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bstract

This article presents the comparison of various compliance/stiffness equations of circular flexure hinges with FEA results. The limitation of
hese equations at different t/R (R is the radius and t is the neck thickness) ratios are revealed. Based on the limitations of these design equations, a

uideline for selecting the most accurate equations for hinge design calculations are presented. In addition to the review and comparisons, general
mpirical stiffness equations in the x- and y-direction were formulated in this study (with errors less than 3% when compared to FEA results) for
wide range of t/R ratios (0.05 ≤ t/R ≤ 0.8).
rown Copyright © 2007 Published by Elsevier Inc. All rights reserved.
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. Introduction

Flexure hinges have been widely used in applications
uch as gyroscopes, accelerometers, balance scales, missile-
ontrol nozzles and multiplying linkages [1]. Furthermore,
icromanipulation has emerged as an important technolog-

cal advancement in the past decade that increases the use
f flexure hinges. Micro-manufacturing, micro-system assem-
ly, biological cell manipulation in biotechnology and MEMS
micro-electromechanical system) increase the demand of ultra-
recision manipulation stages which are used to manipulate
icro-scale objects and perform very small motions (less than

00 �m). Various micro-motion stages were developed using
onventional technologies based on servomotors, ball screws
nd rigid linkages. However, these conventional technologies
ncounter problems such as friction, wear, backlash and lubri-
ation, which struggle to achieve high positioning accuracy. On
he other hand, compliant micro-motion stages, which solely

ove through deformations of flexure hinges, provide smooth
otions without encountering problems aforementioned. There-

ore, compliant stages with flexure hinges are capable of
chieving highly precise positioning [2].

Despite all the advantages aforementioned, there are some
isadvantages associated with compliant micro-motion stages
ith flexure hinges. For example, it is more complicated to
odel and to control the motions of compliant stages precisely

ompared to conventional mechanisms. This could be partly
ttributed to parasitic motions of flexure hinges in the x- and
-direction. The commonly adopted compliant micro-motion
tage modeling method, named the pseudo-rigid-body model
PRBM), models a flexure hinge in a compliant stage as a revo-
ute joint (connecting two links) with a torsional spring attached
o it. The PRBM does not model parasitic motions of flexure
inges mathematically; these parasitic motions do cause notice-
ble position errors between analytical and experimental results
3].

A precise compliant stage model will benefit researchers in,
t least, the design and optimization phases where a good esti-
ation of workspace or stiffness of a micro-motion stage could

e realized. A compliant micro-motion stage normally uses a
ew flexure hinges to provide the desired motions of the stage
n various directions. The accuracy of a compliant stage model
elies on the precision of flexure hinge modeling. Therefore,
ompliance/stiffness equations of flexure hinges are demanded
o be as accurate as possible to reduce the accumulated model-
ng errors of hinges, thus reducing the overall modeling errors
f compliant stages.

Due to the importance of precise compliance/stiffness equa-
ions of flexure hinges aforementioned, this article presents a
eview on the accuracies of various compliance/stiffness equa-
ions of flexure hinges derived using different methods. This
eview could served as a guideline for designers to selecting the
ost suitable and accurate compliance/stiffness equations for
recise hinge and compliant stage design calculations. Circular
exure hinges were chosen to be studied due to its large appli-
ations in compliant micro-motion stages [2–7] which required
igh precision of motions. Circular flexure hinges are precise in

h
d
e
r

Fig. 1. Flexure hinge.

otation where their center of rotations do not displace as much
s other flexure hinges such as the left-type [8] and the corner-
llet [9]. There have been many methods adopted to derive
atisfactory compliance/stiffness equations of flexure hinges,
ncluding the integration of linear differential equations of a
eam [1,10,11], Castigliano’s second theorem [11], inverse con-
ormal mapping [8] and empirical equations formed from FEA
finite element analysis) results [12,13]. However, some of these
ethods provide better accuracies than the others depending on

he t/R ratios of circular flexure hinges (see Fig. 1 for dimen-
ions). Paros and Weisbord [1] were the first research group to
ntroduce right circular flexure hinges. They formulated design
quations, including both the full and simplified, to calculate
ompliances of flexure hinges. The error of the simplified equa-
ion relative to full equation was within 1% for hinges with t/R

n the range 0.02–0.1, and within 5–12% for thicker hinge with
/R in the range 0.2–0.6 [8]. However, both the full and sim-
lified rotational compliance equations (αz/Mz) show a large
ifference of up to 25% or more for t/R = 0.6 when compared
ith FEA results [8].
A comparison of Smith’s experimental results [14](Mz/αz)

ith Paros and Weisbord’s results was conducted in this study.
he comparison revealed that the simplified equation shows a
ifference of up to 10% and the full equation shows a differ-
nce of up to 16%. It was also found by Smith et al. that Paros
nd Weisbord’s full equation of αz/Mz had larger errors than
he simplified equation when compared with the FEA results
14]. Wu and Zhou developed concise compliance equations
ased on Paros and Weisbord’s full equations [10]. Their design
quations have the same results as that of Paros and Weisbord’s
ull equation, except signs of αz/Fz and �y/Mz were oppo-
ite. Therefore, Wu and Zhou’s results have the same percentage
rrors as Paros and Weisbord’s results (neglecting signs) afore-
entioned. Tseytlin developed rotational compliance equations

αz/Mz) for circular and elliptical flexure hinges using the
nverse conformal mapping method [8]. Tseytlin categorized
inges into three groups, named thin (t/R ≤ 0.07), interme-

iate (0.07 < t/R ≤ 0.2) and thick (0.2 < t/R ≤ 0.6), and an
quation was derived to calculate compliances for each category
espectively. He claimed that the conformal mapping equations
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Fig. 2. FEA mapped meshing.
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ere within 10% error when comparing with FEA and experi-
ental results. Smith et al. derived an empirical equation from
EA results to calculate rotational compliances [12]. This equa-

ion is tractable and adequate only for thick hinges with t/R in
he range 0.2–1.0 [8]. Lobontiu et al. derived closed form com-
liance equations using Castigliano’s second theorem [15]. The
nalytical compliance results for hinges, with t/R equal to 0.05,
.1 and 0.2, were compared with FEA results and the percent-
ge errors were within 10%. There is no comparison of results
resented for other t/R ratios.

There are various compliance/stiffness equations available
or design calculations of circular flexure hinges. Comparisons
mong analytical, FEA and experimental results were conducted
y some researchers only for αz/Mz and were limited to cer-
ain t/R range. There is no proper scheme to guide designers
or selecting the most accurate design equations out of all the
reviously mentioned methods which could precisely calculate
ompliance/stiffness of flexure hinges for a wide t/R range.
hus, this article presents a review on the limitations of various
ompliance/stiffness equations (derived using different meth-
ds) of circular flexure hinges, at different t/R ratios, based on
heir percentage errors when compared to FEA results. By ana-
yzing the limitations of each design equation, suggestions of
he most accurate and appropriate equations to be used at any
articular t/R range are provided in this article. In addition to
he review and comparisons, general empirical equations were
eveloped based on FEA results to estimate compliance/stiffness
n the x- and y-axis as there is no accurate equation (within 5%)
o predict the corresponding compliance/stiffness of circular
exure hinges for a wide t/R range (0.05 ≤ t/R ≤ 0.8).

. FEA modeling of circular flexure hinges

Due to the limitation of available experimental results, (only
hree experimental results were found from Smith et al. [14], for
hree t/R cases) FEA results in this article were used as a bench-

ark for comparison of various compliance/stiffness results for
wide range of t/R. The accuracies of these FEA models were
ithin 3% error when compared with the three experimental

esults of Smith et al. [14].
ANSYS was used to conduct FEA of flexure hinges. Flexure

inge models were generated using 8-node, two-dimensional,
lane elements (PLANE82) with two degree-of-freedom on each
ode, which are translations in the nodal x- and y-directions.
his element type is more suitable to model irregular shapes
nd curved boundaries without much loss of accuracy [16]. The
odeled flexure hinges had a thickness of 12.7 mm (aluminium

lloy, 7075-T6) with a Young’s modulus (E) of 71.7 GPa and a
oisson ratio (ν) of 0.33. A mapped meshing technique was used

nstead of a “smart” meshing, the later automatically produces
ne meshing at areas that high stress concentrations were most

ikely to occur. Mapped meshing is advantageous over “smart”
eshing because mapped meshing provides better control of
he distribution and size of elements in an area (see Fig. 2). It
as found that the accuracy of the FEA model was significantly

nfluenced by the way the boundary conditions were assigned on
model. For example, when a point force is applied on a node,

•

Fig. 3. Flexure hinge geometries of a FEA model.

t could cause a local stress spike on the node which reduces the
ccuracy of the FEA results. Therefore, constraints and forces
ere applied at a distance of at least 3h (see Fig. 3) from a node
here its displacements will be read, to reduce influences of

he constraints and applied forces on the FEA results. Forces in
he x- and y-direction and a moment along the z-direction were
pplied. The corresponding nodal deformations at point 0 and
oint 1 were read. This ANSYS modeling technique is similar
o that of Lobontiu et al.’s [15,17]. Analytical design equations
1,8,10–12] were derived to calculate compliances at point 1.
owever, nodal deformations read from FEA results at point
were the total deformation contributed by the left-hand side

eam section as well as the hinge section (see Fig. 3). Therefore,
otations and deformations caused by the beam section (nodal
eformations at point 0) were subtracted from total deformations
ead at point 1 to obtain pure deformations caused by the hinge.

. Comparison of compliance/stiffness results
ith FEA

.1. Rotational compliance equations, αz/Mz

Compliances, αz/Mz of different right circular flexure hinges
with various t and R values), where t/R in a range 0.05–0.65,
ere calculated using design equations of (a) Paros and Weis-
ord [1] (full), (b) Paros and Weisbord [1] (simplified), (c)
obontiu [11], (d) Wu and Zhou [10], (e) Tseytlin [8], (f) Smith
t al. [12] (empirical) and (g) Schotborgh et al. [13] (empirical).
heir results were compared with the FEA results obtained in

his article. Percentage errors of the comparisons were plotted
n Fig. 4. Those design equations are presented in Appendix A.
rom Fig. 4, it was noted that
Equations of Paros and Weisbord (full), Lobontiu and Wu
and Zhou were derived using a similar method (that is the
integration of the linear differential equation of a beam); thus
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Fig. 5. Percentage errors of �x/Fx compared to FEA results.
Fig. 4. Percentage errors of αz/Mz compared to FEA results.

they have the same percentage errors when compared with
FEA results. The accuracies of their results decrease over the
t/R range. Errors are less than 5% when 0.05 ≤ t/R < 0.15.
Errors increase to more than 5% but less than 10% when
0.15 ≤ t/R < 0.3. When 0.3 ≤ t/R ≤ 0.65, errors increase
from 10% to 19.2%.
Paros and Weisbord’s (simplified) results are accurate within
5% error for 0.05 ≤ t/R ≤ 0.2. Errors increase up to 10%
when t/R = 0.5 and 12% when t/R = 0.65.
Tseytlin’s results are accurate (within 6% error) for t/R ≤
0.23 and 0.35 ≤ t/R < 0.65. Errors increase to more than
6% when 0.23 < t/R < 0.35. When t/R = 0.25, the error is
11.2%. Generally, the results are within 10% error approx-
imately for the entire t/R range. Interestingly, Tseytlin’s
analytical results differed from his experimental and FEA
results by about 10% [8]. This suggests the accuracy of FEA
results in this article match the accuracy of Tseytlin’s analyt-
ical and FEA results.
Smith et al.’s (empirical) rotational compliance equation is
only accurate (within 4% error) for 0.20 ≤ t/R ≤ 0.65. This
observation is similar to that of Tseytlin where he claimed
that Smith et al.’s empirical equation is accurate only for thick
flexure hinges with t/R in the range 0.2–1.0.
Schotborgh et al.’s results are the most accurate compared to
the rest. Errors in their results are less than 2.5% for the whole
0.05 ≤ t/R ≤ 0.65 range.

.2. Compliance equations in the x- and y-direction,
x/Fx and �y/Fy
Percentage errors of �x/Fx and �y/Fy, calculated using
esign equations of (a) Paros and Weisbord [1] (full), (b) Paros
nd Weisbord [1] (simplified), (c) Lobontiu [11] and (d) Wu and
hou [10] were plotted in Figs. 5 and 6 respectively.

Fig. 6. Percentage errors of �y/Fy compared to FEA results. (a) Without shear
compliance and (b) with shear compliance.
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models with various t/R ratios, which was set from 0.05 to 0.8
with increment of 0.01, were generated in ANSYS. Unit forces,
Fx and Fy were applied on each model and the correspond-
ing deformations, �x and �y were read. Polynomial functions

Table 1
Coefficients of polynomial functions for Kx and Ky

Coefficients Kx (fifth order) Ky (sixth order)

c0 0.036343 1.92 × 10−5

c1 0.98683 −0.00083463
c2 −1.5469 0.021734
Fig. 7. Deformation effect outside flexure hin

For �x/Fx,

Paros and Weisbord (full), Lobontiu, and Wu and Zhou have
the same results. Their results are within 6% error compared
to FEA results.
Results of Paros and Weisbord (simplified) are not as accu-
rate as that of Paros and Weisbord (full), Lobontiu, and Wu
and Zhou. Their results have a minimum error of 6.6% and a
maximum error of 38%.

For �y/Fy (without shear compliance, SC),

Results of Paros and Weisbord (full), Lobontiu, and Wu and
Zhou, without considering shear compliance (SC), are the
same. Their percentage errors are within 10% for 0.05 ≤
t/R ≤ 0.2. Errors increase up to 30% when t/R = 0.65.
Paros and Weisbord’s (simplified) results are within 10%
when 0.05 ≤ t/R ≤ 0.17. Errors increase to 31% when t/R =
0.65.

For �y/Fy (with shear compliance, SC),

Lobontiu’s results are the most accurate compared to the oth-
ers. The results are within 5% error for 0.05 ≤ t/R ≤ 0.1.
The errors increase to within 10% for 0.1 < t/R ≤ 0.3 and to
within 15% for 0.3 < t/R ≤ 0.65.
Results of Paros and Weisbord’s (full) and Wu and Zhou are
the same. Their results are within 5% error for 0.05 ≤ t/R ≤
0.1. The errors increase to within 10% for 0.1 < t/R ≤ 0.25
and to within 20% for 0.25 < t/R ≤ 0.65.
Paros and Weisbord’s (simplified) results are within 5% error
for 0.05 ≤ t/R < 0.1. The errors increase to within 10% for
0.1 ≤ t/R ≤ 0.17. The maximum error is 25.5% when t/R =
0.65.
Generally, all compliance equations, �y/Fy are more accu-
ate when shear compliances are considered. Schotborgh’s
mpirical stiffness/compliance equations in the x- and y-

c

c

c

c

ometry (figure was provided by Schotborgh).

irection were not compared in this article because his equations
ere derived using hinge models with different height (h, see
ig. 3). Furthermore, his empirical equations consider the defor-
ation effect outside the hinge geometry (as told via a personal

ommunication with Schotborgh). From Fig. 7, it can be seen
hat the deformation effect of the hinge goes beyond the hinge
eometry to the beam section. Other research groups (which are
1,11,10]) did not consider this effect in their equations. The
spect of this deformation effect on the hinge compliances is
eyond the scope of this paper. The significance of this effect
re currently being investigated and will be revealed in near
uture.

. Empirical compliance/stiffness equations in the x-
nd y-direction

From previous section, it was noted that there is no accu-
ate design equations (within 5% error) at this stage to estimate
ompliances/stiffness in the y-direction for t/R > 0.15 and in
he x-direction for 0.1 < t/R < 0.25. Therefore, general empir-
cal equations (in stiffness form, named Kx and Ky) were formed
ased on FEA results to estimate stiffness in both the x- and y-
irection for a wide range of t/R ratios (0.05 ≤ t/R ≤ 0.8). FEA
3 3.1152 0.064783

4 −3.0831 −0.088075

5 1.2031 0.062278

6 – −0.018781
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Fig. 8. Percentage errors of empirical equations, Kx.

ith third, fourth, fifth and sixth order were fitted through the
ata points to obtain empirical stiffness equations. The results of
hese four empirical equations were compared with FEA results
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here ck are coefficients of polynomial functions and n is the
rder of a polynomial function.

Finally, Table 2 summarizes the suggested compli-
nce/stiffness equations to be used for any particular t/R range,
nd their minimum, maximum and average percentage errors.

. Conclusions

This article presents a review on the accuracies of various
ircular flexure hinge equations by comparing the results of
esign equations to that of FEA. Based on the results of com-
arisons, a guideline for selecting the most suitable and accurate
ompliance/stiffness equations for hinge design calculations is
resented. In addition to the review and comparisons, general
mpirical stiffness equations in the x- and y-direction, other than
he bending direction, were formulated in this study for a wide
ange of t/R ratios (0.05 ≤ t/R ≤ 0.8). The percentage errors
f these empirical equations were found to be less than 3% when
ompared to FEA results.
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ppendix A. Circular flexure hinge design equations

.1. Paros and Weisbord [1]

.1.1. Full equations
β = t/2R, γ = 1 + β, θm = π/2 for right circular flexure

inge

αz

Mz

= 3

2EbR2

[
1

2β + β2

]{[
1 + β

γ2 + 3 + 2β + β2

γ(2β + β2)

]

×
[√

1 − (1 + β − γ)2
]

+
[

6(1 + β)

(2β + β2)3/2

]

×
[

tan−1

(√
2 + β

β
× (γ − β)√

1 − (1 + β − γ)2

)]}

(A.1)

�y

Fy

= R2 sin2 θm

(
αz

Mz

)
{[ ]
− 3

2Eb

1+β

(1+β− cos θm)2 − 2+(1 + β)2/(2β + β2)

(1 + β − cos θm)
neering 32 (2008) 63–70 69

× sin θm +
[

4(1 + β)√
2β + β2

− 2(1 + β)

(2β + β2)3/2

]

× tan−1

√
2 + β

β
tan

θm

2
− (2θm)

}
(A.2)

�x

Fx

= 1

Eb

[
−2 tan−1 γ − β√

1 − (1 + β − γ)2

+ 2(1+β)√
2β+β2

tan−1

(√
2+β

β
× γ − β√

1 − (1 + β − γ)2

)]

(A.3)

hear compliance: shear modulus, G = E/[2(1 + ν)]

�y

Fy

]
s

= 1

Gb

[
−θm + 2(1 + β)√

2β + β2
× tan−1

√
2 + β

β
tan

θm

2

]

(A.4)

.1.2. Simplified equations
αz

Mz

= 9πR1/2

2Ebt5/2 (A.5)

�y

Fy

= 9π

2Eb

(
R

t

)5/2

(A.6)

�x

Fx

= 1

Eb
[π(R/t)1/2 − 2.57] (A.7)

hear compliance: shear modulus, G = E/[2(1 + ν)]

�y

Fy

]
s

= 1

Gb
[π(R/t)1/2 − 2.57] (A.8)

.2. Lobontiu [11]

αz

Mz

= 24R

Ebt3(2R + t)(4R + t)3

[
t(4R + t)(6R2 + 4Rt + t2)

+6R(2R + t)2
√

t(4R + t) arctan

(√
1 + 4R

t

)]

(A.9)

�y

Fy

= 3

4Eb(2R + t)

{
2(2 + π)R + πt

+8R3(44R2 + 28Rt + 5t2)

t2(4R + t)2 + (2R + t)
√

t(4R + t)√
t5(4R + t)5[
× −80R4 + 24R3t + 8(3 + 2π)R2t2
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S
c[

A

S[

A

T
±

F

I
ν

A

A

R

[

[

[

[

[

[

0 Y.K. Yong et al. / Precision

+4(1+2π)Rt3+πt4
]

− 8(2R + t)4(−6R2 + 4Rt + t2)√
t5(4R + t)5

×
(

arctan

√
1 + 4R

t

)}
(A.10)

�x

Fx

= 1

Eb

[
2(2R + t)√
t(4R + t)

(
arctan

√
1 + 4R

t
− π

2

)]
(A.11)

hear compliance: shear modulus, G = E/[2(1 + ν)], α is shear
orrection factor

�y

Fy

]
s

= αE

G

�x

Fx

(A.12)

.3. Wu and Zhou [10]

s = R/t

αz

Mz

= 12

EbR2

[
2s3(6s2 + 4s + 1)

(2s + 1)(4s + 1)2

+12s4(2s + 1)

(4s + 1)5/2 arctan
√

4s + 1

]
(A.13)

�y

Fy

= 12

Eb

[
s(24s4 + 24s3 + 22s2 + 8s + 1)

2(2s + 1)(4s + 1)2

+ (2s + 1)(24s4 + 8s3 − 14s2 − 8s − 1)

2(4s + 1)5/2

×
(

arctan
√

4s + 1 + π

8

)]
(A.14)

�x

Fx

= 1

Eb

[
2(2s + 1)√

4s + 1
arctan

√
4s + 1 − π

2

]
(A.15)

hear compliance: shear modulus, G = E/[2(1 + ν)]

�y

Fy

]
s

= 1

Gb

[
2(2s + 1)√

4s + 1
arctan

√
4s + 1 − π

2

]
(A.16)

.4. Tseytlin [8]

For thin circular hinges, t/R ≤ 0.07

αz

Mz

= 4

{
1 +

[
1 + 0.1986

(
2R

t

)]1/2
}

/

[
Eb
( t

2

)2
]

(A.17)

he coefficient 0.1984 may be changed to 0.215 at angle θm ⊆
0.9.
For intermediate circular hinges, 0.07 < t/R ≤ 0.2
αz

Mz

= 4

{
1 +

[
1 + 0.373

(
2R

t

)]1/2
}

/

[
1.45Eb

( t

2

)2
]

(A.18)

[
[

neering 32 (2008) 63–70

or thick circular hinges, 0.2 < t/R ≤ 0.6

αz

Mz

= 4

{
1 +

[
1 + 0.5573

(
2R

t

)]1/2
}

/

[
2Eb

( t

2

)2
]
(A.19)

f Poisson’s ration ν �= 0.333, multiply αz/Mz by the factor (1 −
2)/0.889

.5. Smith et al. [12]

Izz = 1/12bt3

αz

Mz

= (1.13t/R + 0.332)R

EIzz

(A.20)

.6. Schotborgh et al. [13]

αz

Mz

=

⎧⎨
⎩Ebt2

12

⎡
⎣−0.0089+1.3556

√
t

2R
− 0.5227

(√
t

2R

)2
⎤
⎦
⎫⎬
⎭

−1

(A.21)
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