, this bad set is fixed for given u(.) and 
7 and its measure is hard to determine. Thus, the idea is to use a randomized 
algorithm to estimate it. That is, for each distribution : e 9 ~, we can estimate 
F(Qb(y)) = ProbF{q ~ Qb(~)} and use it to evaluate the approximate size of 
QbO'). As discussed in the previous section, however, this probability can assume 
the extreme values zero or one, depending on the specific choice of the probability 
measure. In a more realistic setting, we have from Lemma A. 1 in the Appendix 
that, for any ~ e ~ ,  F(Qb(y)) always lies between 

inf Fi (Q~) < F(ab(Y)) < sup Fi (Q~) 
Q:~(Y) 9_,Ea(r) 

for any -~1 E ~ where 

and 

F1(Q,) = I :~(dq) (2.1) 
9_, 

-~(7) = {Qs ~- Q: F(Q~) = F(Qb(7))}. (2.2) 

Conceptually, supFl(Qs) is an overestimate of F(Qb(7)) and infFx(Qs) is 
an underestimate; they both depend on the distribution Fx but neither one is a 
good estimate of F(Qb(7)). On the other hand, these two bounds can always be 
achieved in a worst-case scenario. Thus, to de-emphasize the dependence on the 
probability measure -~1, a better choice would be 

sup inf Fl(Q~) or inf sup Ft(Q~). 

The interpretation is that to approximate F(Qb(7)) and its size, we use either the 
largest underestimate, which is a lower bound, or the smallest overestimate, which 
is an upper bound. In fact, the next result shows that the largest underestimate 
coincides with the smallest overestimate and they are both equal to F(Qb(y)). 
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Theorem 2.1. For any measurable function u(.), performance level 7, and proba- 
bility measure ~ e t~, we have 

sup inf FI(Qs)=F(Qb(7))= inf sup FI(Q~), 

where the distribution FI and the set -~(Y) are defined in (2.1) and (2.2). 

Proof. See the Appendix. 

T h i s  result is not surprising and is intuitively clear. It basically says that the 
worst-case distribution, in a min-max sense, is whatever distribution is used to 
define "volume." It is also interesting to note that we can think of the volume 
Vol(Qs) of the set Q~ as the integral of the uniform distribution 

Vol(Qs)= J dq= I ~uni(dq)= VolF~(Qs). 

Then the following corollary is immediate. 

Corollary 2.1. For any measurable function u(.) and performance level ~,, we have 

sup inf F(Qs)=F~(Qb(7))= inf sup F(Qs), 

where 
-~(Y) = {Qs ~- Q:  Vuni(Qs) = Vuni(Qb(y))}. 

Next, we turn our attention to the following question: Given ~ and e, what is 
an "optimal distribution" in terms of requiring the minimum number of samples 
to meet a prescribed probability for all u(-) in the class of Lipschitz continuous 
functions? Interestingly, this optimal distribution turns out to be the uniform dis- 
tribution. To state this result precisely, we need to define two sets. 

Consider the set of all absolutely continuous probability distributions so that 
the density functions 

f (q)  = dr(q) 
dq 

is well defined. Now, let ~ z  be the set of all Lipschitz continuous density func- 
tions with Lipschitz constant L such that f (q )  < 1 - ~ for some t~ e Q and ~ > 0. 
Let ~ be the set of all Lipschitz continuous functions u(.) with Lipschitz con- 
stant L. 

We remark that, for any nonuniform distribution, there always exists q ~ Q 
such that f (~)  < 1 - ~ for some ~ > 0. Thus, in practice, t~t. is the set of all 
Lipschitz continuous density functions besides the uniform density function. We 
take ql, q2, . . . ,  qN i.i.d, random samples in Q according to f e ~ z  and denote the 
largest u( q i) as 

u ( q ~ )  = max u(qi). 
i= 1,2,...,N 

Finally, for the given e and 6, we denote by k( f )  the minimum number of samples 



Worst-Case Properties of Algorithms for Robustness Analysis 189 

required to satisfy 

k ( f )  = argmin [[Pr~ u~Lsup lu(qmax)- u(qNmax)l < e} > 1 - ~ } ,  (2.3) 

where ProbF emphasizes again that the probability is with respect to the under- 
lying probability measure ~ or, equivalently, with respect to the density function 

f (q) .  
Contrary to the criterion used to state the Chemoff bound, we observe that here 

there is only one level of probability. The result below shows that the uniform 
distribution gives the minimum sample size. However, this sample size is an expo- 
nential function of the number of parameters; see the comments in Section 5. 

We are now ready to state the second result of this section. 

Theorem 2.2. Consider the sets all L and ~ L previously defined For any ~ ~ (0, 1) 
and e ~ (0, ~], we have 

k(funi) < min k ( f ) .  

Proof. See the Appendix. 

3. The Minimum Sample Size 

Motivated by the latter result of the previous section, we now elaborate on the 
issue of the minimum sample size. Define the sample complexity as 

No -'- In(I/6) 
ln(1/(1 - e)) 

and, for completeness, recall that the minimum sample size for the problem of 
estimating Um~x with sampling is given by the result below. 

Lemma 3.1. 

then 

Consider a measurable function u(.) and let ,~ ~ ~.  I f  

N >_ No, 

ProbF{ProbF{u(q) > U(qmNax)} _< e} _> 1 --di 

for any e and ~ ~ (0, 1). 

This result was independently derived in [6] and [14]. We notice that the bound 
given in Lemma 3.1 improves upon the Chernoff bound for the special case when 
estimating the maximum of a function via random search is of interest. We also 
observe that this result is independent of the underlying probability measure ~ .  
We now use Lemma 3.1 to establish a connection with the volume of the bad set 
Qb(Y). A similar result has been established in [6]. 
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Corollary 3.1. Let ~ ~ ~ and let ql, q2 , . . . ,  qN be i.i.d random samples accord- 
ing to the probability distribution F.generated by ~ .  For any e and J ~ (0, 1) , / f  

then 

N >  No, 

p .  (VOlv(Qb(u(qNmax))) } 
rot)F~. : ~ _<e _ l - - J .  

This result follows immediately from Lemma 3.1 and can be interpreted in terms 
of the "amount  of badness" of  the set Qb(7). I f  

VO1F(Qb(~,)) _< eVolF(Q) 

we can say that Qb(Y) is e-bad for ~, = u(qNm~x). Then, from Corollary 3.1, we con- 
clude that if 

iv  >_ No - ln (1 /~)  
ln(1/(1 - e)) '  

then, with probability at least 1 - J, Qb(u(q~x) ) is at most e-bad. 

4. Applications to Probabilistic Robustness Analysis of Control Systems 

The results derived in the previous sections can be immediately applied to several 
problems in robustness analysis. We now list a number of them; see [6] for a 
similar discussion. The distribution chosen in this section is uniform and the 
"volume" is defined accordingly. 

Application 1. Let u(q) be the maximum real part of the eigenvalues, where 
q ~ Q denotes the uncertain parameters. Let qi, i = 1 ,2 , . . . ,  N, be i.i.d, random 
samples in Q generated according to a uniform distribution. I f  u(q i) < 0 for all 
i = 1 , . . . ,  N and N > No, then, with probability at least 1 - J, the volume of the 
unstable set {q ~ Q : u(q) > 0} is smaller than the volume of Qb(u(qNax)) which is 
no greater than eVolF~(Q). Thus, we conclude that with probability at least 
1 - J, the volume of the unstable set it at most e-bad. The same argument clearly 
holds for discrete time systems. In this case, it suffices to take u(q) as the maxi- 
mum magnitude of the eigenvalues and lu(qi)l < 1 for all i = 1, . . .  ,N. 

Application 2. Let u(q) = I I S ( s , q ) l l  ~ - s u p , o l S ( j c o ,  q) l  be the H~  norm of the 
sensitivity function S(s, q) of a SISO system. As in the first example of this sec- 
tion, let qi, i ---- 1 , 2 , . . . ,  N ,  be i.i.d random samples in Q generated according to a 
uniform distribution in Q. If u(q i) < 7 for all i = I , . . . ,  N and N > No, then, with 
probability at least 1 - J, the volume of the set of  "bad"  plants with a perfor- 
mance level greater than 7 is smaller than the volume of Qb(u(qNax)) which is no 
greater than eVOlF~(Q). We conclude that, with probability at least 1 - J ,  the 
volume of the set of bad plants is at most e-bad. For discrete time systems, the 
same argument holds taking u(q) = IlS(z, q)ll~o - sup0~[0,2,] Is( e)~ q)l. 
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Application 3. Let u(q) be equal to the inverse of  the structured singular value/z; 
see, e.g., [5] and [12]. I f  the samples qi  i = 1 , 2 , . . . ,  N,  are randomly generated in 
Q according to a uniform distribution and if u(q i) < I//z for all i = 1 , 2 , . . . ,  N 
and N > No, then, with a probabil i ty at least 1 - J, the volume o f  the set o f  plants 
with the robustness margin  no greater than I / #  is at  most  e-bad. 

Application 4. We now further elaborate on Applicat ion 3. In particular, we dis- 
cuss how to calculate the m a x i m u m  allowable perturbat ion for a SISO control 
system with a stable nominal  plant. Let  u(q) be the m a x i m u m  real par t  o f  the 
roots o f  the dosed  loop polynomial  o f  a control system with a family of  plants 
Ge(s, q) in the forward loop with uncertain parameters  q e Q. In  addition, sup- 
pose that  Ge(s, 0) is the nominal  plant  that  is assumed to be stable, i.e., u(q) < 0 
for q = 0. In order to obtain an interval polynomial ,  we perform parameter  over- 
bounding. Subsequently, we apply the Theorem of  Khar i tonov  [7] obtaining a 
box Qr "-- {q ~ Q: - r  < qi < r,i = 1 ,2 , . . .  ,n} of  radius r > 0 so that  u(q) < 0 for 
all q ~ Qr. In this case, Gp(s, q) is stable for all q ~ Q~; usually, this set is much  
smaller than the set of  all stable plants. In other words, application of  the Theorem 
of  Khar i tonov  may  lead to very conservative results. This is especially true if the 
uncertain parameters  enter into the plant coefficients in a nonlinear fashion. We 
then ask the following question: Can we estimate a box bigger than Qr so that  only 
a small number  o f  plants in this box are unstable? The rationale behind this ques- 
tion is that  if a " large"  increase in the size of  the box can be established, a small 
risk m a y  be justified, at  least in some applications. The problem of  determining 
such a box can be immediately solved by applying the results o f  Corol lary 3.1. 

We now give a numerical example to illustrate these applications. 

Example. 

where 

Consider the polynomial  

g(s, q) = s 4 --1- a3(q)s 3 + a2(q)s 2 + a l  (q)s + no(q), 

ao(q) = (100ql - I)2(50q2 + 0.5)2(q3 + 1)(q4 + 2); 

al(q)  = [(100ql - 1) 2 + (50q2 + 0.5)2](q3 + 1)(q4 + 2 )  

+ (100ql - 1)2(50q2 - 0.5)2(q3 + q4 + 3); 

a2(q) --- (q3 + 1)(q4 + 2) + (100ql - 1)2(50q2 + 0.5) 2 

+ [(100ql - 1) 2 + (50q2 - 0.5)2](q3 + q4 q- 3); 

al(q) = (100ql - 1) 2 + (50q2 + 0.5) 2 + q3 + q4 + 3 

[ 1 114 First, we notice that  the box containing with q = [ql, q2, q3, q4]' ~ Q = t 2,2 J - 
only stable plants is smaller  than Q, = [-0.01,0.0114; this follows immediately by 
observing that  ao(q) = 0 for ql = 0.01. Clearly, VolF~(Qr) = 0.024. Next,  taking 
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e = 0.001 and J = 0.01, we compute  

in( l /0)  
N ----- 4603 > 

In( l / (1  - e)) 

and we generate ql, q 2 , . . . ,  q4603 e Q, randomly  using the uniform density function 
funi. Subsequently, we calculate the m a x i m u m  real part  u(q) of  the roots of  9(s, q) 
for each qi, i = 1 , 2 , . . . ,  4603, obtaining 

max u(q i) = -0.0000042395 < 0. 
i= 1,2,...,4603 

Hence, f rom Corollary 3.1, it follows that, with probabil i ty at least 1 - J = 0.99, 
the volume of  the bad set Qb(maxi=l,2,...,4603u(qi)) is no greater than eVolF~ (Q) = 
e = 0.001. We conclude that  with a small risk of  being unstable, we obtain an 
increase in size by at least 

VO1F~ (Q) 1 
VO1F~.i(Qr) -- 0 .024 = 6,250,000. 

5. Discussions and Remarks 

The results given in this paper  may  have applications broader  than robustness 
analysis. The fact that  the results are independent o f  the problem dimension seems 
powerful even though it is well known in the Monte  Carlo literature. This is a 
consequence of  the fact that the min imum sample size in Corollary 3.1 is stated in 
terms of  the ratio 

VO1F(Ob(U(qNmax) ) ) 
VOlF(Q) 

I f  the size and/or  the dimension of  Q increases, the size o f  VolF~(Qb(u(qNmax))) 
increases as well. On a negative side, we remark  that  the fact that  Qb(u(qNmax)) 
is t -bad  does not necessarily imply that  u(qNmax) is "close" to U(qmax). In other 
words, except for some simple cases, it is not  possible to estimate accurately the 
difference between u(qNmax) and U(qmax) or the difference between qi and qmax taking 
only No samples in Q. To  elaborate,  we study the two cases lu(qmax) - U(qmN~x)l < e 
and [[q i  _ qm~ll < e separately. 

For  the case [[qi _ qmax[] -< e, let u(.) achieve the max imum qm~ ~ Q, consider a 
uniform distribution, and take the norm [[-II as ~oo; the same conclusion holds if 
a different norm is used. Then ]]qi _ qmaxl] -< e if qi is in the box of  center qmax 
and radius e 

B(qmax,e) = {q:  [[q - qmax[[ --- e}. 

The volume of  this box is 

VoIrw B(qmax, e) = (2e) n. 

For  small e, Vol,% (B(qmax, e) c~ Q) converges to zero exponentially as the dimen- 
sion of  q increases. In order to have at least one qi in the box B(qmax, e) c~ Q, 
the number  of  samples required has to increase exponentially, except for some 
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pathological cases. One exception to this exponential growth is when the measure 
of the set of maximizers increases at a rate faster than the decreasing rate of 
Vol~-~ (B(qmax, t) c~ Q). Only in such pathological cases, does the number of sam- 
ples required to meet IIq i -  qmaxll < e with probability 1 - 6  not depend on the 
dimension of q. 

For the second case, when [U(qmax) - U(qmNa~)l < e, let u(-) be a Lipschitz con- 
tinuous function with Lipschitz constant L. Note that ]U(qmax) -u(q~ax)[ < e if 
some samples qi are in the box B(qm~x, e/L) c~ Q. As previously discussed, for e/L 
small, the volume of B(qmax, e/L)c~ Q converges to zero exponentially. In turn, 
this implies that the number of samples needed to satisfy lu(qmax) - u ( q ~ x )  I < e 
grows exponentially as the dimension of q increases and is no longer given by No. 

6. Conclusions 

In this paper we have shown some new results for probabilistic robustness analy- 
sis of uncertain systems. A subsequent and promising line of research is focused 
on adaptive instead of passive randomized algorithms [17] with the specific goal 
to quantify the size of the "bad"  set. A different research area which is worthy of 
investigation is related to the so-called learnin9 theory and provides a framework 
for performing probabilistic robust design [16]. 

Acknowledgments. The authors would like to thank the anonymous reviewers, 
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quality of this paper. 

Appendix. Proofs 

To prove Theorem 2. I, we first need to state a supporting lemma. 

Lemma A.1. Let ~ ~ ~. For any 0 < a < 1, define 

.~= ( Q s ~ Q :  I ~ ( d q ) = a } .  Q~ 

Then, for any ~l  ~ ~,  

s u p [  ~ l ( d q ) > a >  inf [ ~l(dq). 

Proof. We first show the left-hand side of the inequality. For any ~-i e ~ ,  define 
the set Q0 = {q E Q:  ~l(dq) > ~-(dq)}. For any 0 < a < 1, either fao~(dq) > a 
or fr ~(dq)< a. For the first case, there exists a subset QI ~ Q0 so that 

.[QI ~(dq) = a. This implies Qt ~ -~ and 

sup I ~l(dq) > I ~l(dq). Q~Ea Q~ Q~ 
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Now, observe that -~l (dq) > .~(dq) whenever q ~ Q1. It follows that 

sup I f  ~l(dq)-IQ ~-(dq)] >_ IQ, ~,(dq)--JQt .~(dq) 
Q., e a LJ~ 

= J (~-~(aq) - ~(dq)) > O, Q~ 
i.e., 

sup [ ~l(dq)> I ,~(dq)=a. 

For  the second case fo .~(dq)< a, there exists a subset Q1 such that Q 0 -  
Q1 ~- Q, fo, .Y~(dq) = a,eand ff l  (dq) < ~.~(dq) whenever q ~ a/Ql. Since 

0 =  I (ffl(dq)-,~(dq)) = I (,~,(dq)-.~(dq)) + I ( ~ - l ( d q ) - ~ ' ( d q ) ) ,  
O Q, Q/Q, 

we have 

f .~,(dq)=fQ.~(dq)-IQ (~l(dq)-~(dq))>- IQ,~(dq)=a. 
Therefore, 

sup [ .~,(dq) > I .~(dq) = a. 
Q~ ~.~ .I Q~ QI 

This proves the left-hand side of  the inequality. The proof  for the right-hand side 
is similar and is therefore omitted. �9 

Proof of Theorem 2.1. F rom the above lemma, we have 

sup F,(ab(Y)) _> cr = VOlF(Qb(?)) = [ : - (dq) ;  (8.1) 
O_, ~ ~(y) JQb(y) 

o" ----- VO1F(Qb(y)) : [ .~(dq) (8.2) inf FI(Qb(y)) < 
9_, E "~(Y) JQb(Y) 

for any ~-I E t~. Moreover,  the equalities are achieved when Fl = F and therefore 
the conclusion follows. �9 

Proof of Theorem 2.2. For  any e ~ (0, ~], J ~ (0, 1), and f ~ ~L,  there exists a 
e Q such that f(~/) < 1 - ~ and a ball B(~, e/L) = {q:  Ilq - ~lf[ < elL} such that 

I f(q) dq <_ VOIF~ i (B(~, elL) c~ Q) = VOIF~ (D), 
s(~,~/t.)nQ 

where D = B(gI, t/L)c~ Q. Let u(.) be a monotone  function that achieves the 
unique maximum at ~ and u(q) = u(q) - t for all q at the boundary of  the ball 
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B(4, e /L) .  Then 

if and only if 

Notice that  

or  

lu(q  i) - u(q)l ~ e 

qi �9 B(4, elL)  c~ Q = D. 

f 
ProbF{q i �9 D} = I f ( q )  dq < VOlF,= (D) 

JB (4,e/L)nQ 

ProbF{q i 6 D} >_ 1 - VolF~ (D). 

Now,  

1 - d  <_ Probf{lU(qmax) - u(qNax)l <: e} = ProbF{at  least one of  qi �9 D} 

= 1 - Probf{q  i • D} N _< 1 - (1 - VOlF~(D)) N. 

Tha t  is, ( 1 -  VOIF=~(D))N<_ d. Let  Ni be the min imum integer satisfying the 
above inequality. Note  that  Nl is derived for a part icular  u(.); in turn, this 
implies that  the min imum number  k ( f )  to satisfy (2.3) has to be 

k ( f )  >_ N1. 

Since f is arbi trary in ~'L, we have k ( f )  >_ Nl for any f �9 ~L.  On the other 
hand, f ~  = 1. Let u(.) be any function in q/L that  achieves the m a x i m u m  for 
some 4 �9 Q. For  any e �9 (0, ~], if qi �9 D, then 

L t  
lu(q i) -- u(q)l ~ Lllq i -  411 -< T = ~' 

Thus, 

if 

or  

ProbF=~{lu(qm~) - U(qmNax)] ~ e) >__ 1 -- g 

ProbF~{some qi �9 D} = 1 - (1 - VolFu,~(D)) N > 1 - f i  

J >_ (1 - VOIF~(D)) N. 

The s a m e  NI derived for any f �9 ~ L  is sufficient for this inequality to hold. 
Notice further that  the derivation of  N1 for the uniform distribution f m =  1 is 
in fact independent of  u(.) �9 q/L. Thus, 

k(f~i) <_ inf k(f) .  
f ~ t .  

This completes the proof. �9 
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