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ABSTRACT

In this paper we consider the dynamic modelling of compliant micropositioning mechanisms using flexure hinges. A
simple modelling method is presented that is particularly useful for modelling parallel micropositioning mechanisms.
This method is based upon linearisation of the geometric constraint equations of the compliant mechanism. This results
in a linear kinematic model, a constant Jacobian and linear dynamic model. To demonstrate the computational simplicity
of this methodology it is applied to a four-bar linkage using flexure hinges. Comparisons are made between the simple
dynamic model and a complete non-linear model derived using the Lagrangian method. The investigation reveals that
this new model is accurate yet computationally efficient and simple to use. The method is then further applied to a
parallel 3-degree of freedom (dof) mechanism. It is shown that the method can be simply applied to this more complex
parallel mechanism. A dynamic model of this mechanism is desired for use in optimal design and for controller design.

Keywords: Micropositioning, compliant mechanism, flexure hinge, linear dynamic model, parallel mechanism, four-bar
linkage

1. INTRODUCTION

During the past two decades considerable research has been conducted to develop micromanipulators to be used for
purposes such as biological cell manipulation in biotechnology or micro-component assembly in micro-technology. The
majority of these micromanipulators are based on the use of the piezo-ceramic actuator (PZT) and the compliant
mechanism. PZT actuators can provide near linear motion with resolution of nanometres or sub-nanometres. Compliant
mechanisms, which move solely through deformation of flexures instead of bearings, provide smooth motion with no
backlash or Coulomb friction. As there are no hard non-linearities in the compliant mechanism behaviour there are no
physical limitations on the resolution of position control. Therefore a manipulator based on these components is able to
provide ultra high-precision positioning.
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Figure 1 - Schematic of a flexure hinge

Flexure hinges, as shown in Figure 1, are a particular type of flexure that consists of a necked down section that deflects
to provide a small range of near revolute motion. Mechanisms using this type of flexure hinges typically deflect only a
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very small amount and the angular rotation of the hinges is often less than 1 degree. These are commonly used due to
their well-studied and predictable motion. Compliant mechanisms with flexure hinges are frequently modelled using the
pseudo-rigid-body model (PRBM) approach. This method assumes that the flexure hinges behave as revolute joints with
torsional springs attached while the thicker section of the mechanism behave as rigid links. Using this approach the
mechanism can be modelled using well-established rigid-body modelling techniques.

Parallel micromanipulators are commonly used in micromanipulation due to the advantage of greater rigidity, which
allows for more accurate motion and faster response. These attributes are particularly beneficial for ultra high precision
positioning. In addition the actuators can be located in the base of the manipulator so that the link masses can be reduced.
Kinematic and dynamic models have been derived for macro-scale parallel mechanisms with various topologies.
However, these models are generally complex and non-linear. In particular the forward kinematics of a parallel
mechanism is complicated due to the unknown relative motion of the unactuated joints. The motion of these joints can
only be found by solving a set of simultaneous non-linear equations. This requires the use of a numerical iteration
technique, which is computationally demanding. Therefore such models are not ideal for optimisation and of limited use
for real-time control. However, in the case of micro-motion parallel manipulators it is possible to make linearising
assumptions that allow for a simpler analysis. This may lead to the development of simple linear kinematic and dynamic
models.

The method described in this paper is appropriate for mechanisms with angular displacement of less than 1 degree. This
small angular displacement is generated in mechanisms whose movement range is small, say microns, compared to the
size of its linkages, say millimetres. For this small angular motion it is appropriate to apply linearising small angle
assumptions. It is then possible to apply simplified and unique approaches to derive the kinematic and dynamic models
for such mechanisms. Such methodologies have not been well defined in the current literature. In this paper a method to
derive a linear kinematic and dynamic model of closed loop mechanisms is presented. This method is based upon
linearisation of the geometric constraint equations. Furthermore the geometry of the mechanism is defined in such a way
as to further simplify the derivation. This method will be demonstrated using the 4 bar linkage as an example and
comparisons made to a complete non-linear model. The method will then be further applied to a 3RRR" parallel
compliant mechanism as shown in Figure 2.

Figure 2 - Schematic of the 3RRR compliant mechanism and PZT actuators. The triangle represents the end-effector.

2. PREVIOUS WORK

In recent years there has been increasing interest in the use of parallel manipulators. Numerous macro-scale manipulators
have been developed, for which kinematic and dynamic models have been developed to aid structure and controller
design. The derivation of direct kinematic and dynamic models for these manipulators is non-trivial due to presence of
unactuated joints. To determine the motions of these unactuated joints requires the solution of a set of simultaneous non-
linear equations involving all loops of the manipulator. Ma and Angeles' developed an effective method to derive the
direct kinematics and dynamics of a non-compliant 3RRR parallel manipulator. However the solution of this model
requires numerical integration of non-linear equations, which is time consuming. Codourey” considered the efficient
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dynamic modelling of parallel robots for the implementation of computed torque control. To develop a dynamic model
that was simple enough for use in real-time control a number of model simplifications were made. Codourney and
Burdet® proposed a body orientated method to derive a linear form of the dynamic model. Dynamic modelling methods
developed for macro-scale manipulators could be applied to the case of micromotion systems. However due to the small-
scale motion of these mechanisms it is more appropriate to apply a simplified linear analysis specific to this type of
mechanism.

In the analysis of micro-motion mechanisms it is a common approach to model flexure hinges as revolute joints with
torsional stiffness and the thicker segments of the structure as rigid links. Scire and Teague” first applied this approach in
the analysis of a particular 1-dof micro-positioning stage. In their analysis they applied the classical analytical equations
presented by Paros and Weisbord to calculate the stiffness of flexure hinges. This modelling approach has been termed
the pseudo-rigid-body-model and has since been widely applied to a range of micro-motion systems. Another common
approach is to apply linearising small angle assumptions cos(A0)= 1, sin(AB)=A8 in deriving the kinematics of compliant
mechanisms. Based upon these two simplifying approaches kinematic and dynamic models have been derived for a
range of micro-motion manipulators. Gao et al.> 7 applied the Lagrangian method to derive simple dynamic models for a
1-dof translator and a 1-dof stage, which both gave close predictions of the natural frequency. Yang et al.® also applied
the Lagrangian method to derive the dynamic model of a 1-dof micropositioning stage, which also closely predicted the
behaviour of the stage. Dynamic models of parallel multiple-dof mechanisms have been derived less frequently. Wang et
al.? outlined a method to derive the kinematics and dynamics of a 6-dof micromanipulator that used a 3RRR stage. Their
method used vector analysis and the Lagrangian method, resulting in a non-linear dynamic model. Zhang et al.'
developed a constant Jacobian method for modelling the kinematics of a 3RRR compliant mechanism, which proved to
be as accurate as a non-linear kinematic model. Further to this work Zou'' applied the Lagrangian method to derive a
dynamic model of the same compliant 3RRR mechanism. However the resulting model was non-linear, complex and
unsuitable for optimisation or real-time control. Ryu et al.'? also discussed the dynamic modelling of a 3RRR mechanism
to be used for optimal design. They suggested application of the Lagrangian method but did discuss derivation of the
stiffness and inertia from parametric values. As yet there has been no discussion in the literature of general methods to
derive linear dynamic models of parallel compliant manipulators.

Her and Chang have developed a linear scheme for the displacement analysis of micropositioning stages”. All the
geometrically constrained equations are linear and can be solved directly. The linear scheme can be generally applied to
planar mechanisms and is demonstrated using single-loop and two-loop stage structures. The displacements of each
flexure hinge in the structures, calculated using the linear scheme, are presented. The hinge displacement results are
claimed to be accurate. However, the forward and inverse kinematics of the stage is not discussed and the method is not
extended to dynamic modelling. In this paper a similar linear analysis approach will be applied to derive kinematic and
dynamic models of a four-bar linkage and a parallel complaint mechanism.

3. LINEAR MODEL OF A FOUR-BAR LINKAGE

3.1 Kinematic Model

Compliant mechanisms designed for micromanipulation and micropositioning tasks commonly have structures
consisting of closed kinematic chains. An example of such a structure is a four-bar linkage. A multi-dof parallel
manipulator has multiple closed kinematic chains. The method discussed here is applicable to planar structures with one
or more closed kinematic chains. The proposed method is first demonstrated by the example of a compliant four-bar
linkage. The linkage shown in Figure 3 is a general four-bar linkage, which could have any geometry. It is used for
illustrative purposes only and has no specific practical use. The flexure hinges are assumed to provide revolute motion
only and therefore the movement of the mechanism is kinematically constrained. It is assumed that the angular
displacement of any joint in this mechanism will be less than 1 degree.

This compliant mechanism can be modelled using a PRBM as shown in Figure 3. The flexure hinges are modelled as
revolute joints with torsional stiffness. At this point we will only discuss the kinematic modelling and the stiffness will
be ignored. The dynamic model will be discussed in the following section.
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Figure 3 - A compliant four-bar linkage and its pseudo-rigid-body-model. The dots
indicate the centre of mass of the links.

To begin, consider a single link rotating through a small angle, as shown in Figure 4. Point B is the free end of the link
and is defined by its x and y coordinate as given in Eqgs (1) and (2).

X, = R, cos 6, (1)

¥y, =R, sin6, ©)
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Figure 4 - A single link rotating through a small Figure 5 - A four-bar linkage with each joint rotating
angle through a small angle

If link 1 is displaced by a small change in joint angle A8, then the new coordinates are given by Eqs (3) and (4).

x,'=R, cos(9 + AHI): R,(cos @, cos AB, —sin 6, sin AG,) (3)
y,'=R, sin(e + A0, ) = R,(sin &, cos AB, + cos6, sin AB,) 4)

Using the small angle assumptions cos(A0)= 1, sin(AB)=AB and subtracting the original coordinate gives the change in
coordinate to be Egs (5) and (6).
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Ax, = x,'—x, = R [cos 8, —sin 6,(AB,)]- R, cos6, = —(AB, )R, sin 6, = —(AB, )(y, —0) (5)

Ay, = y,'=y, = R |sin6, +cos6,(A6,)|-R, sin6, = (A6, )R, cosb, = (A, )(x, —0) (6)

It can be seen from Eqs (5) and (6) that the displacement of point B in the x-direction is given by the product of the
change in angle and the initial distance in the y-direction between B and the centre of rotation of the link. Likewise the y
displacement is the product of the change in angle and the x-distance between point B and centre of rotation. This basic
approach can be further extended to analysis the case of multiple links.

Consider the four-bar linkage in Figure 5. It is momentarily assumed that point D, is detached from the ground. The
total displacement of point D due to a change in angle of all joints is given by a sum of displacements, as given in Eqs
(7) and (8), where the values of x; and y; (i=1,2,3) are the Cartesian co-ordinates of the joints. Point D is of course
actually constrained and is attached to the ground, it therefore has zero displacement and so Eqs (7) and (8) equate to
zero. These are the geometric constraint equations.

Ax, =—[(A8, )y —0)+ (A8, )(ys — y,) + (A8, )y, — ¥,)]=0 (7)

Ay, = (Ael )(x3 -0)+ (Aez )(xz -x)+ (A93 )(x3 -x,)=0 (3)

We now have two linear kinematic constraint equations. The input to the four-bar linkage is a displacement of one link,
say A6, and we have two unknown displacements, A8, and AB;. These two equations can be solved easily to provide A6,
and ABs in terms of A0;.

The total change in angle of link 2 and 3 is given by Eqs (9) and (10) respectively.

¢, = A6, + AB, = ¢,AB, ©)

¢y = A6, + A0, + A6, = c,AH, (10)

Where c, and c; are constants. These are the kinematic equations describing the four—bar linkage. As the kinematics is
described by constants the Jacobian, which is the time derivative of the kinematic equations, is described by the same
constants, Eqs (11) and (12).

¢, =c, 6, (11)
P =c¢; 6, (12)

3.2 Dynamic Model
To derive the dynamic model the Lagrangian method can be applied. The Lagrangian equation is given in Eqn (13)
below.

d 0K 0K P
—————+—=7
di 54 96, 96,

(13)
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The potential energy of the mechanism is due to the stiffness of the flexure hinges. Gravity is ignored in this analysis as
it is generally far less significant then the stiffness of the structure, while in addition these planar mechanisms commonly
operate in the horizontal plane. The stiffness of the flexure hinges can be calculated using the equation presented by
Paros-Weisbord’ , Eqn (14) below.

2Ebt”?
Kb = %—1/2 (14)
The potential energy of the four-bar linkage is given by Eqn (15).
_ 1 4 2 1 2 2 2 2
P==> kA6, kA8 +k,AO; +k,AO; + k,AB; (15)

25 2
Where ki, ky, k; and ky, are the stiffness of flexure hinges A, B, C and D respectively.

Using the kinematic Eqgs (9) and (10) this can be written as a function of A@;, where all other values are constants and
therefore the equation can be represented as in Eqn (16) where W is a constant.

P= %[‘P]Aef (16)

To calculate the stiffness term of the Lagrangian we take the partial derivative of P, which gives Eq (17).

oP
—=|PYIAL 17
% [¥]as, (17)

The kinetic energy of the mechanism is given by Eqn (18).

301 (2 2) 1 o2
K:z Em[ Vix+Viy +EJ[01' (18)

i=1

Where

V' = the velocity of the centre of mass of the links
m = the mass of the links
J =the moment of inertia of the links

Vi and V, for each link can be determined using the Jacobian constants, Eqs (11) and (12), and the same approached
used to generate the constraint equations, Eqs (7) and (8). These velocity terms can be substituted into the kinetic energy
equation. The mass moment of inertia of each link, which is dependent on the shape of the link, can also be substituted
into the kinetic energy equation.

The resulting equation can be written as a function of @, where all other values are constants. The kinetic energy

equation can thus be represented in the form of Eqn (19) where Q is a constant.

1 . 2
K = ?[Q]Hl (19)
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To obtain the Lagrangian terms we take two derivatives. The first is Eqn (20) below.

a[l[fz]e}
dak_d’2

‘”aél dt 96,

j d . oo
=—lele =[ale (20)
The second is Eqn (21) below.

a(; 6, j

-0 21
26 99, -

Substituting Eqs (17), (20) and (21) into Eqn (13) gives the total dynamic model for the four-bar linkage as Eqn (22).

Q0,+¥0 =1 (22)

This is a constant, linear dynamic model.

3.3 Comparison of linear model to complete non-linear model
A complete general non-linear model was derived for the four-bar linkage using the Lagrangian method. The details of
this model are given in Zhang”. This has the form given in Eqn (23).

oo . . (23)
M(6,)6,+C(6,,6,)0,+K(6,)=0

Working Model software was used to verify this model and gave an identical response. The linear model was far simpler
than the general non-linear model, and has the form given in Eqn (24).

M, A6+ K, A6 =0 (24)
To compare the models a step input torque was applied to link 1, which caused an oscillation of the four-bar linkage. The
step input was such that the angular displacement of link 1 was less then 1 degree. The inertia, M, corriolis/centripetal,
C, and stiffness, K, terms of the non-linear model are functions of position and velocity. For the range of motion these
terms were compared to the constant linear-model inertia, My;,, and stiffness, K;;,. A number of four-bar models with
different geometric parameters were investigated. An example of the geometry considered is L;=50mm, L, = 70mm,
L;=50mm, L,=60mm, m;=10g, m,=500g, m;=10g, hinge stiffness of k,=k,=k;=k,=40Nm/rad, and initial position, 6,=
90. For this mechanism a step torque of 1.2Nm was applied. This excited an oscillation with amplitude of AB, =
0.97degrees. The resulting dynamic model terms are shown in Table 1.

A6, 0 0.97
M 0.0014 0.0014
Min 0.0014 0.0014
C 1.22E-04 1.23E-04
K(®) 0 2.396
KinAB 0 2.398
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Table 1 - Comparison of dynamic model terms when A8, = 0 and 0.97 degrees

From these results it is apparent that; the inertia terms are identical and the non-linear term does not vary significantly
for this small-scale motion; the C term is insignificant; and the stiffness terms are nearly identical.

Four-bar models with a range of different geometry’s were investigated to ensure the results were general. Regardless of
the geometry the linear model gave almost identical results to the complete model.

4. MULTI-DOF PARALLEL MECHANISM

The method outlined above will now be applied to a practical 3-dof parallel compliant mechanism. The 3RRR
mechanism is shown again in Figure 7 with its PRBM. Considering the 3RRR mechanism it can be seen that there are
three closed loops. However only two of these need be considered in order to determine the kinematics of the
mechanism. Three inputs must be defined to determine the position of the mechanism. The inputs to the mechanism are
the rotations of links AB, given by A8, AB4; and AB,;. The geometry of the mechanism is simply described using the
Cartesian coordinates of the joints. These coordinate values are then used directly in the constraint equations to give the
distance between the end-points and the centres of rotation. The points describing the joint locations can be given using a
Cartesian reference frame of any orientation. The solution for the unknown A6 will be the same.

Figure 6 - Schematic of the 3RRR compliant mechanism and it's PRBM

4.1 Kinematic Model

Like the case of the four-bar linkage there are two linear constraint equations for each loop and so we have four
constraint equations in total. There are four unknown link angles, ABg;, ABg,, ABp; and AB¢;. Therefore the four linear
equations can be solved simultaneously to give the four unknowns. Each link displacement is given as a function of the 3
input rotations AO,; A0, and AB,;. These are in turn each a function of the PZT displacements, L;, L, and L;
respectively.

The resulting kinematics is described by a 3x3 matrix of constants, which is multiplied by the input PZT displacement to
give the end-effector motion, as given in Eqn (25).

x clx ¢2x c3x| L,

end —effector
yend—eﬂéctor = CIy c2y C3y L2 (25)
¢end—qﬁect0r CI¢ C2¢ C3¢ L3

The Jacobian is given by the same constant matrix.
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The geometric parameters of a particular 3RRR mechanism were substituted into the general kinematic model resulting
in the kinematic matrix in Eqn (26) below.

X pnt—efctr 1.905 1315 -3.220] L,
yend—effecmr = 2618 - 2960 0341 Lz (26)
Dond—efioctor -5996 -59.96 -59.96| L,

Zhang et al."’ and Yong et al."® have derived kinematic models for this particular geometry of 3RRR mechanism. They
also based their models upon the PRBM, but used different methods to derive the kinematics. All three kinematic models
agree.

4.2 Dynamic Model
The dynamic model is derived using the same approach as described in the four-bar case, using the Lagrangian. However
in this case partial derivatives are taken of kinetic and potential energy with respect to 3 PZT displacements/velocities,

L,Lyand L3/ Ll , L2 , and L3 . There are also 3 input forces Q;, Q, and Qs, giving the Lagrangian in Eqn (27).

d 9K 9K P 9 ,
- - + =0,| ,i=123 (27)
dt o7 dL, dL,

i Q3

The final dynamic model derived for the 3RRR mechanism has the form of Eqn (28).

2w o o |L| 2 B BTL 0,

c 2y o |L |+ B 20 B|L |=|0, (28)

c o 2w BB 2oL, 0,

3

Where , G, o and B are constants.
5. CONCLUSIONS AND FUTURE WORK

This paper presents a simple method to derive a linear dynamic model for parallel mechanisms undergoing small angular
displacement. The method is based upon the use of a pseudo-rigid-body model representation of a complaint mechanism
with flexure hinges. Using the example of a four-bar linkage it was demonstrated that the linear model gives an almost
indistinguishable result from a complete non-linear model. The modelling method was then applied to a 3RRR parallel
compliant mechanism. The forward kinematics of the parallel mechanism can be derived without needing to solve
simultaneous non-linear equations, while the constraint equations are easily formulated. The resulting kinematics is the
same as derived by other researchers considering the same mechanism. The linear dynamic model was also derived for
the 3RRR compliant mechanism. This model now needs to be experimentally verified. The dynamic model may then be
used in structure/controller optimisation.
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