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Abstract—We present a general multiple path scattering model
for multiple transmit, multiple receive wireless systems. The
model is generated using physical modelling of the scatterers sur-
rounding transmit and the receive arrays. The condition of the
resulting multiple-input multiple-output (MIMO) transfer ma-
trix is then examined. A key parameter η which determines
the channel condition is identified. This parameter depends on
the local scatter geometries, the separation of arrays, and the
wavelength of the transmitted signal. We show that there exists
a critical value for this parameter at which the channel condi-
tion changes sharply. The implication is that the promised linear
growth in channel capacity may not eventuate if the separation of
the transmit and receive arrays is large (≈ 10× or 20× at 2GHz)
compared with the distance from array elements to local scat-
terers. Monte-Carlo simulations are used to demonstrate these
claims.

I. INTRODUCTION

The work of [1] and [2] predicted a remarkable capacity in-
crease for multiple transmit, multiple receive wireless systems
in the presence of multi-path scattering. In [1] and [2] a linear
growth in capacity is predicted, proportional to the minimum
number of transmit and receive antennas in the MIMO system.
The predicted increase was shown for a practical indoor envi-
ronment, where scatterers are dense in [3]. This has resulted
in a large amount of literature (eg. [4], [5], [6], [7], [8] con-
cerning MIMO wireless systems, and to the development of
“Space-Time” codes, which attempt to achieve the predicted
channel capacity.

Fundamental to this work is the assumption that the wireless
channel may be modelled by an independent random N × M
transfer matrix, where N and M are the numbers of the trans-
mit and receive elements respectively. That is, the entries of
the transfer matrix are assumed to be independent, complex
random variables. The assumption of independence guaran-
tees a (statistically) well-conditioned transfer matrix and pre-
vents a loss of capacity due to correlations between the chan-
nels.

Independent multi-path coefficients may be ensured by as-
suming a random placement of many scatterers between trans-
mitter and receiver elements. In this instance, line-of-sight
(LOS) transmission may be present, but is not dominant. Sim-
ilarly, the “rich scattering environment” in [3] corresponds to
an absence of LOS transmissions. Both situations motivate the
use of a non-line-of-sight (NLOS) model.

Besides [9] very little literature exists relating the channel
model and scatterer geometries to the actual MIMO transfer
matrix and few authors have addressed the physical conditions
necessary for the required well-conditioned transfer matrix. In
particular is local scattering, such as found in outdoor trans-
mission, a sufficient approximation of a “rich scattering envi-
ronment” in order to achieve the predicted linear increase in
capacity?

The work of [9] studies a case where scatterers are placed
locally in uniform arrays. From this geometry, two classes of
channel model are predicted:

• an “uncorrelated high rank model” - the well known in-
dependent random matrix approximation; and

• an “uncorrelated low rank” or “pin-hole” model - where
the channels are highly dependent and MIMO capacity is
consequently low.

These models are disjoint - the transition from one model
to the other is predicted (qualitatively) to occur smoothly at
“large” separation of arrays.

This paper aims to provide a detailed analysis of the ef-
fects of separation of arrays for multi-antenna systems. More
specifically, we study a case where scatterers are placed ran-
domly within circular regions, surrounding the transmit and
receive arrays. This corresponds to the well-known local scat-
tering model. This model has the advantage that it provides
more scope for analysis of the effects of separation, and in-
cludes the results of [9] as a subset, without a noticeable in-
crease in model complexity. We present a channel model us-
ing simple physical principles. We then proceed to simplify
this model and analyze the condition of the transfer matrix.
We have identified a key parameter that determines the condi-
tion of the channel model. This parameter is dependent on the
distance from array elements to local scatterers, the separation
between the transmit and receive arrays, and the wavelength.
We show that there exists a critical value for this parameter
at which the condition of the channel model (and hence the
channel capacity) alters sharply. The promised linear growth
in channel capacity can not eventuate when the value of this
parameter is too low, which corresponds to the case when the
separation of transmit and receive arrays is large compared
with the distance to local scatterers, or when the wavelength
is too large.

This paper is organized as follows: The configuration of the
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for model

multi-antenna system is explained in Section II. Section III
develops a MIMO transfer matrix for the channel. This trans-
fer matrix is simplified and its condition is analyzed in Section
IV. Some Monte-Carlo simulations are given in Section V.
Section VI provides a summary of our work.

II. SYSTEM CONFIGURATION

We consider a NLOS channel as shown in 1, where fading
results from scatterers at both the transmit and receive ends
of the link. We consider only scatterers close to either the
transmitter or receiver arrays since distant scatterers tend to
suffer large attenuation in signal strength, and have a corre-
spondingly small effect on transmission. All signals are as-
sumed to be narrow-band, and the channel is assumed to ex-
hibit frequency-flat fading.

Consider the multi-antenna system with N transmit ele-
ments (denoted by tx) and M receive elements (denoted by
rx), both placed in linear arrays.

The arrays are separated by a distance D. Without loss of
generality, we may place the arrays parallel to each other. This
removes the need to introduce orientation angles of one array
relative to the other. This simplification is accurate if the waves
transmitted may be approximated as plane waves and the sig-
nals are narrow-band. In this case, rotation of arrays is equiva-
lent to adding extra phase offsets at each element. The vertical
position for transmit (resp. receive) element i is denoted by δt,i

(resp. δr,i). For simplicity it is assumed that δt,0 = δr,0 = 0.
Surrounding each array is a disc of local scatterers, denoted

tx scatterers and rx scatterers respectively. These scatterers
are placed on an annulus of maximum radius R. The place-
ment is assumed to be random, with a uniform distribution. It
is assumed that R is large compared with the array length, and
that D is large compared with R.

Using spherical coordinates, each tx scatterer is placed at
(Rts, αs) where ts ∈ (0, 1] and αs ∈ [0, 2π) chosen at ran-
dom. Similarly, each rx scatterer is placed at (Rrs, βs) with
the appropriate translation of origin.

Each scatterer is assumed to be a small, lossless and mem-
oryless reflector. The scatterer receives all transmitted signals
isotropically, and re-transmits them isotropically. We will con-
sider two types of scatterers: circular and linear.

III. MODELLING

A. Scatterer Model

We consider circular and linear scatterers, as depicted in
2 and 3, respectively. The amount of power received by a
scatterer depends only on the surface area exposed toward the
transmitter.

For a circular scatterer 2, let the lines from the surface of
the scatterer s, drawn to the transmitter tx, subtend an angle
θT . The radius of the scatterer is rscat. The scatterer is placed
at distance R0 from the transmitter. The power received at
scatterer s, will be a fraction, f , of the power transmitted by
tx. We have

f
def=

θT

2π
=

1
π

arcsin
(

rscat

R0

)
(1)

We will denote f by f(rscat/R0) to show its explicit depen-
dence.

Using a similar analysis, we can consider the case where
a scatterer s is a line segment 3. The scatterer is placed at
coordinates (R0, αs) from the transmitter tx. It has a length
2rscat and an angle φs.

The proportion of the power fs received at scatterer s will
depend on the length presented to the transmitter, i.e.,

f =
1
π

arcsin
(

rscat‖ cos(φs − αs)‖
R0

)
(2)

The term rscat‖ cos(φs − αs)‖ can be viewed as the effective
radius of a circular scatterer. Therefore, in our future discus-
sions, we will consider all scatterers to be circular, for which
(1) applies.

It should be noted that f is the power attenuation factor.
Therefore, the signal attenuation factor is proportional to

√
f .

B. Channel Model

Consider the channel in 1. Define X and Y as vectors of
transmitted signals and received signals, respectively:

X
def=

[
x0 . . . xN−1

]T ; Y
def=

[
y0 . . . yM−1

]T

Then, the transfer matrix H from tx to rx consists of three
factors: a transfer matrix Ht from tx to the tx scatterers, a
transfer matrix Hr from the rx scatterers to rx, and a transfer

Rt

Θt
rscat

scatterer

Fig. 2. Circular scatterer with effective reception/transmit area.
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Fig. 3. Linear scatterer with effective reception/transmit area.

matrix Hs between the two sets of local scatterers. That is, we
have

Y = HX = aHrHsHtX (3)

where a is a constant attenuation factor which is independent
of N and M .

To determine Ht, we consider the xth transmit element and
the yth local scatterer surrounding the transmit array. From 1,
we see that the distance between the transmit element and the
scatterer is given by

R1(y, x) =
√

R2t2y − 2Rtyδt,x sin αy

Hence, the (y, x)th element of Ht is given by

Ht(y, x) def=

√
f

(
rt,y

R1(x, y)

)
exp

(
i
2π

λ
R1(x, y)

)
(4)

where rt,y is the effective radius of the tx scatterer.
In a similar fashion, we may compute Hr by considering

the xth local scatterer surrounding the receive array and the
yth receive element. The (y, x)th element of Hr is given by

Hr(y, x) def=

√
f

(
ry

R3(y, x)

)
exp

(
i
2π

λ
R3(y, x)

)
(5)

where ry is the effective radius of the receive element r and

R3(y, x) =
√

R2r2
x − 2Rrxδr,y sin βx

To determine Hs, we consider the xth scatterer at the trans-
mitter side and the yth scatterer at the receiver side. Define
R2(y, x) as the path length between the two scatterers. Then,
we have

R2(y, x) ≈
√√√√D2 + 2DR(tx cos αx − ry cos βy)

+ R2
(
t2x + r2

y − 2txry cos(αx − βy)
) (6)

Therefore, the (y, x)th element of Hs is given by

Hs(y, x) def=

√
f

(
rs,y

R2(y, x)

)
exp

(
i
2π

λ
R2(y, x)

)
(7)

where rs,y is the effective radius of the rx scatterer y at the
receive end.

IV. CONDITIONING

It is well-known [2] that the capacity of the channel is given
by

C = log2

(
det(IM +

ρ

N
HH∗)

)
(8)

assuming the receiver has the full knowledge of the channel,
where ρ is the signal to noise ratio at the receiver elements.

Using singular value decomposition, we may rewrite

ρ

N
HH∗ = UΣU∗

where U is a unitary matrix and Σ is a diagonal matrix con-
taining all the singular values σi of ρ

N HH∗. Without loss of
generality, we may assume that σ1 ≥ σ2 ≥ . . . σM . Therefore,

C = log2

M∏
i=1

(1 + σi) =
M∑
i=1

log2(1 + σi) ≈
κ∑

i=1

log2(1 + σi)

where κ is the number of singular values which are not negli-
gible.

Consequently, if H is poorly conditioned (i.e., κ is small),
then the channel will have reduced capacity. We will show that
the condition of the channel model (and hence its capacity) is
largely determined by the parameter

η =
2πR2

Dλ
(10)

We first analyze the conditioning of Ht and Hr. For Ht, we
assume that

δt,N−1 � Rts

for every scatterer y near the transmit array. With this assump-
tion, we have

Ht(y, x) ≈
√

f

(
rt,y

Rty

)
exp(i

2π

λ
Rty) exp(−i

2π

λ
δt,x sin αy)

Therefore,

Ht ≈ DtHt1 Dr = diag

{√
f

(
rt,y

Rty

)
exp(i

2π

λ
Rty)

}

Ht1(y, x) = exp(−i
2π

λ
δt,x sin αy)

It is obvious that Dt is well-conditioned, provided that the ra-
tio of rt,y and Rty is similar for different scatterers. The ma-
trix Ht1 is also well-conditioned provided that the transmit el-
ements are spaced at least λ/2 apart and that the angles of the
scatterers are well-separated.

A similar analysis applies to Hr, which is omitted. We may
write Hr ≈ Hr1Dr

The transfer matrix Hs is highly dependent on the separa-
tion of the antenna arrays and the radii of the scatterer rings.
To analyze the conditioning of Hs we assume

ε
def=

R

D
� 1 with d = i

2πD

λ
(11)
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With the above assumption, we have the following approxi-
mation:

f

(
rs,y

R2(y, x)

)
≈ f

(rs,y

D

)
and

R2(y, x) ≈ D

(
1 + εa(y, x) +

ε2

2
b(y, x)

)

a(y, x) = tx cos αx − ry cos βy (12)

b(y, x) = t2x + r2
y − 2txry cos(αx − βy) − a2(y, x) (13)

= (tx sinαx − ry sin βy)2

= t2x sin2 αx + r2
x sin2 βy − 2txry sin αx sin βy

Hs ≈ D3MD2D1 (14)

D1 = diag
{
exp(dεtx cos αx + dε2t2x sin2 αx)

}
(15)

D2 = diag
{
exp(dεry cos βy + dε2r2

y sin2 βy)
}

(16)

D3 = diag

{√
f

(rs,y

D

)
exp

(
i
2πD

λ

)}
(17)

and M is a matrix with

M(y, x) = exp(dε2txry sin αy sin βy) (18)

= exp(iηtxry sin αx sin βy)

It is clear that D1, D2, D3 are well-conditioned, provided
that the rx scatterers are of similar sizes. Hence, we need to
analyze M in detail. To this end, we approximate M using κ
order Taylor expansion, where κ is to be determined later:

M(y, x) ≈ 1+iηtxry sin αx sin βy+· · ·+(iηtxry sinαx sin βy)κ

Defining

V1
def= V (t1 sin α1, t2 sin α2, · · · )

V2
def= V (r1 sin β1, r2 sin β2, · · · )

(20)

where V (x1, x2, · · ·xn) denotes the κ × n Vandermonde ma-
trix, i.e., the matrix with the (i, j)th element equal to xi

j . Then,
M can be written as

M = V
′
2ΓV1 (21)

Γ def= diag{1, iη, · · · , (iη)κ} (22)

Giving

H = aHr1DrD3V
∗
1 ΓV2D2D1DtHt1 = aHRΓHT (23)

HR
def= Hr1DrD3V

∗
1 ; HT

def= V2D2D1DtHt1

It can be seen from (23) that the magnitude of the singular
values of H will be exponentially decreasing.

The analysis above shows clearly the role the parame-
ter η plays in the condition of the channel model. Since
the scatterers are arranged uniformly at random, we have
E {‖txry sinαx sin βy‖} =

(
1
2

)4 ≤ 1, the contribution of the
κth term diminishes exponentially as a function of κ when η
is small. Small η implies the channel model is poorly condi-
tioned. That is, the “effective rank” of the channel model is
small. In this case, increasing the number of transmit or re-
ceive elements has little effect on the capacity of the channel
once the number of elements reaches certain limit. Similarly,
increasing the number of local scatterers has little effect on the
effective rank either.

On the other hand, the transfer matrix H can be well-
conditioned if η is large. Only in this case, is it possible to
assume that the transfer from the tth transmit element to the
rth receive element to be independent, leading to linear growth
in channel capacity as promised by [1] and [2].

V. SIMULATION

We use Monte-Carlo simulations to analyze the model pre-
dictions. A wavelength of λ = 0.15m, corresponding to ap-
proximately 2GHz, is used. We use 15 receive and 15 trans-
mit elements, and positioned the elements in uniform linear
arrays, with inter-element spacings of λ

2 . Scatterers are placed
uniformly at random, within circular regions surrounding each
array. We found that 50 scatterers are sufficient to ensure Hr

and Ht were well behaved. The regions have a fixed radius
of 10m. Scatterers are given random gains selected uniformly
over an interval G ∈ [0, 1]. These gains mimic the varying
sizes of the scatterers. Monte-Carlo iterations are used to ac-
count for different random placements of scatterers with the
rings.

It is found from the simulations that the expected roll-off
in capacity is independent of the physical characteristics of the
scatterers. Figure 4 shows the condition number of the transfer
matrix H as the function of η. Note that the sharp transition
from small condition number to large condition number occurs
at around η ≈ 10 corresponding to D ≈ 400m = 4R2.

Figure 5 plots the magnitude of successive singular values
of H and shows that the poor conditioning is not confined to a
few extreme singular values. Rather, the singular values of H
decrease geometrically. Plotted is the singular value decompo-
sition at different values of η from Monte-Carlo simulation.

In both figure 4 and figure 5 the smallest singular values are
limited by the machine precision (≈ 10−15).

Figure 6 shows the channel capacity as a function of η, using
(8). It is assumed in the simulation that ρ = 10dB. It can be
seen that for sufficiently large η the capacity of the channel
approaches the expected capacity. However, for small η the
capacity is dominated by η and not min(N,M).

VI. CONCLUSION

In this paper, we have developed an NLOS channel model
for multi-antenna wireless systems which involve local scatter-
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ers at both the transmit and receive ends. We have identified a
key parameter, η, which plays a crucial role in determining the
condition of the channel and thus the channel capacity of the
system.

This analysis gives a quantitative measure of the system
configurations which can possibly achieve high channel capac-
ity. In particular, large separation between the transmit array
and receive array leads to poor condition for the channel trans-
fer matrix and thus the poor channel capacity. The simulation
results clearly indicate the significance of the parameter η.

It has been shown that η may be used as a measure, of the
gain in capacity achieved through the use of additional receive
and/or transmit elements. For large η we can expect the chan-
nel capacity to grow linearly, proportional to the minimum
number of transmit and receive elements as expected. How-
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Fig. 6. Capacity of MIMO channel with increasing η

ever below a given threshold η < 10 the benefit provided by
additional elements is significantly reduced. It has also been
shown that arrangement of the transmit and receive elements
do not play a significant role in ensuring that the linear increase
in capacity is possible.

This suggests that for certain arrangements of scatterers,
particularly for transmission over long distances in outdoor en-
vironments, the predicted linear increases in capacity of spa-
tially diverse systems, for increasing numbers of antennas,
may not be realistic.
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