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a b s t r a c t

This paper studies a networked state estimation problem for a spatially large linear system with a dis-
tributed array of sensors, each of which offers partial state measurements. A lossy communication net-
work is used to transmit the sensor measurements to a central estimator where the minimum mean
square error (MMSE) state estimate is computed. Under aMarkovian packet lossmodel, we provide neces-
sary and sufficient conditions for the stability of the estimator for any diagonalizable system in the sense
that themean of the state estimation error covariancematrix is uniformly bounded. In particular, the sta-
bility conditions for the second-order systems with an i.i.d. packet loss model are explicitly expressed as
simple inequalities in terms of the largest open-loop pole and the packet loss rate.
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1. Introduction

This work is concerned with the networked state estimation
problem for a spatially large discrete-time linear system with dis-
tributed sensing. Each sensor provides a partial statemeasurement
with an additive noise, and each measured output is transmitted
to a remote (central) estimator through a lossy communication
network involving packet loss. The estimator computes a mini-
mummean square error (MMSE) estimator of the system state us-
ing the received measurements. The configuration is illustrated in
Fig. 1, which ismotivated by awide range of applications including
networked control systems, multi-agent systems, smart electricity
networks and sensor networks. The main contribution of this pa-
per is to derive necessary and sufficient conditions for the stability
of the estimator in the sense that the mean of the state estimation
error covariance matrix is uniformly bounded.

With the rapid development of the sensor network and commu-
nication technologies, the problem of networked state estimation
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has received significant attention in the recent years (Hespanha,
Naghshtabrizi, & Xu, 2007; Schenato, Sinopoli, Franceschetti,
Poolla, & Sastry, 2007; Sinopoli et al., 2004). One of the major diffi-
culties comes from the packet loss in transmitting the sensor mea-
surements. By treating the receivedmeasurements as intermittent
measurements, the Kalman filter technique is applied to compute
the networked MMSE state estimate for the single sensor case (Si-
nopoli et al., 2004). However, the stability of the state estimator
is known to be seriously influenced by the packet loss model and
the algebraic structure of the system in a coupled and complicated
manner (Huang & Dey, 2007; Mo & Sinopoli, 2010; You, Fu, & Xie,
2011). Strictly speaking, it is still not well understood how they
jointly affect the stability of the networkedMMSE state estimator.

Two frameworks for the networked state estimation are pro-
posed in the literature, by transmitting either the raw measure-
ments directly, or the processed one instead. The former approach
is easy to implement but the associated stability condition is dif-
ficult to establish, whereas the latter one yields simpler stability
conditions (Schenato, 2008; Sui, You, Fu, & Marelli, 2015) but adds
the processing burden to the transmitters. The latter one may not
be possible when considering the constraints of the hardware and
power in sensor networks. Especially, by transmitting the estimate
of state in sensor side, it typically has a higher dimension than the
rawmeasurement; the latter approach tends to transmitmore data
through the network. Another major drawback is that in our dis-
tributed sensing setting, pre-computing the state estimate in each
sensor might not be sensible due to the access of only partial state
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Fig. 1. Networked state estimation under distributed sensing.

measurements in each sensor. In Sun and Deng (2004), each sen-
sor locally computes a state estimate and the central estimator ag-
gregates these local estimators. Such an estimate is typically not
optimal, and requires the stability of local estimators. This is an
unnecessarily strong assumption for the distributed setting. For
these reasons, it is preferable to directly transmit the rawmeasure-
ments. We will adopt this framework in this paper.

To quantify the effect of packet loss, two types of channel mod-
els have been widely adopted: (1) the independent and identically
distributed (i.i.d.) model where the packet loss process is mod-
eled as an i.i.d. process (Sinopoli et al., 2004); (2) the Markovian
model where the packet process is described by a binary Markov
chain (Huang & Dey, 2007), which is inspired by the so-called
Gilbert–Elliott (GE) channel. In the Markovian model, the packet
loss rate is temporally correlated, which is more complicated.

Under the i.i.d. model, Sinopoli et al. (2004), Mo and Sinopoli
(2008, 2010) and Plarre and Bullo (2009) focus on the stability
of an intermittent Kalman filter with only one sensor transmit-
ting its raw measurements, and there exists a critical packet loss
rate, above which the mean of the state estimation error covari-
ance matrix will diverge to infinity (Sinopoli et al., 2004). An up-
per bound and a lower bound for the critical packet loss rate are
also given in Sinopoli et al. (2004). For a generic vector system,
it is well known difficulty to explicitly express the critical packet
loss rate. Motivated but also inspired by the limitation of Sinop-
oli et al. (2004), the lower bound is shown to be tight in Plarre and
Bullo (2009) for the systemwith one-step observable, and the non-
degenerate systems (Mo & Sinopoli, 2010). However, a counterex-
ample in You et al. (2011) shows that the critical packet loss rate
strictly lies between the lower and upper bounds.

For the Markovian model, the filter stability analysis was initi-
ated in Huang and Dey (2007) where the only sensor transmits its
raw measurements to the remote estimator, and a stability crite-
rionwas given in terms of an infinite sum. By exploiting the system
structure, the necessary and sufficient stability condition for the
second-order systems and certain classes of higher-order systems
are explicitly given in You et al. (2011). In Rohr, Marelli, and Fu
(2014), they derived necessary and sufficient stability conditions
for a class of degenerate linear systems.

In comparison, this paper studied the networked state estima-
tion problem with multiple sensors, with different sensors subject
to possibly different packet losses. This is of great importance in
many real-world scenarios where the system covers a large spatial
domain, and is widely studied by many researchers (Deshmukh,
Natarajan, & Pahwa, 2014; He, Wang, Wang, & Zhou, 2014; Hu,
Wang, & Gao, 2013; Hu, Wang, Gao, & Stergioulas, 2012; Quevedo,
Ahlén, & Johansson, 2013; Wei, Wang, & Shu, 2009). The stability
analysis of the resulting networkedMMSE estimator is challenging
and Deshmukh et al. (2014), Quevedo et al. (2013) and Wei et al.
(2009) worked on the sufficient condition for the estimation sta-
bility. The main difficulty caused by multiple sensors is that mea-
surements at each sampling time may be partially lost, instead of
either no loss or complete loss as in the case of single sensor.
The main contribution in our paper is to develop a new regres-
sion matrix technique to study the necessary and sufficient stability
condition for the minimum mean square state estimator (MMSE),
which is suitable for both single sensor andmulti-sensor cases. Un-
der the Markovian model, we establish a necessary and sufficient
condition for the stability of the networked state estimator for di-
agonalizable systems with multiple sensors, which is able to char-
acterize how the largest open-loop pole and the packet loss pattern
jointly affect the stability of estimator. For a better verification, an
efficient algorithm is designed to check the condition. We demon-
strate, through a second-order system under the i.i.d. model, that
the stability condition reduces to simple inequalities.

The rest of the paper is organized as follows. In Section 2, the
problem formulation is described and the MMSE estimate for the
system with multiple sensors over a lossy channel is derived. In
Section 3, the stability condition for the MMSE estimator of a
diagonalizable system is given. For second-order systems, stability
conditions are given by simple inequalities in Section 4. Concluding
remarks are drawn in Section 5. To improve the readability, some
of the proofs are given in the Appendix.

Notation. x′ is the transpose of vector x and A∗ is the conjugate
transpose of matrix A. Tr(·) denotes the trace of a matrix, and
col{C1, . . . , Cn} = [C ′

1, C ′

2, . . . , C
′
n]

′. The sets of real number and
non-negative integer are represented by R and N, respectively. For
two discrete random vectors X ∈ X and Y ∈ Y, let P{X |Y } denote
the conditional probability mass function of X with the knowledge
of Y , e.g., P{X = x|Y = y} for any x ∈ X and y ∈ Y.

2. Problem formulation

Consider a discrete-time stochastic system
xk+1 = Axk + wk, (1)
where xk ∈ Rn is the system state andwk is a white Gaussian noise
with covariance matrix Q > 0. The initial state x0 is a Gaussian
random vector with mean x̄0 and covariance matrix P0 > 0. To
remotely estimate the system state, we use a sensor network in
Fig. 1 with d ≥ 2 sensors to take noisy measurements, i.e.,

yik = Cixk + vi
k, i ∈ {1, 2, . . . , d}, (2)

where vi
k ∈ Rmi is a white Gaussian noise of sensor i with covari-

ancematrix Ri > 0 and
d

i=1 mi = m. In addition, x0,wk and vi
k are

mutually independent.
All the random variables in this paper are defined on a common

probability space (Ω, P, F ), where Ω is the space of elementary
events, F is the underlying σ -field on Ω , and P is a probability
measure on F . Throughout the paper, we denote
yk = col{y1k, y

2
k, . . . , y

d
k}, C = col{C1, C2, . . . , Cd}, and

R = diag{R1, R2, . . . , Rd}. (3)
We are concernedwith a networked system,where each sensor

and the central estimator are linked through a communication
network. Due to the channel unreliability, the transmitted packets
may be randomly lost. We use a binary random process γ i

k to
describe the packet loss process. That is, γ i

k = 1 indicates that the
packet transmitted from sensor i is successfully delivered to the
estimator at time k, and γ i

k = 0 if the packet is lost. The implication
of packet loss is that the estimator may fail to generate a stable
state estimator.

Our objective is to study how the packet loss will affect the sta-
bility of the MMSE estimator. To this end, we denote

Υk = diag{γ 1
k I1, . . . , γ

d
k Id} ∈ D, (4)

where Ii ∈ Rmi×mi is an identity matrix, and D consists of 2d

elements.
Define the packet arrival matrix

Sk = diag{Υ0, Υ1, . . . , Υk−1} ∈ Sk. (5)
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The information available to the estimator at time k is then given
by

Fk = {(Υ0, Υ0y0), (Υ1, Υ1y1), . . . , (Υk, Υkyk)}. (6)

Denote the MMSE (one-step-ahead) predictor and the MMSE
estimator by

x̂k|k−1 = E[xk|Fk−1] and x̂k|k = E[xk|Fk],

respectively. Their corresponding estimation error covariance ma-
trices are defined by

Pk|k−1 = E[(xk − x̂k|k−1)(xk − x̂k|k−1)
′
|Fk−1]

and

Pk|k = E[(xk − x̂k|k)(xk − x̂k|k)′|Fk].

In this paper, a Kalman like algorithm is developed to recur-
sively compute the MMSE estimate, and we establish the packet
loss condition under which the mean of the state estimation error
covariance matrix is uniformly bounded, i.e.,

lim sup
k→∞

E[Pk|k] < ∞, (7)

where the expectation is takenwith respect to the random process
{Υk}. Here (7) is interpreted that there exists a positive-definite
matrix P̄ > 0 such that E[Pk|k] ≤ P̄ for all k ∈ N.

As in one sensor case (Sinopoli et al., 2004), the loss of sensor
measurement is equivalent to that the measurement noise level
goes to infinity. Then, a Kalman like estimator is optimal under
multiple sensors as shown below.

Estimator 1. TheMMSE estimate for the networked system in (1)–(2)
is recursively computed by

x̂k|k = x̂k|k−1 + KkΥk(yk − Cx̂k|k−1); (8)

Pk|k = Pk|k−1 − KkΥkCPk|k−1, (9)

where

Kk = Pk|k−1C ′Υk(ΥkCPk|k−1C ′Υk + R)−1
; (10)

x̂k+1|k = Ax̂k|k; (11)

Pk+1|k = APk|kA′
+ Q . (12)

Remark 1. For the multi-sensor case, the structure of Kk depends
on Υk explicitly, which is different with that of Sinopoli et al.
(2004). This stochastic dependence makes the stability analysis
more complicated.

In the sequel, we shall study the stability of the networked
MMSE estimator in Theorem 1 under the following Markovian
packet loss model.

Assumption 1. The packet receival process Υk has Markovian
property of order ν in the sense that P{Υk|Υk−1, . . . , Υk−ν} =

P{Υk|Υk−1, . . . , Υ0}, and has a homogeneously positive transition
matrix, i.e., there exists a function f such that f (Υk, . . . , Υk−ν) =

P{Υk|Υk−1, . . . , Υk−ν} > 0.

Note that the above Markov process contains the one in Huang
and Dey (2007) as a special example. For brevity, there is no loss of
generality to assume that Υk = 0 if k < 0.

3. Stability analysis of the MMSE estimator

To establish the stability condition for the MMSE estimator
(8)–(9), we define an N-step regression matrix

ON = L(SNcol{C, CA, . . . , CAN−1
}), (13)

whereL(A) removes all possible zero row vectors ofmatrix A. That
is, there is no zero row vector in L(A).
Actually, ON determines the observability of the associated sys-
tem under packet loss and is central to the stability of the net-
worked MMSE estimator. Specifically, the larger the number of
packet loss is, the higher probability ON becomes column rank de-
ficient, which may result in the instability of the MMSE estimator.
Thus, we extensively explore the full column rankness of ON . To
this purpose, the system (1)–(2) involving packet losses is rewrit-
ten as

xN = ANx0 + GW , (14)
YN = ONx0 + FW + V , (15)
where G = [AN−1, . . . , A, I], W = col{w0, . . . , wN−1}, YN =

L(SNcol{y0, . . . , yN−1}), V = L(SNcol{v0, . . . , vN−1}) and

F = L

SN


0 0 . . . 0 0
C 0 . . . 0 0
CA C . . . 0 0
...

...
. . .

...
...

CAN−2 CAN−3 . . . C 0


 .

Since x0,W and V are Gaussian, the estimation error covariance
matrix of the MMSE estimate of xN using YN is given in a compact
form as

PN|N−1 = GΣWG∗
+ ΣxN − ΣxNY ′

N
Σ−1

YN
Σ∗

xNY ′
N
, (16)

where ΣxN = ANP0(AN)∗, ΣxNY ′
N

= ANP0O∗

N + GΣW F∗, ΣYN =

ONP0O∗

N + FΣQ F∗
+ΣV ,ΣW = IN ⊗Q andΣV = L(SN(IN ⊗R)S∗

N).
Note that (9) and (12) can recursively compute (16).

To establish the stability condition, we study an upper bound of
PN|N−1 first. Denote Pk := Pk|k−1; we have the following results.

Lemma 2. Assume that ON has full column rank. There exists a posi-
tive definite matrix P̄N , independent of P0, such that

PN ≤ P̄N . (17)

Proof. Consider a direct estimate of xN using YN as follows

x̄N = ANOĎ
NYN , (18)

where OĎ
N is the Moore–Penrose inverse (Horn & Johnson, 1985) of

ON . Since ON has full column rank, then

OĎ
NON = I. (19)

By (14) and (15), it yields that

YN = ONx0 + FW + V . (20)

Substituting (20) into (18), it follows from (19) that

x̄N = ANOĎ
N [ONx0 + FW + V ]

= ANx0 + ANOĎ
N [FW + V ]

= xN − [(G − ANOĎ
NF)W − ANOĎ

NV ]. (21)

The estimation error of the least square estimate in (18) is com-
puted by ēN = xN−x̄N = (G−ANOĎ

NF)W−ANOĎ
NV . This implies that

P̄N = E[ēN(ēN)′|FN ]

= (G − ANOĎ
NF)ΣW (G − ANOĎ

NF)′ + (ANOĎ
N)ΣV (ANOĎ

N)′, (22)

which only associates with noises, and is independent of the initial
estimation P0. Since PN is achieved by theMMSE estimate using YN ,
it is trivial that P̄N ≥ PN . �

With the initial packet arrival process defined as S−ν,0 = 0, we
define the set of all SN leading to column rank deficient ON (i.e., not
having full column rank) by
RN = {SN |ON is column rank deficient}, (23)
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and the probability of this set is

P(RN) , P(SN ∈ RN) =


SN∈RN

P(SN). (24)

This quantity is important to stability analysis as it characterizes
the probability of the regression matrix ON losing observability.
Two cases under different system structures are discussed in the
sequel.

3.1. Single eigen-block

For a systemhaving a single eigen-block, all the open-loop poles
are with the same magnitude. In particular, it has the following
structure.

Assumption 2. A = α diag(eiθ1 , eiθ2 , . . . , eiθn) for some magni-
tude α > 0, and (C, A) is observable.

Now, we are in the position to deliver ourmain result for the single
eigen-block case.

Theorem 3. Under Assumptions 1 and 2, the necessary and sufficient
condition for lim supN→∞ E[PN ] < ∞ is that

α2 lim sup
N→∞

(P(RN))1/N < 1. (25)

By (23), the inequality in (25) implies that the stability of the
MMSE estimator is determined by the probability of packet loss
patterns leading to the column rank deficiency of ON .

Two lemmas below are needed to prove Theorem 3.

Lemma 4. Suppose that ON is column rank deficient. Under Assump-
tion 2, it holds that Tr(PN) ≥ pα2N for any p > 0 satisfying pI ≤ P0
and pI ≤ Q .

Proof. Consider a special case thatwk = 0 and vi
k = 0 for all k ∈ N

and i ∈ {1, 2, . . . , d}. The error covariance matrix of the MMSE
estimate is denoted by PN , and is computed by (16) as

PN = ANP0(AN)∗ − ANP0O∗

N(ONP0O∗

N)ĎONP0(AN)∗. (26)

Obviously, PN ≤ PN . Since the right-hand side (RHS) of (26) is
monotonically increasing in P0 (Sinopoli et al., 2004), it follows that

PN ≥ pAN(I − O∗

N(ONO∗

N)ĎON)(AN)∗. (27)

By the singular value decomposition (Horn & Johnson, 1985), it
holds that ON = U


D 0
0 0


V , where U and V are unitary matrices,

and D is an a × a invertible matrix with a = rank(ON) < n.
Subsequently, O∗

N(ONO∗

N)ĎON = V ∗


Ia 0
0 0


V . Together with (27),

it follows that

PN ≥ pANV ∗


0 0
0 In−a


V (AN)∗. (28)

By Assumption 2 and that Tr(AB) = Tr(BA) for any compatible
matrices A and B, it implies Tr(PN) ≥ pα2NTr(In−a) ≥ pα2N . The
proof is completed by noting that Tr(PN) ≥ Tr(PN). �

To explicitly express the dependence of PN on SN and P0 (the co-
variancematrix of x0), we denote it byφ(P0, SN). Let P0 = xI for x >
0, and write the associated E[PN ] as ξN(x) := E[PN ], it follows that

ξN(x) :=


SN∈SN

E[PN |SN ]P(SN)

=


SN∈SN

φ(xI, SN)P(SN). (29)

Then, we introduce following result.
Lemma 5 (Sui, You, & Fu, 2014). For any P0 > 0, if there exists
N0 > 0 and x̃ > 0 such that x̃I ≥ ξN0(x̃) and x̃I ≥ P0, then
lim supN→∞ E[PN ] < ∞.

Proof of Theorem 3. Necessity: Denote the complement of RN in
(23) by Rc

N , which contains all SN leading to the full column rank-
ness of ON .

Let ℓ be theminimum integer such thatP(Rc
ℓ) > 0. Such a finite

ℓ must exist. Indeed, it follows from Assumption 1 that the prob-
ability of receiving packets up to time n is positive. Since (C, A) is
observable, it implies that P(Rc

n) > 0.
Given a sufficiently large integer N , considering a time horizon

from 0 to Nℓ, we shall use Tr(E[PNℓ]) to derive the necessary con-
dition for stability.

For 0 ≤ k1 < k2, define a regression matrix Ok1,k2 by

Ok1,k2 = L(Sk1,k2col{C, CA, . . . , CAk2−k1−1
}).

Accordingly, let

Rk1,k2 = {Sk1,k2 |Ok1,k2 is column rank deficient},

and its complement

Rc
k1,k2 = {Sk1,k2 |Ok1,k2 is full column rank}.

Define P(Rk1,k2) ,


Sk1,k2∈Rk1,k2
P(Sk1,k2) and similarly for

P(Rc
k1,k2

). Let l be any integerwith 0 ≤ l < ℓ. The set of all possible
Sl,Nℓ is divided into the following disjoint subsets.

• Subset 1: Ol,Nℓ is column rank deficient.
• Subset 2: Ol,Nℓ has full column rank but Oℓ+l,Nℓ is column rank

deficient.
• . . . . . .
• Subset N: O(N−2)ℓ+l,Nℓ has full column rank but O(N−1)ℓ+l,Nℓ is

column rank deficient.

Then, the probability of events in Subset 1 is given by P(Rl,Nℓ),
and that in Subset j + 1 is given by P(Rjℓ+l,Nℓ)P(Rc

(j−1)ℓ+l,Nℓ|

Rjℓ+l,Nℓ), j = 1, . . . ,N − 1.
In view of (5) and (23), it implies that RN = R0,N and P(Rt) =

P(R0,t |S−ν,0 = 0). By the homogeneity in Assumption 1, it follows
that for any p, t ∈ N,

P(Rt) = P(Rp,p+t |Sp−ν,p = 0). (30)

SinceP{Υk|Υk−1, . . . , Υk−ν} > 0, there exists a positiveβ indepen-
dent with t and p such that

min
Sp−ν,p

P(Rp,p+t |Sp−ν,p) ≥ βP(Rp,p+t |Sp−ν,p = 0)

= βP(Rt). (31)

Then, we obtain that

P(Rp,p+t) =


Sp−ν,p∈Sν

P(Rp,p+t |Sp−ν,p)P(Sp−ν,p)

≥ βP(Rt)


Sp−ν,p∈Sν

P(Sp−ν,p)

= βP(Rt). (32)

Using the above decomposition and denoting by {i} the Subset i,
we further obtain that

Tr(E[PNℓ]) = Tr

 
SNℓ∈SNℓ

φ(P0, SNℓ)P(SNℓ)


=


SNℓ∈{1}

Tr(φ(φ(P0, S0,l), Sl,Nℓ))P(SNℓ) + · · ·

+


SNℓ∈{N}

Tr(φ(φ(P0, S0,l+(N−2)ℓ), Sl+(N−2)ℓ,Nℓ))P(SNℓ)
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≥


SNℓ∈{1}

Tr(φ(Q , Sl,Nℓ))P(SNℓ) + · · ·

+


SNℓ∈{N}

Tr(φ(Q , Sl+(N−2)ℓ,Nℓ))P(SNℓ). (33)

Based on Lemma 4, with pI ≤ P0 and pI ≤ Q , it follows that

Tr(E[PNℓ]) ≥ pα2(Nℓ−l)P(Rl,Nℓ) +

N−2
j=1

pα2((N−j)ℓ−l)

× P(Rjℓ+l,Nℓ)P(Rc
(j−1)ℓ+l,Nℓ|Rjℓ+l,Nℓ)

≥ pβα2(Nℓ−l)P(RNℓ−l) +

N−2
j=1

pβα2((N−j)ℓ−l)

× P(R(N−j)ℓ−l)P(Rc
(j−1)ℓ+l,Nℓ|Rjℓ+l,Nℓ). (34)

Similar to (32), there exists a positive β1 such that

P(Rc
(j−1)ℓ+l,Nℓ|Rjℓ+l,Nℓ) ≥ β1P(Rc

ℓ) > 0. (35)

Let β2 = pββ1P(Rc
ℓ), it follows from (34) and (35) that

Tr(E[PNℓ]) ≥ β2

N−1
j=2

α2(jℓ−l)P(Rjℓ−l).

Note that β2 is independent of N . By

lim sup
N→∞

Tr(E[PNℓ]) < ∞,

it implies that α2 lim supj→∞(P(Rjℓ−l))
1/(jℓ−l) < 1. Since l is ar-

bitrarily selected from the set {0, . . . , ℓ − 1}, we conclude that
α2 lim supN→∞(P(RN))1/N < 1.

Sufficiency: Let S0N be the event that there is no packet received
up to time N , i.e., Υk = 0 for all 0 ≤ k ≤ N − 1. Take any scalar q
and x satisfying qI > Q and x > 0, it follows that

φ(xI, S0N) = AN(AN)∗x +

N−1
j=0

AjQ (Aj)∗

≤


α2Nx +

N−1
j=0

α2jq


I

≤ α2N

x +

q
α2 − 1


I. (36)

Without any measurement, the resulting estimator cannot be bet-
ter that using measurements. This implies that for any SN ∈ RN ,

φ(xI, SN) ≤ φ(xI, S0N). (37)

Splitting the set SN intoRN and its complementRc
N , it follows from

Lemma 2 that

ξN(x) =


SN∈RN∪Rc

N

φ(xI, SN)P(SN)

≤ P(Rc
N)P̄N +


SN∈RN

φ(xI, SN)P(SN)

≤ P(Rc
N)P̄N + P(RN)φ(xI, S0N)

≤ P(Rc
N)P̄N + P(RN)α2N


x +

q
α2 − 1


I.

Since lim supN→∞ α2NP(RN) < 1, it is clear that for sufficiently
large x > 0, we have ξN(x) ≤ xI and xI > P0 for some N .
By Lemma 5, it follows that lim supN→∞ E[PN ] < ∞ for any P0
> 0. �
3.2. Extension to multiple eigen-blocks

We now generalize the result on single eigen-block to the mul-
tiple eigen-blocks, which includes any diagonalizable system.

Assumption 3. A = diag{A1, A2, . . . , Ag} ∈ Rn×n, where Ai = αi

diag{eiθi1 , eiθi2 , . . . , eiθini } has a single eigen-block with αi ≥ 0, αi
≠ αj for any i ≠ j, and (C, A) is observable.

In light of the structure of Awith multiple eigen-blocks, we de-
compose ON into ON =


O1
N O2

N . . . Og
N


, where Oi

N is a mN
× ni matrix corresponding to Ai. The main result for the multiple
eigen-blocks case is given below.

Theorem 6. Under Assumptions 1 and 3, the necessary and sufficient
condition for lim supN→∞ E[PN ] < ∞ is that

α2
i lim sup

N→∞

(P(RN(i)))1/N < 1, ∀ i ∈ {1, 2, . . . , g}, (38)

where RN(i) = {SN |Oi
N is column rank deficient}.

Remark 7. It is clear that Theorem 6 covers the result in Theo-
rem 3. However, its proof is very tedious and technical. Since the
idea of proof is the same as that of Theorem 3, we only provide the
sketch of proof in Appendix A.

3.3. Computation of P(RN)

In Theorem 3, the key factor to check the stability condi-
tion for systems satisfying Assumption 2 is to compute P(RN).
We design an algorithm to do this in this subsection. Since the
column part Oi

N , i = 1, 2, . . . , g is independent with struc-
tures Aj, j ≠ i, the studied system in the computation of
lim supN→∞(P(RN(i)))1/N is Ai, which follows Assumption 2. By
computing all lim supN→∞(P(RN(i)))1/N with i = 1, 2, . . . ,N , the
stability condition under Assumption 3 can be done similarly. To
this end, we only study the case under Assumption 2 as an exam-
ple and the period of a matrix is introduced.

Definition 1. If there exists a finite positive integer τ such that
Aτ

= ατ I and τ is the minimum one, we say that A is periodic with
a period of τ . If τ does not exist, A is aperiodic, and set τ = ∞.

If A has a period τ , then CAk+τ
= ατCAk for all k. The

contribution of yk to the rank ofON is the same as that of yk+τ if k ≤

N − τ . This observation enables us to work on a finite-length
sequence in Algorithm 1.

Algorithm 1 (Boolean Operation).
Step 1: For any k ∈ {1, 2, . . . , τ }, defineγ i

k = γ i
k ∨ γ i

k+τ ∨ · · · ∨

γ i
k+⌈N/τ⌉τ and Υk = diag(γ 1

k I1, . . . ,γ d
k Id), where ∨ is a Boolean

OR operator, and ⌈·⌉ is the standard ceiling function.
Step 2: LetSN = diag(Υ1, . . . ,Υτ ).

It is clear thatSN ∈ Rτ is equivalent to that of SN ∈ RN . Note
from (23) that the cardinality of Rτ is finite, and it allows us to ex-
plore its structure. In particular, P(SN ∈ Rτ ) will be expressed via
a specially designed matrix in this subsection and can be explicitly
derived for some systems. To this purpose, we use ζ (·) to count the
number of measurements being received by the estimator at time
τ , i.e.,

ζ (Sτ ) =

τ
k=1

d
i=1

γ i
k. (39)

Assume that Rτ has r elements, e.g. Rτ = {s1, . . . , sr} where si is
given in an ascending order in terms of ζ (si). Particularly, if i < j,
then ζ (si) ≤ ζ (sj). By Algorithm1, it implies thatP{SN+τ = si|SN =

sj} = 0.
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Let Mij be a matrix with (p, q)th element given by P(S(N+1)τ =

si, S(N+1)τ−ν,(N+1)τ = Sν(p)|SNτ = sj, SNτ−ν,Nτ = Sν(q)) where
Sν(p) is the pth element of Sν . By the homogeneity of the packet
loss model in Assumption 1,Mij is time-invariant, andMij is a zero
matrix if j > i. Then, we obtain a lower triangular matrix M with
r × r blocks

M =


M11 0 . . . 0
M21 M22 . . . 0
...

...
. . .

...
Mr1 Mr2 . . . Mrr

 . (40)

The stability condition can be characterized by the maximum
eigenvalue of M in the following result; see Appendix B for proof.

Theorem 8. Under Assumption 1 and that A has a period τ , then

P(RNτ ) = uMNv (41)

for any integer N ≥ 0, where u = [1 1 . . . 1], v = [1 0 . . . 0]′.
Moreover,

lim sup
N→∞

(P(RN))1/N = (λmax(M))1/τ

= max
1≤i≤r

{λmax(Mii)
1/τ

}, (42)

where λmax(M) and λmax(Mii) are the largest eigenvalues of M and
Mii in magnitude, respectively.

Remark 9. SinceM is a lower triangularmatrix, its eigenvalues are
the diagonal elements and much easier to get.

4. Second-order systems with multiple sensors

In this section, the necessary and sufficient stability condition
for the MMSE estimator of a second-order system, i.e. A ∈ R2×2,
with multiple sensors is explicitly given by simple inequalities
under i.i.d. packet loss model. For brevity, we make the following
assumption.

Assumption 4. (1) {γ i
k} is an i.i.d. process with its packet arrival

rate pi = E{γ i
k = 1}, and {γ 1

k }, . . . , {γ d
k } are spatially independent;

(2) rank(col{Ci, Cj}) = 2 for any 1 ≤ i ≠ j ≤ d.

Remark 10. If rank(col{Ci, Cj}) = 1 and rank(Ci) ≠ 0 for some i ≠

j, thenCi andCj are dependent. Thismeans that receiving the packet
from sensor i is equivalent to that of sensor jwhen concerning the
rank of regressionmatrix in Eq. (13).We can combine sensors i and
j, and endow a smaller packet loss probability (1 − pi)(1 − pj).

Obviously, there is no loss of generality to renumber the sensors
in three groups.

Group 1: For 1 ≤ i ≤ d1, (Ci, A) is observable and rank(Ci) = 1.
Group 2: For d1 < i ≤ d2, (Ci, A) is unobservable and
rank(Ci) = 1.
Group 3: For d2 < i ≤ d, rank(Ci) = 2.

Remark 11. The sensors in Group 1 are observable; it is proved in
Lemma 15 that col{Ci, CiAj

} for any 1 ≤ i ≤ d1 and 1 ≤ j < τ is of
full rank. This implies that any two packets received from the same
sensor within a period result in a full column rank ON . In contrast,
any number of packets from the same sensor in Group 2 will lead
to a column rank deficient ON . The sensors in Group 3 are one-step
observable, implying that single received packet is sufficient to get
a full column rank ON . As demonstrated before, the full rankness of
ON is essential to the stability of the networked MMSE estimator.
This motivates us to divide the sensors in the above three groups.

For each sensor in Group 1, a Congruent Set is introduced, which is
key to the rank analysis of ON .
Definition 2. For any sensor from Group 1, e.g. sensor i ∈ {1, . . . ,
d1}, a congruent setJi is defined asJi = {j|∃kij ∈ N, s.t. span{Ci} =

span{CjAkij}}.

Since i ∈ Ji, the congruent set is not empty. The probability that
all sensors in Ji lose their packets at the same time is given by

p∗

i =


j∈Ji

(1 − pj). (43)

Note that if the magnitudes of two eigenvalues of A are different,
O1
N and O2

N defined in Section 3.2 are all column vector, leading to
one-step observability, an easier case to handle. In view of this, we
study the case having a single eigen-block.

By Theorems 3 and 8, the stability condition for the case
of second-order systems can be explicitly expressed as simple
inequalities as below; see Appendix C for proof.

Theorem 12. Consider the second-order (A ∈ R2×2) system (1)–(2)
under Assumptions 2 and 4.
(a) If mind1

i=1 p∗

i ≤ mind2
j=d1+1(1−pj)τ , the MMSE estimator is stable

if and only if

d
i=1

(1 − pi)τ

mind1
j=1 p

∗

j

α2τ < 1. (44)

(b) If mind1
i=1 p

∗

i > mind2
j=d1+1(1− pj)τ , which obviously holds for an

aperiodic A (i.e., τ = ∞), the MMSE estimator is stable if and
only if

d
i=1

(1 − pi)

mind2
j=d1+1(1 − pj)

α2 < 1. (45)

Remark 13. Substituting d = 1 into Theorem 12, our result is the
same as Theorem 7 in You et al. (2011) for i.i.d. packet loss model.
Thus, it generalizes a result in You et al. (2011) to the multiple
sensors case.

5. Conclusion

In this paper, we have studied the networked estimation prob-
lem of a stochastic discrete-time system with multiple sensors.
The networked MMSE estimator is recursively computed using a
Kalman like algorithm. Then, we studied the stability of the MMSE
estimator under a Markovian packet loss process, and derived the
necessary and sufficient condition for the stability of MMSE es-
timator for diagonalizable systems. Moreover, for second-order
systems under the i.i.d. packet loss model, the stability condition
can be given by simple inequalities.

Appendix A. Proof of Theorem 6

We first introduce the following preliminary result, where ON
is defined in (13).

Lemma 14. Let ξi = {ei,1, ei,2, . . . , ei,ni} with ei,j being a column
vector with its (

i−1
q=1 nq + j)th element equal to 1 and all the other

elements equal to zero. Suppose Assumption 3 holds and there exists
1 ≤ i ≤ g such that Ker{ON} ∩ span{ξi} ≠ {0}. For any scalar p > 0
satisfying pI ≤ P0 and pI ≤ Q , it follows that

∥PN∥ ≥ α2N
i p, (A.1)

where ∥ · ∥ is the induced Euclidean norm.
Proof. By (27), it is straightforward to show that

PN ≥ pAN(I − OĎ
NON)(AN)∗.
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By the property of Moore–Penrose inverse, it holds that (I −

OĎ
NON)2 = I − OĎ

NON . Thus,

∥PN∥ ≥ p∥AN(I − OĎ
NON)∥2. (A.2)

Take a nonzero vector x ∈ Ker{ON}∩span{ξi}; it follows thatONx =

0, (I −OĎ
NON)x = x and Ax = diag{01, . . . , 0i−1, Ai, 0i+1, . . . , 0g}x.

This implies that

∥AN(I − OĎ
NON)x∥ = ∥ANx∥ = αN

i ∥x∥. (A.3)

Together with ∥AN(I −OĎ
NON)x∥ ≤ ∥AN(I −OĎ

NON)∥∥x∥, we obtain
that ∥AN(I −OĎ

NON)∥ ≥ αN
i . Substituting the above into (A.2) leads

to (A.1).
Now, we are in the position to prove Theorem 6.
Necessity: It is clear that

∥E[PN ]∥ = ∥


SN∈SN

φ(P0, SN)P(SN)∥

≥
1
n
Tr


SN∈SN

φ(P0, SN)P(SN)



=
1
n


SN∈SN

Tr(φ(P0, SN))P(SN)

≥
1
n


SN∈SN

∥φ(P0, SN)∥P(SN). (A.4)

Take any i ∈ {1, 2, . . . , g}, and denote

Rc
N(i) := {SN |ON(i) is of full column rank}.

As in the proof of Theorem6, theremust exist aminimumand finite
ℓ ∈ N such that P(Rc

ℓ(i)) > 0 for all i = 1, 2, . . . , g . If ON(i) is
column rank deficient, Ker{ON}∩span{ξi} ≠ {0}. By Lemma 14 and
following similar arguments in the necessity proof of Theorem 3,
we obtain that

∥E[PNℓ]∥ ≥
β2

n

N−1
j=2

α
2(jℓ−l)
i P(Rjℓ−l(i)) (A.5)

for any l ∈ {0, 1, . . . , ℓ − 1}. Again, β2 is independent of N . This
implies that (38) holds if lim supN→∞ E[PN ] < ∞.

Sufficiency: The main idea is the same as that of Theorem 3.
However, it is more involved and tedious, we do not repeat here
for saving space. �

Appendix B. Proof of Theorem 8

Let

WN = col{P(SNτ = s1, SNτ−ν,Nτ = Sν(1)),

P(SNτ = s1, SNτ−ν,Nτ = Sν(2)),

. . . , P(SNτ = s1, SNτ−ν,Nτ = Sν(2dν)),

. . . , P(SNτ = sr , SNτ−ν,Nτ = Sν(2dν))}. (B.1)

By the definition ofM and let v = [1 0 . . . 0]′, we have thatWN+1
= MWN , andWN = (M)Nv. Since the sum of all elements ofWN is
P(SNτ ∈ Rτ ), it follows that

P(SNτ ∈ RNτ ) = P(SNτ ∈ Rτ ) = uWN = uMNv.

And the proof of (42) is divided into two parts:
(1) Find an upper bound of lim supN→∞

Nτ
√
uMNv:

By a similarity transformation (Horn & Johnson, 1985), we have
that

M = Vdiag{B1, B2, . . . , Bf }V−1, (B.2)
where V is a non-singular matrix, Bj is a bj × bj Jordan block with
eigenvalue λj and

f
j=1 bj =

r
i=1 ti.

In light of the structure of A, we decompose vectors uV and
V−1v as uV =


U1 U2 . . . Uf


and V−1v = col{Z1, Z2, . . . ,

Zf }. This implies that

uMNv =

f
j=1

UjBN
j Zj. (B.3)

Since Bj is in a Jordan form, the (p, q)th element of BN
j (p, q) is given

by

BN
j (p, q) =




N
q − p


λ
N+p−q
j if p ≤ q

0 if p > q,
(B.4)

where


N
q−p


is the combinationnumber that selects q−p elements

from N elements. Rewrite UjBN
j Zj as UjBN

j Zj = λN
j Ψj(N) with

Ψj(N) =

bj
p=1

bj
q=1

Uj(p)Zj(q)BN
j (p, q)λ−N

j ,

where Uj(p) is the pth element of Uj and Zj(q) is the qth element of
Zj.

Note that the magnitude of BN
j (p, q)λ−N is


N

q−p


λ
p−q
j . If Ψj(N)

≠ 0, it follows that

lim sup
N→∞

Nτ


Ψj(N) = 1.

Subsequently, lim supN→∞

Nτ
√
uMNv ≤

τ
√

λmax(M).

(2) Find a lower bound of lim supN→∞

Nτ
√
uMNv:

We first note that

P(RNτ ) ≥ max
1≤i≤r

{P(SNτ = si,S(N−1)τ = si, . . . ,Sτ = si)}. (B.5)

Deleting the zero rows and columns in Mij, it becomes Mij. Based
on the properties ofMij in Section 3.3, it implies that

P(SNτ = si,S(N−1)τ = si, . . . ,Sτ = si)

= uiMN−1
ii Mi1v1 = ũiMN−1

ii
Mi1ṽ1, (B.6)

where ui = [1 1 . . . 1] ∈ R1×2dν , v1 = [1 0 . . . 0]′ ∈ R2dν×1,
and ũi, ṽ1 are with the similar structure as ui, v1 with appropriate
dimensions.

Using Assumption 1 and noting the definition ofMi1 andMii, we
obtain that the first column of Mi1 is a positive vector and Mii is a
positive matrix. By the Perron–Frobenius Theorem (Gantmacher,
1959), the eigenvector of the maximum eigenvalue of Mii is posi-
tive. Then, replace v and u in (B.3) by Mi1ṽ1 and ũi, both of which
are positive vectors. Then, it follows thatΨj(N) associatedwith the
maximum eigenvalue ofMii is positive. Thus

lim sup
N→∞

Nτ


P(SNτ = si,S(N−1)τ = si, . . . ,Sτ = si)

=
τ


λmax(Mii) =

τ


λmax(Mii). (B.7)

Substituting (B.7) into (B.5) leads to that

lim sup
N→∞

Nτ


P(RNτ ) ≥ max1≤i≤r
τ


λmax(Mii).

Since M is a lower triangular matrix, it is obvious that max1≤i≤r
τ
√

λmax(Mii) =
τ
√

λmax(M). In addition, P(RN) is a decreasing func-
tion of N . This implies that

lim sup
N→∞

N


P(RN) = lim sup
N→∞

Nτ


P(RNτ ).

Combining (1) and (2), (42) is proved. �
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Appendix C. Proof of Theorem 12

We introduce three technical Lemmas for the second-order
system and their proofs are trivial and omitted.

Lemma 15. Under Assumption 2 and (A, Ci) is observable, then for
any A ∈ R2×2 with period τ and k ≠ hτ , h ∈ N, it holds that

rank


Ci

CiAk


= 2. (C.1)

Lemma 16. Suppose Assumptions 2 and 4 hold and that (A, Cj) is not
observable. For any A ∈ R2×2, 1 ≤ i ≠ j ≤ d and k ∈ N, it holds that

rank


Ci

CjAk


= 2. (C.2)

Lemma 17. Suppose that Assumption 2 holds, both (A, Ci) and
(A, Cj) are observable and A ∈ R2×2. There exists at most one positive
integer 1 ≤ kij < τ such that

rank


Ci

CjAkij


= 1. (C.3)

Proof of Theorem 12. Since the i.i.d. packet loss process satisfies
Assumption 1, we use Theorems 3 and 8 here.

Recall that Rτ = {s1, s2, . . . , sr}, each of its element makes the
regression matrix column rank deficient. In particular, the order of
the elements are detailed below:

Let s1 denote that no packet has been received, and by
Lemma 16, {s2, . . . , sr} is divided into two sets: {s2, s3, . . . , sd̄+1}

denote the events that the receivedmeasurements are from sensor
1 to sensor d1. Similarly, {sd̄+2, sd̄+3, . . . , sr} denote the events that
the receivedmeasurements are from one of sensor d1 +1 to sensor
d2. Note the received measurement cannot be from any sensor d2
to sensor d.

By i.i.d. packet loss process, P(SNτ = si|S(N−1)τ = sj) is
independent of S(N−1)τ−ν,(N−1)τ , whereSNτ is given by Algorithm 1.
In light of Lemmas 15–17, the diagonal elements ofM in Theorem8
can be given below:
(a) λmax(M11) = P(s1|s1) =

d
q=1(1 − pq)τ .

(b) maxd̄+1
i=2 λmax(Mii) = maxd̄+1

i=2 P(si|si) = maxd1i=1{
d

q=1(1
− pq)τ/p∗

i }.
(c) maxr

j=d̄+2
λmax(Mjj) = maxr

j=d̄+2
P(sj|sj) = maxd2j=d1+1{


q≠j(1

− pq)τ }.
Using Theorem 8, we obtain that

lim sup
N→∞

N


P(RN) =
τ


λmax(M). (C.4)

Combining the above,we obtain thatλmax(M) = maxri=1 λmax(Mii).
This implies that

(a) If mind1
i=1 p

∗

i ≤ mind2
j=d1+1(1 − pj)τ , then

λmax(M) =

d
i=1

(1 − pi)τ

mind1
i=1 p

∗

i

.

(b) If mind1
i=1 p

∗

i > mind2
j=d1+1(1 − pj)τ , then

λmax(M) =

d
i=1

(1 − pi)τ

mind2
j=d1+1(1 − pj)τ

.

Following Theorem 3, it completes the proof. �
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