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High-speed Lissajous-scan atomic force microscopy:
Scan pattern planning and control design issues
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Tracking of triangular or sawtooth waveforms is a major difficulty for achieving high-speed opera-
tion in many scanning applications such as scanning probe microscopy. Such non-smooth waveforms
contain high order harmonics of the scan frequency that can excite mechanical resonant modes of the
positioning system, limiting the scan range and bandwidth. Hence, fast raster scanning often leads to
image distortion. This paper proposes analysis and design methodologies for a nonlinear and smooth
closed curve, known as Lissajous pattern, which allows much faster operations compared to the or-
dinary scan patterns. A simple closed-form measure is formulated for the image resolution of the
Lissajous pattern. This enables us to systematically determine the scan parameters. Using internal
model controllers (IMC), this non-raster scan method is implemented on a commercial atomic force
microscope driven by a low resonance frequency positioning stage. To reduce the tracking errors
due to actuator nonlinearities, higher order harmonic oscillators are included in the IMC controllers.
This results in significant improvement compared to the traditional IMC method. It is shown that
the proposed IMC controller achieves much better tracking performances compared to integral con-
trollers when the noise rejection performances is a concern. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4725525]

I. INTRODUCTION

Use of triangular or sawtooth signals for raster scanning
has been the standard method of scanning employed in all
kinds of scanning probe microscopy (SPM (Ref. 1)), such
as STM,2 AFM,3 and SNONM.4 Such waveforms have also
been used in other probe-based emerging technologies. For
example, in Refs. 5 and 6, where digital data are recorded by
an array of probes, the motion is conducted in a raster pat-
tern within the storage area. Characteristics of the reference
signals to be tracked during raster scanning can cause con-
siderable control difficulties in SPMs. In conventional raster
scanning, the positioning stage has to follow a triangle or
sawtooth waveform in one axis, while the other axis has to
follow a ramp or staircase signal. Although this method can
provide acceptable solutions during slow operations, it can-
not provide satisfactory responses in fast scan regimes. There
has been a growing demand for high-speed atomic force mi-
croscopy, particularly to study dynamic behavior of biological
samples.7, 8

In addition to its fundamental frequency, the spectrum of
a triangle or sawtooth waveform contains strong higher order
harmonics. When these waveforms are used as reference sig-
nals, the limited mechanical bandwidth of SPM positioning
stages along with their highly resonant nature and actuation
limitations and nonlinearities do not allow for the requisite
high-speed performance. For an acceptable performance in
conventional raster scanning, the frequency of the raster sig-
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nal is typically limited to 1% of the first resonance frequency
of the positioning stage. This constraint ensures acceptable
tracking of high order harmonics of the raster signal without
exciting the vibration modes of the stage. However, this leads
to a low scan speed and an image that takes several minutes
to develop.

To enhance the scan speed in SPMs, a variety of solu-
tions has been offered. One approach is to use feedback to
increase the damping ratio of the lightly damped poles of the
SPM positioning stage.9–11 This method removes the possibil-
ity of exciting the mechanical resonance modes of the stage
by the raster signal. However, the mechanical bandwidth of
the scanner, which must accommodate the scan frequency as
well as its 6–7 harmonics, remains limited. In Refs. 12–16,
feedforward control methods are used to improve the tracking
performance in the presence of limited mechanical bandwidth
of the positioning stage. Design of sophisticated structures for
positioning stages, whose first modes are located at very high
frequencies (beyond 10 kHz), is getting more attraction.17–20

Non-raster scanning methods have been recently proposed to
considerably increase the scan speed of SPMs. These meth-
ods are based on using spiral21, 22 and cycloid-like patterns23

by tracking sinusoidal reference signals on x and y axes of the
positioning stage. Tracking of sinusoidal signals in a highly
resonant stage with low mechanical bandwidth is a much eas-
ier proposition than tracking of a triangle or sawtooth refer-
ence with the same amplitude and fundamental frequency.

This paper considers an alternative non-raster scan
method, based on Lissajous pattern. In contrast to spiral and
cycloid scan methods, which involve tracking of slow ramp
signals in addition to the sinusoidal references, this method
forces the scanner lateral axes to follow purely sinusoidal
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waveforms with fixed amplitudes and identical phases. Fre-
quencies of the sinusoids are fixed. However, their small dif-
ference significantly affects the shape, the resolution, and the
scan time of the pattern. Using a commercial SPM, we show
that the method can obtain high-quality images at high scan
speeds, where regular raster scanning approach cannot per-
form acceptably. A mathematical analysis of the Lissajous
pattern is presented and a closed-form formula is derived to,
a priori, determine the resolution of the pattern. The analysis
provides a systematic and straightforward procedure to deter-
mine the parameters of the Lissajous pattern, based on de-
sired raster dimensions, resolution, and lateral frequencies of
the scanner. To track the sinusoidal references, we used novel
versions of internal model controllers (IMC), where higher or-
der harmonics of the sinusoids are included in the controllers
to improve the residual tracking errors due to nonlinearities
of piezoelectric actuators. We also show that when the noise
attenuation performance of the control system is limited, the
IMC methods provide much better tracking performances for
sinusoidal references compared to integral controllers.

The rest of the paper continues as follows. Sec. II A
presents a thorough analysis of the Lissajous pattern, which
leads to a measure of resolution and a systematic design pro-
cedure. In Sec. III, we compare the Lissajous method with
conventional raster scanning and investigate the performance
of the proposed method using a commercial atomic force mi-
croscope and internal model controllers.

II. LISSAJOUS PATTERN

The Lissajous-scan pattern can be generated by forcing
the x and y axes of the scanner to track the following signals:

x(t) = Ax cos(ωxt); y(t) = Ay cos(ωyt), (1)

where ωx = 2π fx, ωy = 2π fy, and Ax and Ay are positive
constants representing the frequencies and amplitudes of the
sinusoidal signals associated with x and y axes, respectively.
Assuming that the scanner is a parallel-kinematics device
with identical axes, and assuming that the frequency range of
interest is sufficiently far away from the scanner’s resonance
frequency, the above signals, or a scaled version of them, can
be directly applied to the x and y axis actuators. Otherwise,
the gains and phases associated with the two channels can
be compensated using either a feedforward controller, or
preferably a feedback controller. Efficient control design
methodologies for tracking of sinusoidal set points exist
in the literature.24 In experiments reported here, the AFM
scanner is a piezoelectric tube nanopositioner, which is a
parallel-kinematics device.25

In Eq. (1), the frequency difference between ωx and ωy

determines the overall shape of the Lissajous pattern and the
period in which the pattern progresses and repeats itself.26, 27

The phase difference between the sinusoids, which is as-
sumed zero in this paper for simplicity, has also an impact
on the shape of the pattern.26 Numerous scan patterns can
be generated by selecting frequencies and phase shifts of
the two sinusoids in Eq. (1). Here we have opted to choose
fx = 100 Hz, fy = 99 Hz, and unity amplitudes such that a
pattern, as shown in Fig. 1, is obtained, leading to a square-
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FIG. 1. Schematic of a Lissajous pattern. (a) The first quartered period,
0 ≤ t ≤ T/4. The pattern evolves from a line to a circle (counter clock-
wise). (b) The second quartered period, T/4 ≤ t ≤ T/2. The pattern evolves
from a circle to a line (counter clockwise). (c) The third quartered period,
T/2 ≤ t ≤ 3T/4. The pattern evolves from a line to a circle (clockwise).
(d) The fourth quartered period, 3T/4 ≤ t ≤ T. The pattern evolves from a
circle to a line (clockwise). (e) A square area can be fully scanned by a half-
period Lissajous signal, 0 ≤ t ≤ T/2.

shaped image. The full period of the Lissajous pattern is 1 s,
which is calculated by the following relationship:26

T = 1

|fx − fy | . (2)

During the first quarter period, i.e., 0 ≤ t ≤ T/4, the pattern
evolves from a line to a circle. In the second quarter period
(T/4 ≤ t ≤ T/2), the circle evolves back to a line. This trans-
formation repeats itself in a reverse manner during the third
and fourth quarter periods. Figure 1 shows the transformation
of the Lissajous pattern.

As shown in Fig. 1(e), a square-shaped region can be
fully scanned using a half-period Lissajous pattern. Although
it is more efficient to use a quartered-period Lissajous since
this will halve the total imaging time, a disadvantage of this
approach is that the information in the vicinity of two di-
agonally opposing corners of an image is lost. However, it
could be argued that this information may be insignificant in
imaging applications, as often the central region of an im-
age is of main interest. In this work, square-shaped images

Downloaded 04 Jun 2012 to 134.148.216.165. Redistribution subject to AIP license or copyright; see http://rsi.aip.org/about/rights_and_permissions



063701-3 Bazaei, Yong, and Moheimani Rev. Sci. Instrum. 83, 063701 (2012)

were recorded to demonstrate the effectiveness of the pro-
posed scanning trajectory.

A. Analysis of Lissajous scan pattern

In this section, we present a rigorous analysis of the Lis-
sajous pattern that leads to derivation of a measure of res-
olution. We assume that the Lissajous curve is enclosed by
a rectangle defined by (|x| ≤ Ax)

⋂
(|y| ≤ Ay) and that its

x-y coordinates at time t are determined by Eq. (1). Assum-
ing that the path has a fundamental period of T, then coprime
positive integers kx and ky exist such that equalities T = kxTx

= kyTy are hold, where Tx = 1/fx and Ty = 1/fy are coordinate
periods. Hence, the ratio of x and y frequencies should be a
rational number, which is adopted as

fx

fy

= 2N

2N − 1
, (3)

where N is a positive integer. Here, the frequency ratio is de-
termined by one integer only, which further simplifies the de-
sign procedure compared to Ref. 26. Equation (3) also ensures
that the path includes the lower right-hand corner of the rect-
angle. Since 2N and 2N − 1 are coprime, i.e., their greater
common divisor is 1, kx and ky are equal to 2N and 2N − 1,
respectively. Hence, the following relationships are obtained:

fx = 2Nf ; fy = (2N − 1)f, (4)

where f = T−1 = fx − fy is the fundamental frequency of the
path. In Appendix A, we show that the path traversed dur-
ing the first half period is symmetric with respect to x-axis.
Moreover, in the second half period, the previously traveled
path during the first half period is traversed backward. In other
words, no new path is traveled in the next half periods. Hence,
with the selected frequencies and time profiles, the data dur-
ing the time interval t ∈ [0, T

4 ] are enough to reproduce the
whole path. Moreover, the whole path is traversed once in
each half period that starts from a multiple of T

2 .
As shown in Fig. 1(e), the Lissajous curve is a closed

path that intersects itself at many points. In this paper, the
maximum distance between adjacent scan lines is considered
as a measure of the image resolution. Before estimating the
resolution measure, we calculate the positions of the crossing
points, which are independent of the sampling frequency and
simpler to obtain. However, for the resolution measure to be
valid, we assume that the sampling frequency is high enough
such that the distance between two successive sample points
is sufficiently lower than the resolution measure.

As shown in Appendix B, the time interval between two
successive crossing points located within the rectangle (|x|
≤ Ax)

⋂
(|y| ≤ Ay) is a constant defined by

� = 1

2fy

− 1

2fx

= 1

4N (2N − 1)f
. (5)

Moreover, the crossing points are traversed at time instants
that are multiples of �.

Figure 2(a) shows the proposed Lissajous curve during
the first half period with N = 2 and Ax = Ay = 1, along with
the starting, ending, and crossing points. In this particular ex-
ample, since N is very low, there are only three actual crossing
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FIG. 2. (a) Lissajous pattern with N = 2, (b) with N = 10.

points, which is less than the number of edge points. However,
for scanning applications, we use much higher values of N so
that the number of actual crossing points is much higher than
the number of points touching the rectangle sides, as shown
in Fig. 2(b) with N = 10. Before obtaining the maximum dis-
tance between two adjacent scan curves as a measure of reso-
lution, we consider the time instants corresponding to the ab-
solute maximum of the speed, which is denoted as tmax . Such
time instants correspond to zones with the most widely spaced
crossing points and can be used to determine a worst case res-
olution measure. In Appendix C, we show that for sufficiently
large values of N, the local maxima approximately occur ev-
ery T/(4N) s, while the absolute maxima happen with a much
longer period of T/2, approximately at the following time in-
stants:

tmax
∼= 4Nm ± 1

8Nf
= m ± 1

4N

2f
, m ∈ {0, 1, 2, . . .}. (6)

Using Eqs. (1), (4) and (6), the position corresponding to
the absolute maximum speed can be determined as

x(tmax) = 0, y(tmax) = ±Ay sin
( π

4N

)
≈ 0, (7)

where the plus sign is used when m is even, and vice versa.
Equation (7) show that the maximum speed happens when the
path is traversed very near the origin. In addition, the path is
almost linear when the speed reaches its absolute maximum
value (see the path in Fig. 2(b), around origin). During the
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scan, since the crossing points are met uniformly in each � s,
the maximum spacing between two successive crossing points
is associated with those that occur around t = tmax . Hence, the
lowest resolution zone is around the origin, where the path is
almost linear. Using m = 0 with the plus sign in Eq. (6), the
two nearest crossing points around the origin are passed at t
= (N − 1)� and t = N�, and their coordinates can be written
in the following form, respectively:{

x|t=(N−1)� = Ax sin
(

π
4N−2

)
y|t=(N−1)� = Ay sin

(
π

2N

)
,

(8)

{
x|t=N� = −Ax sin

(
π

4N−2

)
y|t=N� = 0

. (9)

After the foregoing points, the next two crossing points near
the origin are around the local speed maximum that succeeds
the absolute speed maximum. These crossing points happen
at t = 3N� and t = (3N − 1)� and have the following coor-
dinates: {

x|t=(3N−1)� = Ax sin
(

π
4N−2

)
y|t=(3N−1)� = −Ay sin

(
π

2N

)
,

(10)

{
x|t=3N� = −Ax sin

(
3π

4N−2

)
y|t=3N� = 0

. (11)

Since N is large, the foregoing four crossing points around the
origin form a diamond-like shape. The length of the diamond
altitude, denoted by h, is a good approximation of the max-
imum distance between two adjacent scan lines. Hence, the
altitude length is proposed as a measure of the resolution for
the Lissajous scan, which is formulated in the following from:

h = 4AxAy cos2
(

π
4N−2

)
sin

(
π

4N−2

)
sin

(
π

2N

)
√

4A2
x cos4

(
π

4N−2

)
sin2

(
π

4N−2

) + A2
y sin2

(
π

2N

)
≈ πAxAy

N
√

A2
x + A2

y

. (12)

B. Design steps for Lissajous scanning

Using the foregoing analysis, we may determine the Lis-
sajous pattern parameters based on design priorities. For ex-
ample, the following design steps can be adopted based on a
predetermined raster dimensions, resolution, and x-axis fre-
quency.

1. Assuming that the raster dimensions are known, Ax and
Ay are determined.

2. Having selected a desired resolution h, the integer N can
be approximately determined from Eq. (12), by rounding
the expression πAxAy

h
√

A2
x+A2

y

to the nearest integer.

3. Based on the scanner limitations, select a suitable fre-
quency for fx such that the scanner can follow the cor-
responding sinusoidal references acceptably. Then, the

path’s fundamental frequency and fy are obtained from
Eq. (4) as f = fx

2N
and fy = (2N−1)fx

2N
.

4. The minimum scan time for the entire Lissajous pattern
is a half period as N

fx
≈ πAxAy

fxh
√

A2
x+A2

y

.

III. EXPERIMENTAL RESULTS

In this section, efficacy of the Lissajous scanning method
is investigated compared to the conventional raster scanning.
More efficient implementation of the method is also presented
using internal model controllers.

A. Lissajous versus raster scanning

We compare raster- and Lissajous-scanned images of a
8 μm × 8 μm region of a test grating on a commercial AFM
(NT-MDT NTEGRA). The MikroMasch TGZ2 test grating
has a repeating rectangular profile of 3 μm and 110 nm height.
A cantilever with a resonance frequency of 78 kHz and a stiff-
ness of 0.6 N/mm was used to perform the scans. This atomic
force microscope uses a piezoelectric tube scanner with a res-
onance frequency of 825 Hz, whose open-loop measured fre-
quency response with a unity dc gain is shown in Fig. 3 for
x-axis direction. Here, we scaled x and y actuator signals such
that the displacement outputs follow the associated inputs as
closely as possible at sufficiently low frequencies. Hence, we
can assign the unit of outputs (μm) to the manipulated in-
puts. The open-loop frequency response in y-axis direction,
which is not shown for brevity, is almost identical to that of
the x-axis. Experiments were conducted in open loop and in
constant height contact mode. The x and y signals of the Lis-
sajous trajectory were generated using a dSPACE-1103 rapid
prototyping system. These signals were applied to a bipolar
high voltage amplifier (NANONIS HVA4) with a gain of 15
in order to drive the piezoelectric tube scanner. A National
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FIG. 3. Small signal open-loop frequency response of the piezoelectric tube
scanner in x-axis direction along with an approximate fifth order linear
model.
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TABLE I. Comparison of Lissajous and raster scanning rates adjusted for
the same image resolution of 31.2 nm.

Scan time Imaging rate Lissajous-scan frequency Raster line rate
(s) (frame/s) fx (Hz) (Hz)

28.5 0.035 10 8.98
3.17 0.315 90 80.76
1.425 0.7 200 179.65
0.475 2.11 600 538.94

Instruments PXI-6124 data acquisition card which has a sam-
pling rate of 4 MS/s was used to record the images.

Assuming a scan dimension Ax = Ay = 8 μm and an im-
age resolution of h = 31.2 nm, the integer N for the Lissajous-
scan method is equal to 285, which is comparable to that of a
raster-scanned image with a pixel resolution of 256 × 256.
Table I compares fx with raster line rates that are required
to complete images in 28.5 s (0.035 frame/s), 3.17 s (0.315
frame/s), 1.425 s (0.7 frame/s), and 0.475 s (2.11 frame/s).
With fx = 90 Hz, the image can be completed in 3.17 s by
using the Lissajous-scan method. To obtain a raster-scanned
image of similar resolution in approximately 3.17 s, the fast
axis of the scanner is required to scan at 80.76 Hz line rate.
This scan rate, which is excited by a triangular signal, will
trigger the resonance frequency of the scanner and distort the
AFM images.

To compare the image quality of the Lissajous and raster
scan methods, images obtained by the two methods are shown
in Figs. 4(a) and 4(b), respectively. Clearly, the image ob-
tained by the Lissajous method has a better quality than that
obtained by the raster scan, where the image was distorted
due to vibrations. It can be observed that the image borders
obtained by the open-loop methods considerably deviate from
the exact rectangular frame associated with the coordinate sig-
nals in Eq. (1). Such deviations in the images, which results
from poor tracking of scanner coordinates, can be improved
using feedback control, as shown in Fig. 4(c), where we have
used the IMC explained subsequently.

B. Closed-loop control with IMC

In this section, we incorporate internal model controllers
for x and y axes of the scanner. Internal model control is a
well established method especially for tracking of constant,
ramp, and sinusoidal reference signals.28 In this method, the
dynamic modes of the reference signal are incorporated in the
controller. We used the block diagram shown in Fig. 5 for
the x-axis of the scanner. A similar controller is also used for
the y-axis. Because of some nonlinear and time-varying char-
acteristics such as hysteresis and creep, the piezoelectric ac-
tuator deviates from linear operation.9, 29 These deviations in-
crease with frequency and amplitude.30 The nonlinearities can
induce higher order harmonics of the sinusoidal references in
the tracking error signal marked as e in Fig. 5. Hence, in ad-
dition to the poles associated with the reference sinusoids, we
also include components with poles corresponding to some
higher order harmonics of sinusoidal references in the com-
pensators. The compensators Cx(s) and Cy(s) for x and y axes

(a)

(b)

(c)

FIG. 4. 8 μm × 8 μm AFM images obtained at 0.315 frame/s. Images were
completed in 3.17 s. (a) Open-loop Lissajous image. (b) Open-loop raster
scan image. (c) Closed-loop Lissajous image.

are described by the following equations:

Cx(s) = Kix

s
+

5∑
l=1( �=4)

Kxl(1 + 0.01s)

1 + s2

l2ω2
x

, (13)

Cy(s) = Kiy

s
+

5∑
l=1( �=4)

Kyl(1 + 0.01s)

1 + s2

l2ω2
y

. (14)

For each reference frequency, the controller gains are tuned
to obtain the best tracking errors. The scanner frequency

FIG. 5. Block diagram of feedback control system for x-axis.
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TABLE II. Lissajous-scan frequencies and IMC gains.

fx(Hz) Kix Kx1 Kx2 Kx3 Kx5

fy(Hz) Kiy Ky1 Ky2 Ky3 Ky5

10 77.78 1.6 0 0.2 0
9.98 77.78 1.6 0 0.2 0

90 250 0.07 0.096 0.0064 0
89.84 250 0.07 0.096 0.0064 0

200 244 0.0115 0 − 0.000213 0.0001
199.65 250 0.0103 0 − 0.000191 0

600 500 − 0.0057 0 0.000512 0
598.95 500 − 0.0057 0 0.000512 0

responses for the x and y axes are reasonably similar and so
are the coordinate frequencies ωx and ωy. Hence, for most
reference frequencies, similar controllers are used for x and y
axes.

Using the resolution, dimensions, and integer N as above,
four different coordinate frequencies fx = 10, 90, 200, and
600 Hz were chosen for constructing four Lissajous trajecto-
ries that were used to obtain the AFM images. The completion
time for obtaining the four images are 28.5 s, 3.17 s, 1.425 s,
and 0.475 s, respectively. Table II shows the coordinate fre-
quencies along with the corresponding controller gains. For
the first three frequency sets (10, 90, and 200 Hz), the box
denoted Plant in Fig. 5 represents the open-loop tube. How-
ever, to provide adequate stability during the 600 Hz scan,
where effects of nonlinearities and vibrations are more severe,
we have to reduce the scan area to 5.5 μm × 5.5 μm and
use damping loops to suppress the fundamental resonance of
the tube. Hence, when applying reference sinusoids around
600 Hz, the Plant block in Fig. 5 represents the x-axis of the
tube after the damping loop. The schematic diagram of the
damping loop for x-axis is shown in Fig. 6. A similar damp-
ing loop structure is also used for the y-axis.

To design the damping loop, the x-axis frequency re-
sponse was approximated by a fifth order transfer function
having a unity dc gain and the following poles and zero:

Poles ∈ {−1382,−103.6 ± 5180i,−3195 ± 5534i},

Zero ∈ {−12566} rad

s
.

The frequency response of the model, as shown in Fig. 3
with dashed curves, reasonably approximates the experimen-
tal data. To design the compensator in the damping loop, we
use affine parametrization method24 as described in Ref. 31.
The desired poles selected for the damping loop (poles of the
closed-loop system in Fig. 6) are

−103 × [4, 5, 5, 7, 8 ± 6i, 2 ± 6i, 2 ± 4i]
rad

s
. (15)

FIG. 6. Block diagram of damping loop for the x-axis of the tube.
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Before solving the associated pole assignment equation, the
dc gain of the compensator is set to 1

6 . It was found that with
the selected poles and dc gain, the resulting compensator has
reasonably low gains and provides adequate stability margins
for the loop. However, the compensator has the same order as
that of the undamped model. Hence, we use a second-order
approximation of the solution in the following form:

Fx(s) = −2 × 10−9s2 + 0.0002239s + 0.1666

6.258 × 10−9s2 + 0.0001626s + 1
. (16)

The frequency responses of the resulting compensator and
its second-order approximation are shown in Fig. 7. It turns
out that the approximation further increases the stability mar-
gins of the loop. The damping loop has a gain margin of
12 dB, a phase margin of −70◦, and the closed-loop frequency
response shown in Fig. 3 (denoted by damped model). As
the resulting damping compensator has a positive dc gain, it
is almost consistent with positive position feedback control,
which is a popular method of vibration suppression in flexi-
ble structures.32

The RMS values of the tracking errors are shown in
Table III, in the columns marked as Proposed IMC. Note that
the closed-loop RMS tracking errors for all four cases are

TABLE III. Experimental RMS tracking errors with the proposed and con-
ventional IMC methods.

Proposed IMC Conventional IMC

fx (Hz)
X (nm)
Y (nm)

X (%)
Y (%)

X (nm)
Y (nm)

X (%)
Y (%)

10
4.4
3.9

0.05
0.05

22.8
19.6

0.28
0.25

90
4.1
5.2

0.05
0.06

25.9
25.6

0.32
0.32

200
17.1
17.9

0.21
0.22

30.7
28.4

0.38
0.36

600
29.2
27.0

0.53
0.49

59.0
55.3

1.07
1.00
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(c) fx = 200 Hz
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FIG. 8. Closed-loop tracking performances of IMCs at fx = 10 Hz,
fx = 90 Hz, fx = 200 Hz, and fx = 600 Hz. X-displacement vs time plots:
Reference signals are plotted in solid black lines; input signals of the conven-
tional IMC to the plant are plotted in dashed lines (blue); and input signals of
the proposed IMC to the plant are plotted in dash-dotted lines (red). Error vs
time plots: Signals plotted in blue are error signals of the conventional IMC;
and signals plotted in red are error signals of the proposed IMC designed to
track higher harmonics of the reference sinusoids.

less than 0.53% of the full scan range. The closed-loop track-
ing performance is clearly superior to the open loop (shown
in Fig. 4) which has a RMS error of 13.8%. The RMS val-
ues of tracking errors with conventional IMC method, i.e.,
when only the terms corresponding to the fundamental fre-
quencies of the sinusoidal references are added to the integra-
tors in the controllers, are also included in last two columns of
Table III. Compared to the conventional IMC method, the pro-
posed IMC method that includes higher order harmonic oscil-
lators can considerably improve the tracking error. However,
the degree of the improvement reduces as the frequency of
the operation increases, which is due to more severe nonlin-
ear behavior of the piezoelectric tube actuator at higher fre-
quencies. The experimental time histories of the tracking er-
rors, reference signals, and actuations of the x-axis are shown
Fig. 8 for the conventional and the proposed methods, where
the tracking errors with the proposed IMC method are almost
at the noise level for 10 Hz and 90 Hz. As shown in Fig. 9,
no distortion is visible in the AFM images obtained by the
proposed IMC method for all four scans. It is worth stressing

FIG. 9. Closed-loop AFM images and the corresponding Z profiles obtained
using the proposed Lissajous trajectory with IMC implementation. (a) 28.5 s
scan (at 0.035 frame/s, fx = 10 Hz). (b) 3.17 s scan (at 0.315 frame/s,
fx = 90 Hz). (c) 1.425 s scan (at 0.7 frame/s, fx = 200 Hz). (d) 0.475 s scan
(at 2.11 frame/s, fx = 600 Hz).

here that these results were obtained using a piezoelectric tube
scanner which has the first mechanical resonance frequency at
825 Hz. Previous work shows that the maximum achievable
raster imaging rate in closed loop is 0.032 frame/s.33 In this
work, imaging rates up to 2.11 frame/s were achieved where
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TABLE IV. Simulation results for tracking performances of x-axis using
conventional integral controllers with the same noise rejection performance
as that of the proposed IMC method.

Noise rejection Tracking error
fx (%) Integral gain (%)

(Hz) 100
xaRMS
nRMS

∣∣∣
x=0

Ki 100 eRMS
2Ax

∣∣∣
n=0

10 4.8 280 7.8
90 19.5 2200 10.5
200 6.7 500 45
600 22 1110 42

high-quality AFM images were recorded. It would be diffi-
cult to achieve these scan results using the conventional raster
trajectory.

C. Comparison with conventional integral control

One of the objectives of the feedback control systems in
a nanopositioning application is to limit the closed-loop band-
width from measurement noise n to real displacement xa (see
Fig. 5). This will ensure that the actual positioning error will
be low. However, to acceptably track fast sinusoids in conven-
tional feedback control systems such as proportional integral
differential control, a high closed-loop bandwidth is usually
required. This is a well known trade-off in control theory. A
major benefit of the foregoing IMC methods in tracking of
sinusoids is that they significantly improve the control per-
formance while keeping the closed-loop bandwidth low. To
illustrate this benefit, we drop all the terms corresponding to
the harmonic oscillators in the controllers (Kxl = Kyl = 0, ∀l).
However, we keep the integrators in Cx(s) and Cy(s), but ad-
just their gains such that the resulting control system has the
same noise performance as that of the proposed IMC method.
This is done by simulation using the x-axis model and a Gaus-
sian random signal as the noise source n in Fig. 5, while the
reference source x is zero, and the integrator gains are in-
creased such that the RMS value of signal xa in Fig. 5 remains
the same as it was with the proposed IMC method. Table IV
shows the noise rejection performances, the adjusted values
of the integrator gains, and the resulting tracking errors asso-
ciated with the reference sinusoids for x-axis. A comparison
between these results and those of Table III clearly shows that
using IMC controllers in Lissajous-scan method can improve
the tracking error by a factor of 200 compared with the con-
ventional integral control with the same level of measurement
noise rejection.

IV. CONCLUSIONS

A Lissajous pattern was proposed for fast scanning ap-
plications along with a thorough mathematical analysis. The
analysis led to a measure of resolution for the pattern and
a systematic design procedure to determine the pattern pa-
rameters based on the desired resolution and scan speed.
The method was successfully implemented on a commercial
AFM platform and allowed capturing of high-quality images
at much higher speeds than those achievable by the regular

raster scan methods. We used a novel internal model control
strategy to accurately track the sinusoidal references in the
presence of actuator nonlinearities and sensor noise. Superi-
ority of the proposed IMC method was shown by experiments
compared to the conventional IMC method. It was shown by
simulations that conventional integral control methods cannot
compete with the IMC methods under the same noise rejec-
tion performance conditions.
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APPENDIX A

Using Eq. (4), we have ωxT

2 = 2πN and ωyT

2 = (2N

− 1)π , which ensures that equalities x( T
2 ± t) = x(t) and

y( T
2 ± t) = −y(t) hold for all values of t. Hence, the path

during the time interval t ∈ [0, T
2 ] is symmetric with re-

spect to the x-axis, i.e. x( T
4 + τ ) = x( T

4 − τ ) and y( T
4 + τ )

= −y( T
4 − τ ) for all τ . Also, one can easily show that the

following equalities hold for all t:

x(T ± t) = x(t); y(T ± t) = y(t). (A1)

Therefore, in the second half period (t ∈ [ T
2 , T ]), the pre-

viously traveled path in the first half period is traversed
backward.

APPENDIX B

Assume a typical crossing point, which is met at times
instants t1 and t2 (t2 > t1 > 0) and have to satisfy the following
relationships:

t2 ± t1 = KxTx, (B1)

t2 ± t1 = KyTy, (B2)

where Kx and Ky are positive integers. The crossing
points correspond to the nontrivial solutions of equations
Eqs. (B1) and (B2), which can be summarized as t1 = K1�

and t2 = K2�, where K1 and K2 are positive integers defined
as

K1 = ∣∣2N (Ky − Kx) + Kx

∣∣ , (B3)

K2 = 2N (Ky + Kx) − Kx. (B4)

Hence, the crossing points occur at time instants that are mul-
tiples of �, and so is the time interval between two successive
crossing points. Now, consider t = k� (k a positive integer)
as a typical time instant, which is a multiple of �. Does it
really correspond to a crossing point? To answer this ques-
tion, one may consider non-negative integers q and r as the
quotient and the remainder of k and 2N (i.e., k = 2Nq + r
with r < 2N) and use Eq. (B3) or (B4) to obtain positive in-
tegers Kx and Ky such that K1 or K2 becomes equal to k (e.g.,
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Kx = r and Ky = q + r). One can easily show that for those
values of k that are multiples of 2N, the resulting Kx values
are also multiples of 2N. Similarly, when k is a multiple of
2N − 1, so is the resulting Ky. In these cases, using equations
Eqs. (4), (B1) and (B2), expression t2 ± t1 becomes a multiple
of the path period T; and from Eq. (A1), the curve traverses
the same paths at times t1 and t2, and hence the points corre-
sponding to those k values are not crossing points. Moreover,
using Eqs. (1) and (4), such values of k, which are multiples of
2N and/or 2N − 1, correspond to points that touch the sides of
the rectangle, i.e., |y(t)| = Ay and/or |x(t)| = Ax, respectively.
Although, the aforementioned points are not actually crossing
points, we include them among the crossing points for conve-
nience and also to cover the points residing on the sides of the
rectangle.

APPENDIX C

Using v :=
√

ẋ2 + ẏ2 as the path speed and after some
straightforward algebraic manipulations, the square of speed
can be determined as

v 2(t) = V − A(t) cos [2ωxt − θ (t)] , (C1)

where

V = A2
xω

2
x + A2

yω
2
y

2
, (C2)

A(t) =
√

V 2 − A2
xA

2
yω

2
xω

2
y sin2(�t), (C3)

θ (t) = arctan

[
A2

yω
2
y sin(2�t)

A2
xω

2
x + A2

yω
2
y cos(2�t)

]
. (C4)

Here, � := ωx − ωy = 2π f is the path frequency in rad/s.
To simplify the analysis, we assume that N is large enough
to ensure that the path frequency f is much smaller than the
coordinate frequencies fx and fy (see Eq. (4)). Thus, the term
2ωxt in Eq. (C1) changes much faster than the amplitude A(t)
and phase θ (t), which depend on the slow term of �t. This
helps to approximate the time instants of maximum speed by
inspection. Consider a time interval around a specific time t
such that A(t) and θ (t) are almost constant but ωxt can vary
enough to make the cosine term in Eq. (C1) equal to −1, in an
instant of the time interval. Hence, the local maximum speed
around the arbitrary time t can be approximated by V + A(t).
Since A(t) slowly changes with time according to Eq. (C3),
the absolute maximum of speed should happen around time
instances when the sine terms in Eqs. (C3) and (C4) vanish. In
this way, at the time instants of absolute maximum speed, the
phase angle θ (t) is almost zero and the speed is approximately

equal to
√

A2
xω

2
x + A2

yω
2
y . To approximate tmax , we replace

θ (tmax ) by zero in equality cos [2ωxtmax − θ (tmax )] = −1 to
obtain the following solutions for the time instants of local
maxima around the absolute maximum

tmax
∼= (2l + 1)π

2ωx

= 2l + 1

8Nf
, (C5)

where l is an integer. Eq. (C5) confirms that the local speed
maxima approximately occur at the rate of 4Nf. Among those
local maxima, we are interested in the time instants corre-
sponding to the absolute maxima, which approximately sat-
isfy the equality of sin (�tmax ) = 0, i.e.,

tmax ≈ mπ

�
= m

2f
, (C6)

where m is another integer. Eq. (C6) shows that the absolute
maxima of speed occur at the slower rate of 2f. The time in-
terval between the local maxima is 1

4Nf
, while the interval be-

tween the absolute maxima is much larger ( 1
2f

). Hence, it is
possible to select local maxima whose time instants are very
near to those of the absolute maxima. Thus, the odd integer of
2l + 1 in Eq. (C5) should be selected as 4Nm ± 1 and more
approximate solutions of tmax are obtained from Eq. (C5) in
the form of Eq. (6).
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