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Robust Output Feedback Stabilization
for Two New Uncertainty Structures

Minyue M. Fu and B. Ross Barmish

Abstract—In this technical note, we provide two new uncertainty struc-
tures for linear systems which admit robust output feedback stabilization.
These structures are characterized by having poles or zeros at the origin.
Our method is motivated by the fact that high-gain control results available
to robust output feedback stabilization of an uncertain minimum phase
plant � � do not readily extend to plants of the form � �. We
also show that upper and lower triangular uncertainty structures in the
state space, considered by many authors in the context of recursive con-
struction of Lyapunov functions and state feedback controls, are special
cases of the structures considered in this technical note.

Index Terms—Backstepping, non-minimum phase systems, output feed-
back control, robust stabilization, uncertain systems.

I. INTRODUCTION

The main results of this technical note bear on the large body of
literature involving construction of robustly stabilizing controllers for
systems which include uncertain parameters or nonlinear elements with
known bounds. A principal motivation for this technical note is the fact
that results for robust stabilization via state feedback do not readily
admit modifications to handle the output feedback case; e.g., for state
feedback solutions, see [1]–[5] for linear systems and [6]–[10] for non-
linear systems. As far as the literature on robust output feedback stabi-
lization is concerned, results for minimum phase plants are the bench-
mark against which the results this technical note can be compared;
e.g., see [11]–[13] for linear systems and [14], [15] for nonlinear sys-
tems.

The main objective in this technical note is to extend robust stabiliza-
tion results for the output feedback case. We are primarily concerned
with uncertain transfer functions of the following form:

���� �� �
������ ��

���� ��
(1)

where ���� �� and ���� �� are uncertain polynomials depending on
an uncertain parameter vector � with a known bounding set �. No-
tice that if ���� �� is robustly Hurwitz and � � �, then the plant is
minimum phase and is readily stabilizable via output feedback, which
can be achieved using a high-gain controller. On the other hand, with
� 	 �, it turns out that the robust stabilization problem is no longer
straightforward and a naive high-gain approach will fail.

Despite the simple appearance of ���� �� above, we show in this
technical note it indeed covers a large class of new state space sys-
tems. More specifically, we introduce a class of uncertain systems in
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the state space called Stepwise Augmentation Structures. For such sys-
tems, in the spirit of papers such as [2], [4], [5], [16], a recursive proce-
dure, involving a sequence of up and down augmentations, leads to con-
struction of a robust stabilizing controller. In contrast to this existing
literature, however, the possibility of zeros at the origin rules out the
naive use of a high gain controller. Finally, it is also important to note
that these augmentation structures also include a number of classes of
systems previously addressed in the robust stabilization literature. This
includes the well-known upper and lower-triangular structures.

By way of illustration, we now describe a system which is not readily
addressed by existing literature but fits into the framework of this tech-
nical note. Indeed, the state variable system

�
� � � ��
� � 
� � ��
��

�
� �
��

�
� � ��
� � 
��

�
� � � 
� � ��

� �
� (2)

with uncertain parameters � ������ ��� ���, has neither lower triangular
nor upper triangular structure. In addition, although we do not show
it here, it is actually not possible to transform this system to either
a lower-triangular form or a upper-triangular form via a parameter-
independent state transformation. For this system, the transfer function
is readily verified to be of the form

���� �� �
���� ���

�� � ��� � ����� � ��� � ������� � ������ �

 (3)

Now, with arbitrarily large uncertainty bounds ��� � �� � ��� with
��� 	 �, the non-minimum phase zero at � � � is problematic for high-
gain robust output feedback stabilization. However, the results given in
this technical note will show that this system is robustly stabilizable.

Analogous to the case above, we also consider the case when the
transfer function has a sign-invariant low-frequency gain (i.e., the value
of ���� �� when � � �) and is of the form

���� �� �
���� ��

������ ��
(4)

with ���� �� robustly Hurwitz. While zero feedback suffices when
� � �, the case with � 	 � and non-minimum phase becomes
challenging.

II. PRELIMINARIES

Throughout this technical note, we consider uncertain polynomials
���� �� whose coefficients depend continuously on a vector � of uncer-
tain parameters. We also assume that � belongs to a compact bounding
set�. We denote ����� to be the maximum degree of ���� ��. The max-
imum degree �� ��� is said to be invariant if �� ��� � �� for some
constant �� . A scalar function ���� is said to be positively invariant if
���� 	 � for all � � �. It is clear that if ���� depends on � contin-
uously and � is compact, then ���� being positively invariant implies
���� 	 � 	 � for some constant �. Negative invariance is defined in
a similar fashion, and sign invariance means either positive invariance
or negative invariance. An uncertain polynomial ���� �� is said to be
robustly Hurwitz (over �) if its zeros are all inside the open left-half
plane for all � � �.

The rest of this section introduces three preliminary results. The first
one is quoted from [16].

0018-9286/$26.00 © 2009 IEEE
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Lemma 1: Given two uncertain polynomials ���� �� and ���� ��
with � � �, suppose both uncertain polynomials have invariant
maximum degrees, their leading coefficients are positively invariant,
���� �� is robustly Hurwitz and �� � �� � �. Then, there exists � 	 �
such that ���� �� � ����� �� is robustly Hurwitz.

The result above is based on the fact that the zeros of a polyno-
mial depends on its coefficients continuously. As � � �, the roots
of ���� �� � ����� �� approach those of ���� �� and, if �� � �� � �,
another root at �� � 
�. Therefore, there must exist � 	 � such
that ���� �������� �� is robustly Hurwitz. An obvious generalization
of the result above is a reversely ordered version of it [16], as stated
below, obtained using the simple fact that an�th order polynomial ����
is Hurwitz implies that its reversely ordered version �������� is also
Hurwitz:

Lemma 2: Given two uncertain polynomials ���� �� and ���� ��
with � � �, suppose both uncertain polynomials have invariant max-
imum degrees, their zeroth degree coefficients are both positively in-
variant, ���� �� is robustly Hurwitz and �� � ����. Then, there exists
� 	 � such that ����� �� � ����� �� is robustly Hurwitz.

In both results above, the degree of a robustly Hurwitz uncertain
polynomial is extended by at most one. The following result is a case
where the degree can be extended by two:

Lemma 3: Given two uncertain polynomials ���� �� and ���� �� and
a compact bounding set �, suppose both uncertain polynomials have
invariant maximum degrees, ���� �� has a positively invariant leading
coefficient, ���� �� has positively invariant leading coefficient and ze-
roth degree coefficient, ���� �� is robustly Hurwitz and �� � �� � �.
Then, there exists � 	 � such that ����� �������� �� is robustly Hur-
witz.

Proof: It is well known [17] that a given polynomial is Hurwitz
if and only if the associated Hurwitz matrix is such that all the prin-
cipal minors are positive. Denoting � � �� , the Hurwitz matrix for
����� �� � ����� �� is given by

����� �� �
������� � �������� �

������� �� ������

where ������� is the Hurwitz matrix of ���� �� when viewed as an
�����-th order polynomial (i.e., the polynomial 
�������� ���� ��
with 
��� � �). Also, in the expression above, ������� is the part of
the Hurwitz matrix for ���� �� with the last row and column deleted.
Further examination shows that ������� has the structure

������� �

���� �
������ � � �	

� �����

where 
����� 
����� � � � � 
���� are the coefficients of ���� �� and
����� is its Hurwitz matrix.

In view of the structural properties above, we claim that all the
leading principal minors of ����� �� are positively invariant for
sufficiently small � 	 �. To prove the claim, we consider the
highest order minor 
������� ��, noting that a similar proof ap-
plies to the other lower order minors as well. Indeed, we write

������� �� � �������
����
������� � ���� ���, where the
term ���� �� vanishes uniformly in � as � � �. Now using the
properties of ���� ��, we know that 
������� and 
���� are both
positively invariant. Therefore, for suitably small � 	 �, 
������� ��
is positively invariant. In view of this claim, we now conclude that
����� �� � ����� �� is robustly Hurwitz for suitably small � 	 �.

III. STABILIZABLE TRANSFER FUNCTION STRUCTURES

In this section, we provide robust stabilization results for the two
transfer function structures discussed in Section I.

A. Pseudo-Minimum Phase Uncertain Plants

Recalling the discussion in Section I, we consider a �th order proper
transfer function of the form (1) with invariant relative degree �. We
assume that � � �, ���� �� is an ����� ��-th order robustly Hur-
witz polynomial with a positively invariant zeroth degree coefficient
and ���� �� is a non-Hurwitz uncertain polynomial with a positively
invariant highest degree coefficient. When� 	 �, it is further assumed
that the zeroth order coefficient, �����, of ���� ��, is sign-invariant so
that there is no unstable zero-pole cancelation. Since the numerator of
the plant has its zeros at the origin and in the open left half plane, we
refer to the plant as pseudo-minimum phase.

We apply a proper compensator ���� � ����������� and the ob-
jective is to select the coefficients of ����� and ����� to assure that
the resulting closed-loop polynomial

���� �� � ������ ������� ����� ������� (5)

is robustly Hurwitz. When such a compensator exists, the system is said
to be robustly stabilizable via output feedback.

Theorem 1: The pseudo-minimum phase uncertain plant ���� ��
is robustly stabilizable via output feedback. Furthermore, a robustly
stabilizing proper controller ���� � ����������� can be chosen to
be minimum phase and satisfying the following conditions:

(i) When � � �


�
����� � 
�
����� � � � ��

(ii) When � 	 � and ����� 	 �


�
����� ��� � � ��


�
����� � ������ ���� � � �	�

(iii) When � 	 � and ����� � �


�
����� � 
�
����� � �� � � ��

In addition, the controller ���� can be designed using the following
procedure:
Step 1) Choose����� to be any Hurwitz polynomial with degree as

given above and take

����� �� � ���� ��������

Step 2) If � � �, for � � �� �� � � � � �, choose �� 	 � such that

����� �� � ������� �� � ���
������� ��

is robustly Hurwitz (by applying Lemma 1). If� 	 �, take

����� �� �
���� �� if ����� 	 �;
���� ����� �� otherwise

and, for � � �� �� � � � ��, choose �� 	 � such that

����� �� � �������� �� � �� ����� ��

is robustly Hurwitz (by applying Lemma 3 for � � � and
Lemma 2 for � 	 �). If � 	 �, continue with, for � �
�������� � � � ��� �� �, choosing �� 	 � such that

����� �� � ������� �� � ���
��� ����� ��

is robustly Hurwitz (by applying Lemma 1).
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Step 3) If � � �, take

������ � ���
��� � ���

��� � � � �� ���

If � � �, take

������ � ���
��� � ���

��� � � � �� ��

������
� � � � �� �������

������

Then, ����� is given by

����� �
��������� �� if � � � and ���	� � �;
������ otherwise.

Proof: It is easy to verify that the specified dimensions guarantee
that the controller 
��� is proper. Hence, it suffices to show that the
����� 	�, constructed via the procedure above, is robustly Hurwitz for
all 
. We first consider the case of � � �. Here, ����� 	� has degree
� � � because ����� has degree � � �. Therefore, applying Lemma
1 yields ����� 	� � ����� 	� � ������ 	� robustly Hurwitz for some
�� � �, and ����� 	� has degree �. A similar argument applies to 
 �
�. Next, we consider the case of � � � and ���	� � �. Here, ����� 	�
has degree �� � because ����� has degree �� �� �. Also note that
����� 	� � ���� 	� has degree � with positively invariant leading coef-
ficient and zeroth degree coefficient. Hence, applying Lemma 3 yields
����� 	� � ������ 	� � �� ����� 	� robustly Hurwitz for some �� � �,
and its order is still �. For 
 � �, ����� 	� � ������ 	� � �� ����� 	�.
Because ����� 	� has degree � with positively invariant leading coef-
ficient and ����� 	� has degree � with positively zeroth degree coef-
ficient, Lemma 2 ensures that ����� 	� is robustly Hurwitz for some
�� � �. A similar argument applies to � � 
 � �. It is easy
to see that ����� 	� has degree � � � � �. If � � �, further con-
struction of ����� 	� is needed to ensure that the resulting controller
is proper. Since ������� 	� � ����� 	� � �����

� ����� 	�, it is ro-
bustly Hurwitz for some ���� � � by Lemma 1, and this argument
continues for 
 � � � �. The case of � � � and ���	� � � is
converted back to the previous case by noting that the zeroth degree
coefficient of ����� 	� is positively invariant. The only difference here
is that the degree of ����� must be increased by one to � � � � �
because of the term �� � ��. This implies that the degree of ����� 	�
must be increased by one as well because
���must be proper. Hence,
	
������ � �
���� ���� � � ��. Since � � �, the above sim-
plifies down to 	
������ � �� �� � as specified in the theorem.

Example 1: To illustrate how Theorem 1 works, we revisit the mo-
tivating example given in Section I. Recall the uncertain transfer func-
tion ���� 	� in (3). We assume 	�� � �, 	�� � �, 	�� � 	�� � �� and
	�� � 	�� � �, noting that the analysis to follow could equally well be
carried out with arbitrarily large uncertainty bounds with the proviso
that 	�� � �. Since � � �, � � � and ���	� � � � �, using Theorem
1, the controller is chosen to be of the form


��� �
�����

�����
�
����� ���
����� ���

�

For illustrative purposes, we take ����� � �� �. Accordingly

����� 	� � ��� ����� 	���

����� 	� � ������ 	� � ������ 	�

� ���� ����� 	��

� �� �� � �	� � 	���
�

��	� � 	�	���
� � 	�	��� � �

It is straightforward to verify, using Routh-Hurwitz criterion, that�� �
���� will make ����� 	� robustly Hurwitz. Now, since � � � � �, we
continue with

����� 	� � ����� 	� � ������� 	��

Similarly, it is found using the Routh-Hurwitz criterion that �� � ����
will make ����� 	� robustly Hurwitz. It follows that ����� � ��� �
�� � ������ ���� and the resulting robustly stabilizer is


��� �
�� �

������ ����
�

Remark 1: As seen in the example above, our robust stabilizer de-
sign involves verification of robust Hurwitz property for a given uncer-
tain polynomial. Although we used the standard Routh-Hurwitz test in
the example, such a test is inefficient for high order polynomials. For
better robust stability tests, the reader is referred to [21] and [22] where
various techniques are available for polynomials with parametric un-
certainties.

B. Pseudo-Stable Uncertain Plants

Recalling the discussion in Section I, we consider a proper transfer
function of the form

���� 	� �
���� 	�

������ 	�

where � � �, ���� 	� is an �-th order robustly Hurwitz polynomial.
Without loss of generality, we assume that ���� 	� has positively in-
variant coefficients. Finally, the uncertain polynomial ���� 	� is as-
sumed to have a sign-invariant zeroth degree coefficient. The degree,
��	�, of ���� 	� is allowed to vary with 	, provided that ���� 	� re-
mains proper. Since the denominator has all its roots at the origin and
in the open left half plane, we refer to the plant as being pseudo-stable.

Theorem 2: The pseudo-stable uncertain plant ���� 	� above is ro-
bustly stabilizable via output feedback. Furthermore, a robustly stabi-
lizing proper controller 
��� � ����������� can be chosen to be
stable satisfying

	
������ � 	
������ � �� �

and designed using the following procedure:
Step 1) Choose ����� to be any ��� ��-th order Hurwitz polyno-

mial and take ����� 	� � ���� 	������ 	�.
Step 2) For 
 � �� �� � � � ��, choose �� � � such that

����� 	� � �������� 	� � ������ 	���

is robustly Hurwitz (by applying Lemma 2), where �� is
the sign of the zeroth degree coefficient of ���� 	�.

Step 3) Form

����� � �� ����
��� � ���

��� � � � �� ����

Proof: It is easy to verify that 
��� is proper. Hence, it suf-
fices to show that ����� 	� constructed in the procedure above is ro-
bustly Hurwitz for all 
. Note that ����� 	� has degree � � � � �,
thus 	
� ������ 	� � 	
����� 	�. Applying Lemma 2 ensures that
����� 	� is robustly Hurwitz for some �� � �. The argument above
can continue for 
 � � since the degree of ����� 	� increases as 
 in-
creases, implying that 	
� ������ 	� � 	
����� 	� continues to hold
for 
 � �.
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Example 2: We consider the following uncertain system: tac-fu-
2036296 55tac01-hbai-2036301 55tac01-jlim-2036304 55tac01-abar-
toszewicz-2036305 55tac01-aamthor-2036307 tac-conte-2037249

��� ��� � �����

��� ����

��� � ���� � ���

��� � � ���� � ��

� ���

with uncertainty bounds ��
�
� �� � ��

�
for � � �, 2.

Computing the transfer function

���� �� �
���� �

����� ���

for this system, it is immediate that with ��� 	 � and arbitrarily large
bounds ��� , ��� and ��� , this pseudo-stable system is in the correct form
for application of Theorem 2. Therefore, this system is robustly stabi-
lizable with a compensator of order 
� � � �. Accordingly, we take

���� �
�����


����
�

����� ���

����� ���

To illustrate the construction of a robustly stabilizing controller, we
assume uncertainty bounds ��� � ��, ��� � �, ��� � � and ��� � 	,
and follow the procedure specified in Theorem 2. We select 
���� �
� � � begin the recursive design with

����� �� � ��� ������ ���

Now making the identification �� � ��� and forming

����� �� � ������ �� � �������� ��

It is straightforward to determine that ��� � ��
 will suffice by inspec-
tion using Routh-Hurwitz criterion. With this choice of ���, we obtain

����� �� � �
� � �� � ����

� � ���
�� � ����
� � ��
��

Now making the identification �� � ���, we have

����� �� � ������ �� � ������� ��

It is straightforward to determine that ��� � ��
 will suffice by inspec-
tion. The corresponding robustly stabilizing controller is given by

���� �
��
�� ���


�� �
�

Remark 2: In Theorems 1–2, we specified the order of the stabilizing
controller. Here, two examples are given to show that stabilizing con-
trollers may not exist in general if the order is lower than those given
in the theorems. For the pseudo-minimum phase case, we consider the
uncertain plant

���� �� �
��

�� � �

with uncertainty bound � � � � 	. Since 
 � 	 and � � �, Theorem
1 guarantees that we can robustly stabilize the plant using a first order
controller. However, with a zeroth order controller ���� � ��, since
the closed loop polynomial ���� �� � �� � ���

� � � is missing a first

order term, robust stabilization is precluded. Similarly, for the pseudo-
stable case, we consider the uncertain plant

���� �� �
� � ��

��

with uncertainty bound �� � � � �. Noting that 
 � 	, ���� � �
when � �� � and ���� � 	 when � � �, Theorem 2 guarantees that we
can robustly stabilize���� �� using a first order controller. Again, using
a zeroth order controller, it is a straightforward to see by inspection that
robust stabilization is ruled out because the closed loop polynomial has
a sign-indefinite first order term.

Remark 3: Readers familiar with � synthesis [18] may wonder how
our results compare with this method. We note that the � synthesis
method is conservative in general [19] and it does not offer a priori de-
cision whether a given uncertainty structure admits robust stabilization
or not; it often has trouble to find a robust stabilizer when the parameter
range is large.

IV. STABILIZABLE STATE-SPACE STRUCTURES

In this section, we show that the pseudo-minimum phase uncertainty
structure given in the previous section covers a large class of uncertain
systems in the state-space framework. These systems admit a so-called
Stepwise Augmentation Structure which can be generated recursively
using the so-called down augmentations and up augmentations. Such
structures, first introduced in [2], were called the admissible shuffles.
Later in [16], the term anti-symmetric stepwise configuration was used
to describe a similar class of systems. A particular important feature
of the Stepwise Augmentation Structure is that it includes two well-
studied uncertainty structures, the so-called lower-triangular structure
and upper triangular structure, as special cases. These special structures
are also known as back-stepping structure and forwarding structure in
the nonlinear control literature when the uncertainties are replaced by
nonlinearities.

For systems admitting the stepwise augmentation structure, it is
shown in [2], [16] that a robust linear, time-invariant state feedback
stabilizer can be constructed. Such structures were also studied
recently in [20] in the context of output regulation control via state
feedback.

We prove this section that a large class of such structures is robustly
stabilizable via output feedback if a suitably chosen output is available.
This is done by showing that stepwise augmentation structure corre-
sponds precisely to the pseudo-minimum phase structure of Theorem
1.

In the construction to follow, we begin with an uncertain system:

�� ������� �����

� � �
� ����

where � � � represents uncertain parameters as before,���� is an ��
� continuous matrix function, ���� and ���� are��� continuous vector
functions, and �, � and � are the input, state and output of the system,
respectively. We call � � ������ ����� ����� a generating system.

Definition 1: Given a generating system � � ������ ����� �����,
the system

�� ������� ���������

����� ��
� ����� �������� � ������

� � �
� ����

with ��� state variables is said to be a down augmentation of � if the
added vectors and scalars ����, ���� and ���� depend continuously
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on � and ���� is sign-invariant. We call ���� the augmenting state
variable. Similarly, the system

��� ��� �����

�� ������� ���� ������� � �� �

	 � 
� ����

with �� � state variables is said to be an up augmentation of � if the
added vector and scalar ���� and ���� depend continuously on � and
the first entry of ���� is sign-invariant. In this case, �� is called the
augmenting state variable.

Definition 2: Let � � ������ ����� 
���� be a generating system
with a robustly minimum phase transfer function. Then, a system is
said to be a stepwise augmentation structure if it is obtained from �
via a sequence of up/down augmentations, and in addition, if up aug-
mentations are involved, the ����-matrix of the augmented system is
nonsingular for all � � 
.

Example 3: To illustrate the stepwise augmentation structure, we
list some of the uncertain systems which fit into this framework. Using
the notation

����
�
� 	���������


we consider the four possible structures for ���� associated with 4th
order systems

� � � � �

� � � � �

� � � � �

� � � � �

�

� � � � �

� � � � �

� � � � �

� � � � �

�

� � � � �

� � � � �

� � � � �

� � � � �

�

� � � � �

� � � � �

� � � � �

� � � � �

where � denotes entries that are arbitrary functions of � and � denotes
the entries which are sign-invariant. For each matrix, the underlined
state variable corresponds to the generating system. For example, for
the third matrix ���� above, the generating system is described by
�� � �����. The sequences of augmentations for the structures above
are respectively down-down-down, down-up-up, down-up-down and
down-down-up. In all of the examples above, the generating system is
a scalar system of the form

��� � ������ � ������

	 ���

which is clearly robustly minimum-phase.
Theorem 3: Let � � ������ ����� 
���� be a generating system.

Then, a down augmentation does not introduce any new zeros and each
up augmentation introduces at most one zero at the origin. Furthermore,
if � up augmentations are involved and the final �-matrix for the aug-
mented system is nonsingular for all � � 
, then the augmented system
has exactly � new zeros at the origin.

Proof: For notational simplicity, we suppress the dependence of
the system on � and denote the transfer function of the generating un-
certain system by ���� � ���������. Taking Laplace transforms,
the transfer function of the down-augmented system is computed

� ��� �

� ��� � �����

�� �� �� ��� ������
�����

Noting that 
� ��������� � ��������� and expressing the transfer
function �� ��� � ����� as ����������, we obtain

� ��� �
����

������� ��������
�����

Hence, the down augmentation does not introduce new zeros.
The transfer function of the up-augmented system is similarly com-

puted

� ��� � 
� ��� � �����
�

�� ��� ��� � �����
�����

Again, denoting �� ��� � ����� as a ratio of two polynomials
����������, we obtain

� ��� �
�����

������ ������
�����

Hence, at most one new zero at � � � can be introduced by each up aug-
mentation. Finally, if � up augmentations are involved (regardless of
the number of down augmentations), the numerator of the augmented
transfer function will be ������ ��. The new factor �� can not be
canceled if the denominator of the augmented transfer function has a
sign-invariant zeroth degree coefficient. This is guaranteed if the�-ma-
trix of the augmented system is nonsingular for all � � 
.

Combining Theorems 1 and 3, we have the following result:
Corollary 1: A stepwise augmentation structure is robustly pseudo-

minimum phase, and thus robustly stabilizable via output feedback.

V. CONCLUSION

We have introduced two new classes of uncertain linear systems,
namely, pseudo-minimum phase and pseudo-stable structures, which
admit robust output feedback stabilization. We have also established
the connections of these structures to an uncertainty structure in the
state space called stepwise augmentation structure. We complete this
technical note by noting that, although specific recursive design proce-
dures for robust stabilizers are given, our intention was only to demon-
strate and verify robust stabilizatbility, rather than suggesting that these
procedures are optimal in any sense or attempting to characterizing all
robust stabilizers. Further research is needed for designing robust sta-
bilizing controllers which can also deliver certain guaranteed perfor-
mances.
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Abstract—We consider a motion coordination problem with second order
agent dynamics and examine the closed-loop robustness with respect to
switching topology, variation of link gain, and unmodeled dynamics. In
each case, we illustrate with examples possible instability mechanisms and
discuss under what conditions stability is maintained.

Index Terms—Cooperative control, instability, Mathieu equation,
switched system, unmodeled dynamics..

I. INTRODUCTION

Motion coordination problems have been intensively studied during
the past years, leading to significant results in formation control,
flocking, and consensus [1]–[9]. One of the challenges in the coordi-
nation problem is the design of local rules that guarantee the desired
group behavior. The design and analysis of such rules make use of
graph theory and potential function methods. The communication
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topology between agents is represented by a graph while the inter-
actions between agents are modelled as artificial attraction/repulsion
forces. The stability results follow from a Lyapunov function con-
structed from potential functions with the help of spectral properties
of the graph Laplacian.

When the velocities of the agents are directly manipulatable, first-
order kinematic models [1], [3] are appropriate. However, in many ap-
plications, only the acceleration of the agents can be controlled by input
forces and torques, thereby leading to second or higher order dynamics
[2], [5], [7], [8] with mass inertia incorporated.

In this paper, we consider double integrator agent dynamics with
an undirected communication topology. We first analyze a cooperative
system with a switching communication topology. Such switching may
occur due to the vehicles joining or leaving a formation, transmitter/re-
ceiver failures, limited communication/sensor range, or physical ob-
stacles temporarily blocking sensing between vehicles. For single in-
tegrator dynamics, switching topology has been studied in [1], [3] and
stability under arbitrary switching has been ascertained for classes of
coordination algorithms. In contrast, for second order dynamics, we il-
lustrate with an example that a destabilizing switching sequence that
triggers instability exists. We then show that stability is maintained
when switching is sufficiently fast or slow so that it does not interfere
with the natural frequencies of the group dynamics.

We next investigate stability properties when the link weights are
perturbed by small sinusoidal oscillations. To illustrate instability in its
most basic form, we make a simplifying assumption that the pertur-
bation is sinusoidal and transform the group dynamics into a form that
reveals a parametric resonance mechanism [10]–[12]. This transforma-
tion employs the spectral properties of the graph Laplacian and decou-
ples the relative motion from the motion of the center of the agents.
When mass inertia and damping terms are identical for all agents, we
obtain decoupled Mathieu equations [11], which make parametric res-
onance explicit. For broader classes of mass and damping matrices, we
obtain coupled Mathieu equations and discuss which frequencies lead
to parametric resonance. Next, we show that sinusoidal perturbations
do not destabilize the system if they are slow or fast enough.

We finally study the effect of input unmodeled dynamics, such as
fast actuator dynamics. Following standard singular perturbation argu-
ments [13], we prove that the stability of the nominal design that ig-
nores the effects of unmodeled dynamics is preserved when the stable
unmodeled dynamics are sufficiently fast. As we illustrate with an ex-
ample, how fast the unmodeled dynamics must be is dictated by the
graph structure and the mass inertia matrix.

The subsequent sections are organized as follows: Section II intro-
duces the nominal system and discusses its stability properties. We il-
lustrate our instability example due to switching in Section III-A, fol-
lowed by a discussion on when stability is maintained in Section III-B.
We present a parametric resonance example in Section IV-A, which
exhibits decoupled Mathieu equations, and generalize it to coupled
Mathieu equations in Section IV-B. We then investigate the effects of
fast and slow sinusoidal perturbations in Sections IV-C and D. One of
the contributions of Section IV is to introduce parametric resonance,
which is a well-studied topic in structural mechanics, to cooperative
control. Section V studies unmodeled dynamics.

II. NOMINAL COOPERATIVE SYSTEM AND ITS STABILITY

We consider a group of agents which are represented by the vectors
�� �

�
� � � �� � � � � � and their communication structure is repre-

sented with a graph. If the �th and �th agents have access to the relative
information �� � �� , then the nodes � and � in the graph are connected
by a link. To simplify our analysis, we assign an orientation to the graph
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