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Abstract

Many dynamical signal processes involve not only process and
measurement noises but also parameter uncertainty and known
input signals. When an L, or H », filter designed based on a “nomi-
nal” model of the process is applied, the presence of parameter un-
certainty will not only affect the noise attenuation property of the
filter but also introduce a bias proportional to the known input sig-
nal, and the later may be very appreciable. In this paper, we develop
afinite horizon robust H , filtering method which provides a guar-
anteed H . bound for the estimation error in the presence of both
parameter uncertainty and known input signal. This method is de-
veloped by using a game-theoretic approach, and the results gener-
alise those for the cases either without parameter uncertainty or
without a known input signal.

1 Introduction

In contrast with the conventional L,— estimation algorithms which
minimize the variance of the estimation error (see, .g. [1]), recent
advancement in signal estimation has focused on the development
of H« estimation methods ([2-15]) which aim at minimizing the
peak of the spectral density of the estimation error. The motiva-
tions for the H », approach are that the statistical assumptions and
information on the noise sources are often inaccurate or unavail-
able and that the L, estimation algorithms are sensitive to param-
eter variations in the signal process; see [12] for a survey.

As in the L, case, H » estimation algorithms are usually designed
based on a “nominal” model of the signal process. For this reason,
we will call them the “nominal” H, estimation algorithms. Al-
though a “nominal” H . filter has been shown to be less sensitive
to parameter variations in the signal process than an L, filter (see,
e.g. [11] and Section 2), no guaranteed performance is provided
when the true signal process deviates the assumed model.

To solve the above problem, a robust H estimation method has
been developed in [4,6,13,15] to guarantee a prescribed H - norm
bound on the estimation error in the presence of parameter uncer-
tainty. The key idea there is to convert the parameter uncertainty
into an exogenous L, - noise so that an auxiliary H , filtering prob-
lem is constructed which does not involve any parameter uncertain-
ty. The solution to the auxiliary problem, if exists, guarantees the
robust H », performance for the perturbed process. It will be dem-
onstrated in Section 2 that such a robust H . filter outperforms a
“nominal” H ., filter or an L, filter by far,

The focal point of this paper is to address the robust H . filter prob-
lem for signal processes with both parameter uncertainty and a
known input signal. If the signal process does not involve parameter
uncertainties, the contribution of the known input signal in the es-
timation error can be completely cancelled for both L, and H
filters (see, e.g. [1, 10]). This significant feature, however, is no
longer valid in the presence of uncertain parameters. As a result,
the estimation error will in general have components due to both
the process and measurement noises and the known input signal. In
Section 2, we will show via an example that the second component
may be far more appreciable than the first one when the filter is de-
signed based on the nominal values of the parameters.

In this paper, we generalize the robust H ., filtering approach in
[4,6,13,15] to cope with the case where the signal process has a
known input signal. The goal of the filter is to provide a uniformly
small estimation error for any process and measurement noises and
any initial state in the presence of parameter uncertainty and a
known input signal. The problem will be solved in the finite horizon
setting. As in [4,6], one of the key ideas is to convert the parameter
uncertainty into a fictitious L, input noise and to formulate an aux-
iliary problem which does not involve any parameter uncertainty.
It will be proved that the solution to the auxiliary problem, if exists,
can be applied to the original problem and the prescribed perform-
ance is guaranteed. Then, a game-theoretic approach is used to
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solve the auxiliary problem, which gives a solution in terms of Ric-
cati differential equations. Two types of known input signals are
considered: causal and noncausal. Causal signals are those which
can be measured but not predicted, while noncausal ones are those
known a priori. Different filters are given for the two cases.

Our results will be demonstrated via an example to illustrate the
significant improvement on signal estimates.

2 Motivation

To motivate the robust H , filtering problem to be studied later, we
show via an example that filter designs without taking into account
parameter uncertainty may render a very poor signal estimate.
Consider the signal generating system in Figure 1 modelled by:

Q) = [? -1 Ofsd}x(z) + [‘O(_)ggf)“f' ]w'(l) + [g]r(t) @1
Yo =[0 100k +¥() (22)
() =[0 100 (23)

wherex(t) is the state, w(¢) is the process noise, r(¢) is a known deter-
ministic input signal, y(¢) is the measurement, () is the measure-
ment noise, z(t) is the signal to be estimated, 6 represents param-
eter uncertainty in the process which satisfies 10l = § = 0.3,andg
is a known input gain to be specified later.

Both infinite horizon Kalman filter and infinite horizon “nominal”
H , filter are designed for the nominal plant that has been chosen
to correspond to 8=0. These filters are of the following form:

§(1)=[(1’ _“0?5]£(:)+K[y—[0 100}£(z)]+[g]r(t) (2.4)

o =[0 100w 2.5)
where 2(r) is the estimate of z(¢), and K is the filter gain matrix. For
the Kalman filter design, the noise vector [w(z),»(¢)]” was assumed
to be zero mean white with identity covariance matrix, the minimiz-
ation of E{eT(t)e(t)) , where e(¢) denotes the estimation error
(1) — 2(1), gives

K = Ky =[0.447 0.909]" (2.6)
For the “nominal” H ., filter design, we take y = 1.1=0.8db and
design the filter to achieve

le@ < 71 [3]
which yields

K =Ko =[10350 2.1807]7. 2.7)
In the above [ « ||, denotes the usual norm in L,[0, ). We then
apply the two filters to the perturbed plant (2.1) — (2.3), with
d = — 0.3 and = 0.3. The magnitudes of the transfer functions
from [w(),»@)]7 and r(t) to e(f), denoted respectively by

[Gew(5), Gy(5)]” and G.(s), are plotted in Figures 2 and 3 for both

filters. From the figures, we make the following observations:

1. The magnitude of [Gew(jw), Gealjw)]T and G.(jw) are worsened
for both designs when the parameter uncertainty exists (Note
that G.(s)=0 when there is no parameter uncertainty);

2. The magnitude of G, (jw), which is identically zero in the ab-
sence of parameter uncertainty may be far more significant
than that of [G .(jw), G w(j)]T for both designs evenin the case
of a moderate r;

3. The Kalman filter is more sensitive to parameter changes than
the “nominal” H , filter.

The above observations shows that a more robust filter design is

needed.

For the case where there is no deterministic input signal (#(z) = 0),

arobust H o filtering theory has been developed to cope with pa-

rameter uncertainties; see [4,6,13,15]. Applying the results in [6] to
the above example, a robust filter is given by the following:
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i - 0.5054 — 1.11707 7.938 A

i@ = [_ 03501 — 0_5347]x(t) + [2_3540] [y — 0 10018} (2.8)

2(x) = [0.0770 100.0179] X(¢) 2.9)
The magnitude of the corresponding transfer function
[G (i), Goy(jw)]” is plotted in Figure 4foré = — 0.3and 6 = 0.3
(curves 1 and 2, respectively). It can be seen that the result is much
more robust than those in Figures 2 and 3.
The above results demonstrate that it is crucial to take the param-
eter uncertainty into account in designing the filter. The theory in
[4,6,13,15], however, are not readily applicable to processes which
have a known deterministic input signal.
3 Problem Formulation and a Key Lemma
Consider uncertain linear systems, described by
@): X)) = [A@ + AA@ @) + B (Dw() + B,(0r(),x(0) (3.1)

¥ = [C@) + ACE (1) + (1) (3.2)
() = L{Dx(1) (3.3)

where x(f) € R" is the state, w(f) € R” is the process noise,
r(f) € R’ is a known deterministic input signal, y(r) € R ™ is the
measurement, ¥(f) € R ™ is the measurement noise and z(f) € R 9
is the signal to be estimated. We assume that A(r), B,(2), Bo(#), C(D),
and L(f) and known real bounded piecewise continuous matrix
functions that describe the nominal system and the matrices
AA(#) and AC(z) represent parameter uncertainties in the matrices
A(r) and C(¢), respectively. These uncertainties are modelled by

4407 [Ho

[AC(:)] = I:Hz(t) FE®
where H,(£),Hy(z) and E(s) are known real bounded piecewise con-
tinuous matrix functions of appropriate dimensions and

F(?) € R Y isan unknown matrix function with Lebesgue measur-
able elements and satisfying

omaF()] =1, Vt ER. 3.5)
For the sake of notation simplification, in the sequel we shall omit
the dependence of ¢ in the matrices when there is no confusion.
In this paper we are concerned with obtaining an estimate
(1) of z(¢) over the horizon [0,7] using the measurement history
{(),0 = 7 < 1} and the known deterministic exogenous signal,
r(+). The filter is required to provide a uniformly small filtering
error, e(t) = z(t) — (1), for any w and v in Ly[0,T] and x, ER"
and for all admissible uncertainties. We shall consider the following
performance index

Joww 02 = Hl - £1E - vlw B v 1B +lxo - S0 ]} (3.6)
where y > 0 is a given scalar, %, is an a priori estimate of x, and

R = RT > 0 is a given weighting matrix which reflects the confi-
dence in the estimate £;. In the above | x |5 denotes x”Ax and ||» |,

3.4y

means the usual norm in L,{0,7] defined as || v ||3= I vIvdt. Also
[

the notation M > N (M = N) means that M—N is a positive defi-

nite (semi-definite) matrix.

The robust H « filtering problem for system (X) is concerned which

finding an estimate #(s),7 € [0, 7] which minimises
sup {J(w,v, Xoo T 2)]

w, ¥, X, F(8)

The key idea used here to guarantee robust stability and perform-

ance for the estimation error dynamics is to convert the uncer-

tainties to fictitious noise sources and to solve an auxiliary H«

filtering problem which does not involve parameter uncertainties.

The performance index for this auxiliary filtering problem (if sol-

vable) yields an upper bound for the worst case performance cri-

terion (3.7). Justification for this technique is provided next.

Introduce the following auxiliary system

Ea): 70 = An@) + B, LHD%() + Byr(®), 1(0) =1 (3.8)
Yo = Cpy + [0 LHI%0) + 50) (3.9)

3.7

2at) = [ELE]n(o (3.10)

where #(f) € R" is the state, 5, is an unknown initial state,
W) € RP*{ and #(r) € R™ are noise signals, y,(1) € R™ is the
measurement, z,(f) € R9%/ is the signal to be estimated,
r,A,B,B,,C,E,H,,H, and Larc asin (3.1) — (3.4)and ¢ > Qisa
scaling parameter to be chosen. Associated with system (Z,) we
introduce an estimate for z,(1),t € [0, T], of the form

) = [ff)‘)]

where %(¢) is an estimate of L(f) using the measurement history
{7a(0,0 < 7 < r}and the known input signal . Next, we define the
following performance index for the estimate Z5():
-’a(ﬁ'y‘ﬁyﬂo,’,fyf) = %{“ 22, "%
=V w3715 +lmo - %o I
where y, %, and R are as in (3.6). We have the following result:
Lemma 1 Consider the systems (X) and (Z,) together with the per-
formance indices (3.6) and (3.12). Then, we have, for any ¢ > 0,
sup  [Jwv,xo,r, ) < sup [Ja(#,7,04,1,2,6)]
w, ¥, Xg, F(f) W, 7,70
forany € > 0.
Proof: For any given x,, E w, v, 1, and £ for the system () and any
€ > 0, take

(3.11)

(3.12)

. w() _
7[0 = Xp» W(!) = [E}’~1FEX(I):| s V(I) = ’V(t).

Then, for all ¢+ € [0,T],
N0 = X0, ) = YO, 20) = [:‘,;1(,)] :

which implies
Jaw, 7m0, 3.8) = L1z - 21}

— Il wlg +1v 1B +lx0 — %o13] + €71 Ex 1 ~ 1 FEx 3]}
Considering (3.5) with wand# as in (3.13), we obtain
Jaw, %, 90,1, 2,8) = Jw,v,xq,1, 7)and the result follows immediate-

2 vvv
Inview of Lemma 1, our approach for solving the robust H . filter-
ing problem involves consideration of the worst-case of the per-
formance bound (3.12) in liex of the worst-case performance (3.7).
Thisleads to the following problem: Find an estimate 2,(t),t € [0,T]

of the form (3.11) using the measurements (y,(t),0 < t < t}and the
known input signal, r, that solves the auxiliary problem

(3.13)

minipqise{ sup [Ja(ﬂ),i",f)o, r.2, 8)]} (3.14)
3 .

W, ¥, 1o

subject to (3.8) - (3.11). Note that the system (Z,) is parameterized
by &, which is a scaling parameter to be searched in order that an
estimate, Z, solving (3.14) be found.

Remark 3.1 The above estimate 7 with y, replaced byy will provide
an estimate of z for the robust H o, filtering problem. Note that the
case when () = 0, hasbeen analysed in [4,6,13,15] in both the con-
tinuous and discrete-time contexts and it has been shown there that
the estimate 2 as above guarantees the following H » performance

Iz = 2 < Yl wl +1v 15 +lxo — 13] (3.15)

for any w and » in L,[0,7] and xy € R " and for all admissible un-
certainties whenever || w3 +||v |3 +] xo — %o 2= 0.
Remark 3.2 The auxiliary problem (3.14), although it does not have
any parameter uncertainty, cannot be treated via the standard H »,
estimation techniques . This is because the estimate £.(¢) is re-
stricted by (3.11). In other words, it is not possible in general to
completely cancel the effect of the input signal r in the estimation
error. Therefore, alternative solution is required.
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4 Main Results
In this section, a solution to the auxiliary filtering problem intro-
duced in Section 3 will be developed by using a game theoretic ap-
proach where the estimator plays against adversaries composed of
the noise sources and the initial state.
4.1 Game Theoretic Solution to the Auxiliary Problem
The deterministic linear-quadratic game problem is to find worst
case noises and initial state, w(s),%(+) and 7, respectively, and an
estimate #(r) using the measurements {y,(r),0 < < #} and the
known input signal r such that

min max Jo(w,7%,9,,7,,£)

z w¥,n

subject to (3.8) — (3.10). In view of (3.9) — (3.12), the optimization
problem (4.1) can be recast into the form

min max Jo = 41| Ly ~ 2|} +eEn |3 - v¥1l |}

Z YaW o

(4.1)

Ha= Cr =Dl +ino -l
where D,, = [0 %HZI.

Inspired by [2], the above game will be solved in two stages. We con-
sider first the maximization of J, with respect to w and 5 for given
Zand y, and then a min-max optimization of the resulting cost func-
tion will be performed with respect to 2 and y,, respectively.

We first find the necessary conditions for optimality of 7, and wfor
given 7 and y,. To begin, we write the performance index J, with
the additional Lagrange multiplier y24, i.e. let the Hamiltonian
Jy=3{In — 213 eEn I3 = v w1 +llya — Cn -

,
Dy 5 +llmo - Zo 71 + v f(— 7 + Ap + B + Byr)dt

where B, = [B; i—’HI]. By using standard optimization results,

the maximizer strategies must satisfy

7o = X5 + R71(0) 4.3)
w = D(BIA + DL(y. — Cm)] (44)
I - ATy~ 2CTCy - CT(ya - O
+ D +y AT AT = 0 (5)
where
cl=(" ", D=u+Dilpy L

Note that (3.8), (4.3) — (4.5) give rise to a linear two point boundary
value problem whose solution (1 *,4 *) is in the form

7' = 40 + QAT (4.6)
where 7 and Q are to be determined. In the above, 7 * and A * rep-
resent the optimal values of respectively # and A for any fixed ad-
missible 2, y,andr.
Differentiating (4.6) and considering (3.8), (4.4)-(4.5) we obtain

1 ~ (A +y~2CTC\m — (QC"D + B.DLD)y, — CH)
+y QLT - Byr=[-0 + Q/iT + AQ

+ Q@ ~%clc, - c"b6o)Q + B DBLIA” 4.7
where
D=1-p,DL A=4A-B.DLDOC.
We also note that D = (/ + D,,DL)~! and DDL = DID.
Since (4.7) should hold for arbitrary A*, we obtain
7 - (A+y 20CTC Y + By(ya- Cf) - By + Byr (4.8)
. ~ -T ~ —
0 -AQ+QA +Qu~%lc, - c'HbC)o + BDBY, (4.9)
with 7(0) = %, and Q(0) = R}, where
B, =0C™ +B,DID, B,=y"%LT
Hence, the optimal strategies of w and 7, are
w*= D[BIA* + Dy, — Cn")] (4.10)
70 = %o + R7'A7(0) (4.11)

Now substituting (4.10) and (4.11) in J, we can get

Ja=3I LG+ QA7) - 2|3 +|| eEGH + QA") I3
— ~1/2 A - -
v D BIAE 151y - €6+ AN 27O B0 (4.12)

In the sequel we will perform the min-max optimization of J, with
respect to 7 and y,, respectively.
Adding to (4.12) the identically zero term

2 T . . 2.
0 -5 [Liayonar - Lo .

4

2 - . ~1/2 . s .
-y lc0n 15 00r" B +1 D80 |

T
+ [20970ly LT - CTC /i) - Dy - i) i IO I
0
it can be casily derived that
A oA A =1/2 A
Jo = |12~ £ w8 - 150, - ci ]
Next, introducing the change of variables
I=1Ly-: (4.13)
V= 0a-Ch) (4.14)

the min-max optimization of J, with respect to 7 and y,, respective-
ly, results in the following min-max problem

min max J, = %[nezsﬁ B +171E - 52 ué‘“v-n%] (4.15)
subject to (4.9) and

1 =A +BF+ B2+ By | H(0) = i, (4.16)
where

A=A+e%2QFE.
We now decompose 7 as

=0+, 4.17)

m =X171+§]17+§22 .m0 =%, (4.18)

My =An, + By , 7(0) =0 (4.19)

and introduce the following Riccati equation
. T — e —_— ] n
X =AX+XA+X( 28,0 B| - B,E)X + ¢2ETE (4.20)
with X(T) = 0. Hence, it can be easily established that

T

AT A
0= [ 4 Txn )t + 20X O)%,

0

B _T ~1/2 ~=1_17
= -leEn, 5 +1z + BoXn, 5 - y*|D " 7 - y=2D "BiXn,)|}}

_ ~1/2_ T -
=z + 1D + A%,
Adding the above zero quantity to J, and considering (4.17) gives
T
Jo= %[ [ 2% E En,de +]eEn, I + 2 B
0

~1/2 AT A
=2 D7 | + ZoX(0)d,

where
_T
L. = 7+ BaXn, (4.21)
__g=-1oT
Lv=v-y %D BiXy, (4.22)

Noting that #, is independent of both £, and £,, we introduce
N AT oa
Ja = 10 =480, + 2608, .

Hence, the game problem (4.15) can be converted to

T
min max Jo = %{ J [2e%lETEn, + £1C, ~ yZQZDc,]dz} (4.23)
0
subject to (4.9), (4.19) and
7;] =An, + E]Cv + Eng 7,(0) = io

Sz v

(4.24)
where
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For further solution of the min-max problem (4.23) we shall con-
sider two cases. The first one is when r(¢) is known a priori for'the
whole time horizon [0,7] and the optimal solution is not required
to be causal with respect to r. The other case corresponds to the
situation when r(¢) is given on line and a causal filter with respect
to both y, and r is required.
Case 1: Non-causal signal r(.)
If r(¢) is known a priori for all + € [0,T], the optimal £; and &y can
be found using standard variational techniques. We obtain
» 7,
§: = — B0
- -1
¢ =y72D Bio
where

6 = —A4"0 - ETEn,, oT) = 0. (4.25)
Substituting the above result in (4.13), (4.21), (4.22) and (4.24), the
optimal solution for 2 and ¥ is then

$*= 14 + BaXn} +6) (4.26)
-1 .
y*=y-2D Bi(Xn} +6) 427
where
7 =+

. A o AT . s
Ay = A+ B0 B - B0, 110 =
and 7, is as in (4.19). Moreover, the optimal value of J, is given by
T B

14" 7" s, e) = 4 [[ePnIETEn,

— o = ] ] —_— ] AT A A
+ 6Ty ~2B\D B - B,B)0ld: + %on(O)xo + 67 (0)x,
Note that by defining a = 8 — X7, it is easy to see that
a(l) =0

*
and the optimal strategy 5 and #" simplifies to

d = -A'a—XByr,

$ =L+ Bx +Ba (4.28)
v*=y=25 'BiX5 +a) (4.29)

where

4 -Aj «@ B,D Bl - B,Bpa+By, §0) =32 (4.30)
Case 2: Causal signal r(.)

In this case, the optimal §; and {, are required to be causal with re-
spect toboth y, and r. In order for the estimator to be unbiased for
all ¢ € [0, T), we have to choose {,(r) and &,(r) properly. For sim-
plicity, we assume in the sequel that the biased estimate for
r(z),Vr € {1, T]iszero. With this assumption, the unbiased estimate
of #,(r) is given by

7,0 = ¢, om0, V=1,
where &(.) is the transition of (4.19). Then, the terminal conditions
{Ap and (1) should be given by solving the following problem:

T
: 1 AT oTpT, T; 277571
= E'E'ny + — y<¢yD dt
‘;‘,‘(‘3'}}‘1’,‘21 2%, ETETyy + ¢16, —v%ID ¢
subject to (4.9) and the following constraint:
%=£ql +B&+By, tst=<T

Note that the min max problem above is actually a non-causal es-
timation problem (with #,(r) replaced by 7,(r)). Using the results in
Case 1, we obtain the optimal £;(t) and £5(s) as follows (sce (4.25)):

&0 = - B200)

. PP

L =y~ Bl

where 6(z) is given by

% = — AT6(r) — e2ETED(r, ,(1), O(T) = 0.

T

Defining P(r) = I £2¢(z, )ETEd(z, f)dr, then we have

- % = ATP@) + P@)A + e2ETE, P(T) =0. (4.31)

Then, £(¢) and &,(2) reduce to
* T

(0 = — BaP(im ),

&0 =y =D 'BiP@n .
Substituting these results in (4.13), (4.21), (4.22) and (4.24) gives

5" = 17" + BIxn} + Pp,), (432)

7 =y~ 'Bi(Xn} + Py,
where 7, is as in (4.19) and 7] is given by

. A _a= x—1 =T, A

71 = Ani + 0 ~2B,0 " 'Bi — ByBDPy, 130 = &
Furthermore, the optimal value of J, is given by

N 1 A

Ja =L 13 + LioX @ + 7TOPORO
where

3 = ¢%TE - Py~B, D 'B) — B,Bo)P.
4.2 The Robust H ., Filter
The following robust H « filters are obtained by combining Lemma
1 and the results in Section 4.1.
Theorem 1: (Noncausal signal r{(.)) Consider the system (Z) where

the cxogenoussignal r(.) is known in advance for the whole time ho-

rizon [0, T] and let ¥ > 0 be a givep scalar suppose forsome ¢ > 0
there [ exTi;lt solutigns oW =g Qe}}r) >0 agg X = ;1,%) =0
V't € [0,T] to (4.9) and (4.20), respectively. Then the filter

(4.33)

3= (L + Bk + Boa, (4.349)

G=-Aa- XByr, a() =0 (4.35)

2 =Ak+ B0 -ChH - BB+ By, 30) =4, (4.36)
where

Ae=A - B,B3X (4.37)

will guarantee the performance
A T, A
lz =25 < Y2Ulwli3 +Iv 15 +1x0 — ZolIF) + £oX(O)%,
T

A B T N,
+2aT(0)%, +| eEn, |2 + f 6"y ~2B,0 " By — B,B1)0dr (4.38)
o
where 6(.) is as in (4.25).
Remark 4.1 Note that when no a priori estimate of the initial state
isassumed, i.e. £, = 0, the filter (4.34) — (4.36) achieves the robust
performance

Iz = 2B< yUwilf + 1215 +lxolR) +NeEn, 3
T

+ |07y ~7B,5 7 B - BBpes
0

The above suggests that a way of reducing the effect of the input ()
on the performance measure is to use a ‘small’ ¢ > 0. It should be
emphasized that the solution of the two Riccati differential equa-
tions (4.9) and (4.20) depends on £ and thus it sometimes cannot be
made arbitrarily small. Furthermore, a small ¢ may also induce a
high bandwidth for the estimation error, making the estimate more
vulnerable to high frequency noises. Also, observe that when (3.1)
has no deterministic input, i.e. r(f) = 0, #,(-),a(-) and 6(.) will all
be identically zero over [0, 7). In this case it is easy to see that the
filter (4.34) — (4.36) recovers the robust H o filter of [7] and pro-
vides the robust performance.

Iz = 2[5< YU wiiZ +1v 15 +llx0 IF] (4.39)
Remark 4.2 When there is no parameter uncertainties, i.e. E=0,
(4.20) yields X(1)=0, V:€[0,T). This implies that both
a(+) and 6(.) are identically zero over [0, T] and the filter (4.34) —
(4.36) recovers the standard H ., filter with a known deterministic

input r(+). Moreover, (4.38) reduces to the H ., performance of the
standard filter, namely

2308



lz=2B<y2wlE +1v 15 +lx — 2o 7
We now present a robust H . filter which is causal with respect to
both the measurements, y(s)and the deterministic input r(s).
Theorem 2: (Causal signal r(-)) Consider the system (2) where the
exogenous signal r(.) is causally measured and let y > Obe a given
scalar suppose for some & >0 there exist solutions
o0 =07 >0, X =X"(t) 2 0, P() = PT(t) > O¥1 € [0, T]
to (4.9), (4.20), (4.31), respectively. Then the filter is given by

2= (L+BIX)%+ (P - B, (4.40)

} = Ad + B,y — C) + B,By(X — Py, (4.41)
where 77, and A, are as in (4.19) and (4.37), respectively, and the

guaranteed performance is .
Iz = 2[5< 7wl +1v 13 +1x0 = %o 1)

+ 26X(O)%y +]| 7/ 12 + MEHOPOI,

where X is given by (4.33).

5 An Example

We consider the example in Section 2 and will show that a filter de-
signed by using the proposed robust H » filter method will yield im-
proved robustness properties, compared to the Kalman and “nomi-
nal” H ., filters based on the nominal process.

For simplicity, we assume that(f) is a unit step input which is known
a prioi and we consider the infinite horizon. Take
#0) = O,R =0,y = 1.1 and ¢ = 0.1. For the infinite horizon,
equations (4.9) and (4.20), become

(4.42)

- -T ~ —_
AQ + QA + 0w %clc, - c'bo)o + BLDBL = 0 (5.1)
and
AX + XA+ Xy~ 2B,D Bl - B,BnX + £2ETE =0, (52)
Solutions to these two equations give
3.7197 0.0794
Q= [0.0794 0.0235] >0 (5-3)
0.0119 -0.0006
X= [-0.0006‘ 0.0113] 0 54
Since r is a constant, (4.35) simplifies to
a=— (A" XByr (5.5)
Therefore, the filter in (4.34) — (4.36) becomces
i =AR+B-CH+B,r (5.6)
5= +BX)k+D,r 6.7
where
B, = I + B,ByAT) " 'X1B, (5.8)
and
D, = - B3A")"'x8, (5.9)

Computation of the matrices above yields

i [0.5054-1.1170], [7.9387 A [64.2072

X = [0.8501-0.5347}‘ + [2.3540]0’ = [0 1001x) + [— 1.690]’ (5.10)

2 =1[0.0770 100.0179] £ + 0.8692r (5.11)
or equivalently,

2(s) = Gy)¥(s) + GAs)r(s) (5.12)
where
_ _236.055 + 794.1375

Gy(9) = 573736.43645 + 795.0906 (5.13)
G (s) = 012422 + 5.90535 + 10493 (5.14)

52 + 236.43645 + 795.0906
Assuming that J is constant, y(s) and z(s) can be writtcn as

Y(8) = Gpu(S)W(s) + v(s) + Gy (s)r(s) (5.15)
2(s) = GadsIm(s) + Gar(s)r(s) (5.16)
where all the transfer functions are related to J and

G1u(5) = Gyuls), G(s) = Gy (s). The estimation error is given by
e(s) = 2(5) — 2(5) = Ga(SIW(S) + GalsW(s) + Gels) r(s) (5.17)
where

Gew(s) = Gauls) — Gys)Gywls) = (1 = Gy(s)Gyls) (5.18)

Gals) = = Gyls) (5.19)
Gy (s) = Guls) = Gy9)Gy(s) — Gils). (520)

The plots of 101og(IGew(jw)? + 1G4 (jw)?l and 20log(IG ., (jw)!) are
shown in Figure 4 for g = 10 and different values of . Obviously
this filter performs far better than the Kalman filter and the “nomi-
nal” H, filter in Section 2. The improvement for G, (s) is more sig-
nificant in low frequency range than mid frequencies. This is be-
cause our design was done for constant r and steady state.
Itis worth noting that the function G ,.(s) is actually identical to that
of the robust filter (2.8) — (2.9) in Section 2 when r is not con-
sidered. This is natural because the auxiliary problem (3.14) is iden-
tical to the one in [6] when r = 0, £,(0), and R = 0.
For comparison purposes, we finally consider an alternative meth-
od for designing G, which we call the cancellation method. The idea
is simply as follows: Because G,(s) only effects G(s), it is therefore
obvious that the role of G,(s) is to minimize G..(s) in certain sense.
One possibility is to choose G,(s) such that G,(s) is completely can-
celled (i.e., G.(s) =0) for the nominal process. However, we show
using the example above that such a cancellation method may not
give an optimal worst-case solution. This observation is made from
the dotted lines in Figure 5 which correspond to the spectrum of
G (s) designed by the cancellation method at different  values.
6 Conclusion
A new robust H ., filtering method has been developed via a game
theoretic approach for signal estimation of processes with both
parametric uncertainty and a known input signal in the finite hori-
zon setting. The solution to the robust H o, filtering involves two
Riccati differential equations with a scaling parameter ¢, which can
be solved as for the standard finitc horizon H o filtcring problems.
The robust H  filter contains two components, one for process and
measurement noise attenuation and another for bias attenuation.
The former turns out to be the same as in [6] for the case without
known input signal, but the latter depends on the a priori informa-
tion on the known input signal. It should be noted that when the pa-
rameter uncertainty vanishes, our robust H o, filter simplifies to the
standard H « filtering, and in particular, the bias in the estimation
error due to the known input can be completely cancelled.

We expect that this new method can also be applied to the following

problems: i) robust L, filtering with parametric uncertainty and

known input signal; ii) robust tracking control for systems with
parametric uncertainty; and iii) discrete-time problems.
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Figure 2: Kalman Filter for Process (2.1) — (2.3) with g = 1
curve 1: 101og(IG an(j)I? + |G o (jw)1?) for 6 = &
curve 2: 1010g(IG au(j@)? + IG o (jw)12) for 6 = — &

curve 3: 201og(IG A(jw)l) for 6 = &
curve 4: 201log(IG (jw)l) for 6 = — &
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Figure 3: “Nominal” H , Filter for Process (2.1) ~ (2.3)with g = 2
curve 1: 1010g(IG s (jw)I? + IG o (jw)I?) for 6 = &

curve 2: 1010g(IG a(jw)? + IG pijw)?) for 6 = = &

curve 3: 20log(IG ., (jw)!) for 6 = &

curve 4: 2010g(IG o (jw)!) for = — &
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Figure 4: Robust H ., Filter for Process (2.1) — (2.3) with g = 10
curve 1: 1010g(1G au(jw)? + 1G o (jw)?) for 6 = &
curve 2: 1010g(IG oy(j)? + G o (jw)?) for 6 = — &
curve 3: 20log(IG{jw)l) for 8 = &
curve 4: 20log(IG (jw)l) for d = — &
curve 5: 20log(IG . (jw))) for 6 = &
designed with the cancellation method

curve 6: 20log(IG,(jw)i) for 6 = — 3§
designed with the cancellation method
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