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Abstract

This paper presents the effect of the accuracies of flexure hinge compliance equations (the accuracies vary with a geo-
metrical ratio, t/R of a hinge) on the output compliances of RRR and 3-RRR micro-motion stages. Closed-form output
compliance models of the stages are derived (with flexure hinge compliances as one of the variables) to investigate the
aforementioned effect. The output compliances, calculated using various flexure hinge equations, are compared to that
of the finite element analysis (FEA) and the results are discussed.
Crown Copyright � 2007 Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Compliant micro-motion stages have emerged as an important technological advancement due to its grow-
ing applications in the field of micro-machining, scanning electron microscopy, assembly of micro-systems, the
alignments of fibre-optic and laser, micro-lithography and biological cell manipulation. Compliant stages,
which consist of flexure hinges, are capable of providing smooth motions through structural deformations.

Kinematic, static and dynamic models are needed to analyse and to synthesise the behaviour of a particular
compliant stage design. In order to improve the accuracy of these models, the modelling of flexure hinge defor-
mations and compliances (inverse of stiffness) are required to be accurate. Various flexure hinge compliance
equations were derived to predict the deformation and stiffness of a flexure hinge. Methods such as the inverse
conformal mapping [1], finite element analysis [2–4], the Castigliano’s second theorem [5,6] or the integration
of linear differential equations of beams [5,7] have been used to derive an accurate flexure hinge model. How-
ever, depending on the geometrical ratio of flexure hinges, t/R (see Fig. 1 for hinge geometries), some of these
methods are more accurate than others. To support this statement, comparisons of flexure hinge compliances
were carried out as shown in Figs. 2–4. The compliance of a flexure hinge modelled using FEA (ANSYS) was
0094-114X/$ - see front matter Crown Copyright � 2007 Published by Elsevier Ltd. All rights reserved.
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Fig. 1. Schematic of flexure hinge with dimensions, local coordinate, applied forces/moments and displacements.
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Fig. 2. Comparison of flexure hinge rotational compliances (Daz/Mz) to FEA results.
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used as a benchmark for the comparisons. From Figs. 2–4, it can be seen that flexure hinge compliances deter-
mined using any single particular method will not be accurate for a large range of t/R ratios.

The effect of the accuracies of flexure hinge compliance equations on the output compliances of micro-
motion stages has not been studied. As a result, simple closed-form equations (with flexure hinge compliances
as one of the variables) are derived in this paper to determine the output compliances of a RRR (revolute–
revolute–revolute) and a 3-RRR stage in order to study the effect mentioned above. The RRR compliant
structure consists of three flexure hinges, and the 3-RRR structure consists of three RRR chains connected
together in parallel as shown in Fig. 5. The parallel configuration of the 3-RRR structure is advantageous over
a serial configuration structure. Parallel structures provide high mechanical stiffness, high motion accuracy
and high resonant frequency, which make parallel structures suitable for micro-positioning applications.

Literatures were carried out to study the existing methods used to model compliant micro-motion stages.
The pseudo-rigid-body-model (PRBM) method is commonly used to predict the displacements of compliant
mechanisms with flexure hinges. The PRBM commonly models a flexure hinge as a revolute joint (1-DOF) with
an attached torsional spring. The PRBM method is effective and it simplifies the model of compliant mecha-
nisms; however the PRBM results showed some inaccuracies when the axial and transverse deformations1 were
1 Axial deformation refers to the deformation of a flexure hinge in the x-axis (see Fig. 1 for axis labels). Transverse deformation refers to
the deformation of a flexure hinge in the y-axis.
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Fig. 3. Comparison of flexure hinge transverse compliances (Dy/Fy) to FEA results.
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Fig. 4. Comparison of flexure hinge axial compliances (Dx/Fx) to FEA results.
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not incorporated into the model [2,8–11]. Pham et al. [12] derived a kinematic model of a flexure parallel mech-
anism using an extended PRBM method, named the PRB-D method. The PRB-D method models flexure
hinges to have all 6-DOF. They applied the PRBM and the PRB-D kinematic results to control the mechanism
and the PRB-D results produced only 1/3 the error of the PRBM results. The output compliance modeling of
the mechanism is not derived. The effect of the accuracies of flexure hinge equations on the output compliances
is not presented.

Jouaneh and Yang [13] developed a mathematical model to predict the displacement and stiffness of a ver-
tical motion compliant stage. Axial and transverse deformations of hinge are considered in the analytical
model. Lobontiu and Garcia [14] formulated an analytical method for displacement and stiffness calculations
of planar compliant mechanisms with flexure hinges. The closed-form formulations were based on strain
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Fig. 5. Compliant micro-motion stages. (a) RRR and (b) 3-RRR.
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energy and Castigliano’s displacement theorem. However, the methods developed by Jouaneh & Yang and
Lobontiu & Garcia were only applied to 1-DOF compliant mechanisms and it is not clear if these methods
would be applicable to multi-DOF compliant mechanisms. The influence of the flexure hinge modelling accu-
racies on the output compliances of the stages are not discussed.

Gao et al. [15] derived a static model for a 2-DOF compliant stage. Axial deformations of flexure hinges
were considered in these models. Paros and Weisbord’s simplified equations [7] were used to calculate both
the rotational and axial compliances of flexure hinges. Hsiao and Lin [5] derived a static model for a RRR
compliant structure with three flexure hinges. They derived the relationship between external applied loads
and deflections at the loading point. This method was not used to model a 3-RRR compliant mechanism
and it was not clear if this method would be applicable to those type of mechanisms. The effect of the accu-
racies of flexure hinge equations on the output compliances is not presented.

Pham and Chen [16] derived analytical models to estimate the output stiffness of a 3-DOF translational
flexure parallel mechanism (FPM). The FPM consists of three double compound linear structures, and three
3-RRR compliant mechanisms. They modelled flexure hinges to have all 6-DOF. Ryu et al. [17] developed a
XYh compliant stage which was driven by three piezoelectric actuators. The topology of this stage is similar to
a 3-RRR mechanism except it consists of a double compound lever at each of the three input linkages. They
formulated a mathematical model to describe the relationship between input and output displacements of the
stage, by considering compliances of flexure hinges in all six axes. However, the modeling methods of Pham
& Chen and Ryu et al. involve an intensive number of coordinate transformations and the methods may be
complicated. The influence of the flexure hinge modelling accuracies on the output compliances of the stages
are not presented.

Although there are various analytical models developed to calculate displacements and compliances of
micro-motion stages, only a few research groups derived output compliance models for RRR and 3-RRR
micro-motion stages. Accuracies of these developed models are partly influenced by the accuracies of the flex-
ure hinge equations used in the models; however this issue has not been investigated. Flexure hinge compliance
equations were previously derived using methods such as the Castigliano’s second theorem [5,6], finite element
analysis [2–4] and the integration of linear differential equations of beams [5,7]. As shown in Figs. 2–4, some of
these flexure hinge compliance equations however provide better accuracies than the others depending on the
t/R ratio of a hinge. There is a lack of literatures up to this date reporting the effect of the accuracies of flexure
hinge equations on the output compliances of micro-motion stages.
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This paper presents the effect of the accuracies of flexure hinge equations on the output compliances of
RRR and 3-RRR micro-motion stages. Simple closed-form equations are derived to determine the output
compliances of the stages. The closed-form output compliance equations are expressed in terms of flexure
hinge compliances, material properties and geometrical parameters. Since flexure hinge compliances are one
of the variables in the equations, previously derived flexure hinge compliances equations [3,6,7,18], which have
different modelling accuracies depending on different t/R ratios of flexure hinges (see Figs. 2–4) are used to
calculate the output compliances of the micro-motion stages. The results of the output compliances are com-
pared to the FEA results to verify their accuracies.
2. The derivation of the output compliance matrix of the RRR compliant micro-motion stage

A RRR compliant stage is shown in Fig. 6 together with its dimensions, displacements, local coordinates of
flexure hinges and the applied forces/moments. The compliances at point o 0 contributed by each flexure hinge
in the structure are firstly calculated. The overall compliances of the RRR compliant stage at point o 0 are then
obtained by summing all compliances (in the corresponding directions) contributed by each individual flexure
b

a

Fig. 6. RRR compliant mechanism with dimensions, local coordinates of flexure hinges, hinge and point labels. (a) Applied forces/
moments at output point o 0. (b) Applied forces/moments at output point o.
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hinges. Da, Dy and Dx are the rotational motions about the z-axis and the translational motions in the y- and
x-axis, respectively. Similarly, CDa, CDy and CDx are the rotational and translational compliances along the
corresponding axes. The subscripts ‘‘o0i; F o0x’’, ‘‘o0i; F o0y ’’ and ‘‘o0i;Mo0z’’ indicate the displacements/compli-
ances at point o 0 due to compliances of hinge i (i = 1,2,3) when output forces/moments, F o0x, F o0y and Mo0z

are applied. [Daz/Mz]i, [Dy/Fy]i and [Dx/Fx]i are compliances of Hinge i which can be calculated using previ-
ously derived equations [1,3,4,6,7,18,19]. The effect of the accuracies of these flexure hinge equations on the
output compliance results of the micro-motion stages are studied.

Noted that all flexure hinges are modelled to have 3-DOF (rotational compliance about the z-axis, axial and
transverse compliances in the x- and the y-axis). Flexure hinges are modelled as having 3-DOF instead of
6-DOF due to the fact that both the RRR and 3-RRR compliant stages studied in this paper are planar.
Out-of-plane compliances are very small for thick hinges (b is large), and therefore the out-of-plane compli-
ances are neglected in order to simplify the modelling equations.
2.1. Output compliances due to Hinge 1

2.1.1. Rotational compliances about the z-direction of a RRR compliant stage

When output force, F o0x is applied,
Dao01;F o0x ¼ �
Daz

Mz

� �
1

F o0x � l4ð Þ ð1Þ

CDao01;F o0x ¼
Dao01;F o0x

F o0x
¼ � Daz

Mz

� �
1

� l4 ð2Þ
When output force, F o0y is applied,
Dao01;F o0y ¼
Daz

Mz

� �
1

F o0yðl1 þ R1Þ ð3Þ

CDao01;F o0y ¼
Daz

Mz

� �
1

ðl1 þ R1Þ ð4Þ
When output moment, Mo0z is applied,
CDao01;Mo0z ¼
Daz

Mz

� �
1

ð5Þ
2.1.2. Translational compliances in the y-direction of a RRR compliant stage

When output force, F o0x is applied, the output translational compliance in the y-direction is caused by the
rotational displacement of the hinge (see Fig. 7),
Dyo01;F o0x
¼ � Daz

Mz

� �
1

F o0x � l4ð Þ � ðl1 þ R1Þ ð6Þ

CDyo01;F o0x
¼ � Daz

Mz

� �
1

l4 � ðl1 þ R1Þ ð7Þ
When output force, F o0y is applied, the output compliance in the y-direction at point 1 (see Fig. 8) is,
Dy1;F o0y
¼ Daz

Mz

� �
1

� R1 � F o0yl1 þ
Dy
F y

� �
1

� F o0y

� �
ð8Þ

CDy1;F o0y
¼ Daz

Mz

� �
1

� R1l1 þ
Dy
F y

� �
1

� �
ð9Þ
The first term of CDy1;F o0y
represents the compliance in the y-direction of point 1 caused by moment F o0yl1 and

the second term represents the compliance in the y-direction caused by force F o0y .



Fig. 8. Calculation of Dyo01;F o0 y
. Dashed lines represent initial position of the RRR structure. Flexure hinge is drawn as a solid line and

rigid link is drawn as a block.

Fig. 7. Calculation of Dyo01;F o0x
. Dashed lines represent initial position of the RRR structure. Flexure hinge is drawn as a solid line and

rigid link is drawn as a block.
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Thus, from Eqs. (4) and (9), CDyo01;F o0y
can be calculated (see Fig. 8),
CDyo01;F o0y
¼

Dao01;F o0y � l1 þ Dy1;F o0y

F o0y
¼ CDao01;F o0y � l1 þ CDy1;F o0y

¼ Daz

Mz

� �
1

R1l1 þ l1ðl1 þ R1Þf g þ Dy
F y

� �
1

ð10Þ
When output moment, Mo0z is applied,
Dyo01;Mo0z
¼ Daz

Mz

� �
1

Mo0z � ðl1 þ R1Þ ð11Þ

CDyo01;Mo0z
¼ Daz

Mz

� �
1

ðl1 þ R1Þ ð12Þ
2.1.3. Translational compliances in the x-direction of a RRR compliant stage

When output force, F o0x is applied,
Dxo01;F o0x ¼
Dx
F x

� �
1

F o0x � Dao01;F o0x � l4 ð13Þ
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where the first term of Dxo01;F o0x represents the x-displacement of point o 0 caused by the compliance in the
x-direction of Hinge 1. The second term represents the x-displacement caused by the amplification of links
(with distance of l4).

From Eq. (13),
CDxo01;F o0x ¼
Dxo01;F o0x

F o0x
¼ Dx

F x

� �
1

� CDao01;F o0x � l4 ¼
Dx
F x

� �
1

þ Daz

Mz

� �
1

l2
4 ð14Þ
where CDao01;F o0x is obtained from Eq. (2).
When output force, F o0y is applied,
Dxo01;F o0y ¼ �Dao01;F o0y � l4 ð15Þ

CDxo01;F o0y ¼ �CDao01;F o0y � l4 ¼ �
Daz

Mz

� �
1

ðl1 þ R1Þl4 ð16Þ
where CDao01;F o0y is obtained from Eq. (4).
When output moment, Mo0z is applied,
CDxo01;Mo0z ¼ �
Daz

Mz

� �
1

l4 ð17Þ
where CDao01;Mo0z is obtained from Eq. (5).
Thus, the output compliance matrix of RRR mechanism at point o 0 due to compliances of Hinge 1 is,
C1 ¼
CDxo01;F o0x CDxo01;F o0y CDxo01;Mo0z

CDyo01;F o0x
CDyo01;F o0y

CDyo01;Mo0z

CDao01;F o0x CDao01;F o0y CDao01;Mo0z

2
64

3
75 ð18Þ
Displacements of RRR mechanism at point o 0 due to compliances of Hinge 1 when output forces/moments are
applied are,
½DX o01 DY o01 Dco01 �
T ¼ C1 � F o0 ð19Þ
where F o0 ¼ ½ F o0x F o0y Mo0z �T.

2.2. Output compliances due to Hinge 2

The compliances of RRR mechanism due to Hinge 2 are calculated in the local coordinate (x2,y2) of Hinge
2 (see Fig. 6). This compliance matrix will be rotated by 90� when the summation of all the three compliance
matrices (C1,C2,C3) of flexure hinges are conducted to obtain the overall output compliance matrix of the
RRR mechanism. Similar procedures are carried out as presented in Section 2.1 and the following compliances
are obtained.

2.2.1. Rotational compliances about the z-direction of a RRR compliant stage
When output force, F o0x is applied,
CDao02;F o0x ¼ �
Daz

Mz

� �
2

ðl2 þ l3 þ R2 þ 2R3Þ ð20Þ
When output force, F o0y is applied,
CDao02;F o0y ¼ 0 ð21Þ
When output force, Mo0z is applied,
CDao02;Mo0z ¼
Daz

Mz

� �
2

ð22Þ
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2.2.2. Translational compliances in the y-direction of a RRR compliant stage

When output force, F o0x is applied, the compliance in the y-direction (local coordinate) at point 2 is,
CDy2;F o0x
¼ � Daz

Mz

� �
2

� R2 l2 þ l3 þ 2R3ð Þ þ Dy
F y

� �
2

� �
ð23Þ
The procedure of calculating CDyo02;F o0x
is similar to CDyo01;F o0x

. The first term of CDy2;F o0x
represents the com-

pliance in the y-direction of point 2 caused by moment, F o0xðl2 þ l3 þ 2R3Þ and the second term represents the
compliance in the y-direction caused by force, F o0x.

Thus,
CDyo02;F o0x
¼

Dao02;F o0x � ðl2 þ l3 þ 2R3Þ þ Dy2;F o0x

F o0x
¼ CDao02;F o0x � ðl2 þ l3 þ 2R3Þ þ CDy2;F o0x

¼ � Daz

Mz

� �
2

ðl2 þ l3 þ 2R3Þðl2 þ l3 þ 2R2 þ 2R3Þ �
Dy
F y

� �
2

ð24Þ
where CDao02;F o0x is obtained from Eq. (20) and CDy2;F o0x
is obtained from Eq. (23).

When output force, F o0y is applied,
CDyo02;F o0y
¼ 0 ð25Þ
When output force, Mo0z is applied,
CDyo02;Mo0z
¼ Daz

Mz

� �
2

ðl2 þ l3 þ R2 þ 2R3Þ ð26Þ
2.2.3. Translational compliances in the x-direction of a RRR compliant stage

When output force, F o0x is applied,
CDxo02;F o0x ¼ 0 ð27Þ
When output force, F o0y is applied,
CDxo02;F o0y ¼
Dx
F x

� �
2

ð28Þ
When output force, Mo0z is applied,
CDao02;Mo0z ¼ 0 ð29Þ
Thus, the output compliance matrix of RRR mechanism at point o 0 due to compliances of Hinge 2 is,
C2 ¼
CDxo02;F o0x CDxo02;F o0y CDxo02;Mo0z

CDyo02;F o0x
CDyo02;F o0y

CDyo02;Mo0z

CDao02;F o0x CDao02;F o0y CDao02;Mo0z

2
64

3
75 ð30Þ
Displacements of RRR mechanism at o 0 due to compliances of Hinge 2, when output forces/moments are ap-
plied are,
½DX o02 DY o02 Dco02 �
T ¼ C2 � F o0 ð31Þ
2.3. Output compliances due to Hinge 3

Similar to Section 2.2, compliances of RRR mechanism due to Hinge 3 are calculated in the local coordi-
nate (x3,y3) of Hinge 3. This compliance matrix will be rotated by 90� when the summation of all the three
compliance matrices (C1,C2,C3) of flexure hinges are conducted to obtain the overall output compliance
matrix of the RRR stage.
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2.3.1. Rotational compliances about the z-direction of a RRR compliant stage

When output force, F o0x is applied,
CDao03;F o0x ¼ �
Daz

Mz

� �
3

� ðl3 þ R3Þ ð32Þ
When output force, F o0y is applied,
CDao03;F o0y ¼ 0 ð33Þ
When output force, Mo0z is applied,
CDao03;Mo0z ¼
Daz

Mz

� �
3

ð34Þ
2.3.2. Translational compliances in the y-direction of a RRR compliant stage

When output force, F o0x is applied, the compliance in the y-direction (local coordinate) at point 3 is,
CDy3;F o0x
¼ � Daz

Mz

� �
3

� R3 � l3 þ
Dy
F y

� �
3

� �
ð35Þ
Thus, from Eqs. (32) and (35),
CDyo03;F o0x
¼ CDao03;F o0x � l3 þ CDy3;F o0x

¼ � Daz

Mz

� �
3

ðl3 þ 2R3Þl3 �
Dy
F y

� �
3

ð36Þ
When output force, F o0y is applied,
CDyo03;F o0y
¼ 0 ð37Þ
When output force, Mo0z is applied,
CDyo03;Mo0z
¼ Daz

Mz

� �
3

ðl3 þ R3Þ ð38Þ
2.3.3. Translational compliances in the x-direction of a RRR compliant stage

When output force, F o0x is applied,
CDxo03;F o0x ¼ 0 ð39Þ
When output force, F o0y is applied,
CDxo03;F o0y ¼
Dx
F x

� �
3

ð40Þ
When output moment, Mo0z is applied,
CDxo03;Mo0z ¼ 0 ð41Þ
Thus, the output compliance matrix of RRR mechanism at point o 0 due to compliances of Hinge 3 is,
C3 ¼
CDxo03;F o0x CDxo03;F o0y CDxo03;Mo0z

CDyo03;F o0x
CDyo03;F o0y

CDyo03;Mo0z

CDao03;F o0x CDao03;F o0y CDao03;Mo0z

2
64

3
75 ð42Þ
Displacements of RRR mechanism at point o 0 due to compliances of Hinge 3 when output forces/moments are
applied,
DX o03 DY o03 Dco03½ �T ¼ C3 � F o0 ð43Þ



Y.K. Yong, T.-F. Lu / Mechanism and Machine Theory 43 (2008) 347–363 357
2.4. Output compliances of RRR compliant mechanism

The output compliance matrix of the RRR mechanism at point o 0 is equal to the sum of all the three com-
pliance matrices, C1, C2 and C3. C2 and C3 are derived in their local coordinates (x2–y2 and x3–y3) which are
orientated 90� from x1–y1. Therefore, C2 and C3 matrices are rotated by 90� before the summation.
Fig. 9.
solid li
CRRR;o0 ¼ C1 þ T p=2 � C2 þ T p=2 � C3 ð44Þ
where,
T p=2 ¼
cosðp=2Þ � sinðp=2Þ 0

sinðp=2Þ cosðp=2Þ 0

0 0 1

2
64

3
75 ð45Þ
The output displacements at point o 0 of the RRR mechanism is,
DxRRR DyRRR DcRRR½ �To0 ¼ CRRR;o0 � F o0 ð46Þ
When output forces are applied at point o instead of point o 0 (see Fig. 6b) and the displacements at this point
are desired, matrix Tf can be used to transfer the output forces from point o to point o 0. Once CRRR;o0 is deter-
mined using Eq. (44), a compliance matrix at point o can be calculated by transforming CRRR;o0 to point o

using a matrix, Td. Intuitively, we know that DxRRR;o ¼ DxRRR;o0 and DcRRR;o ¼ DcRRR;o0 . However,
DyRRR;o 6¼ DyRRR;o0 due to rotational motions (DcRRR,o) and the amplification of lever arm, l6. Displacement,
DyRRR,o of the RRR stage is illustrated in Fig. 9.

The force transformation matrix is,
T f ¼
1 0 0

0 1 0

0 �l6 1

2
64

3
75 ð47Þ
The displacement transformation matrix is,
T d ¼
1 0 0

0 1 �l6

0 0 1

2
64

3
75 ð48Þ
Calculation of compliances at point o. Dashed lines represent initial position of the RRR structure. Flexure hinge is drawn as a
ne and rigid link is drawn as a block.
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Therefore, the output displacements at o of the RRR mechanism is,
DxRRR

DyRRR

DcRRR

2
64

3
75

o

¼ T d � CRRR;o0 � ðT f � F oÞ ð49Þ
Thus, the output compliances at point o is,
CRRR;o ¼ T d � CRRR;o0 � T f ð50Þ
where F o ¼ ½ F ox F oy Moz �T.
3. Output compliance matrix of 3-RRR compliant micro-motion stage

The 3-RRR compliant micro-motion stage is generated by arranging the three RRR compliant stages 120�
apart (see Fig. 10a). A spring model of the 3-RRR compliant stage is developed as shown in Fig. 10b. Each of
the box represents the compliance matrix of each RRR link, CRRR1, CRRR2 and CRRR3. The compliance
matrices of RRR link 2 and 3 are rotated by 120� and �120�, respectively.

Displacements (DRRR2,o and DRRR3,o) at output point, o due to compliances of RRR link 2 and 3, respec-
tively are,
DRRR2;o ¼ T 2p=3 � CRRR;o � T T
2p=3 � F o ð51Þ

DRRR3;o ¼ T�2p=3 � CRRR;o � T T
�2p=3 � F o ð52Þ
a

b

Fig. 10. (a) 3-RRR compliant micro-motion stage. (b) Spring model of 3-RRR compliant micro-motion stage.
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where,
Table
Geome

Geome

Young
Poisso
l1 (mm
l2 (mm
l3 (mm
l4 (mm
l6 (mm
t1, t2, t

R1, R2

b (mm
T 2p=3 ¼
cosð2p=3Þ � sinð2p=3Þ 0

sinð2p=3Þ cosð2p=3Þ 0

0 0 1

2
64

3
75 ð53Þ

T�2p=3 ¼
cosð�2p=3Þ � sinð�2p=3Þ 0

sinð�2p=3Þ cosð�2p=3Þ 0

0 0 1

2
64

3
75 ð54Þ
T T
2p=3and T T

�2p=3 are the transpose of T2p/3 and T�2p/3, respectively. CRRR,o is obtained from Eq. (50).
From Eqs. (51) and (52), compliance matrices of link 2 and 3 can be expressed as,
CRRR2;o ¼ T 2p=3 � CRRR;o � T T
2p=3 ð55Þ

CRRR3;o ¼ T�2p=3 � CRRR;o � T T
�2p=3 ð56Þ
Since springs are arranged parallel to each other, the compliance matrix of the 3-RRR compliant micro-mo-
tion stage can be found using the rule for calculating the equivalent compliances for parallel connections of
springs,
C3RRR ¼ ðC�1
RRR1 þ C�1

RRR2 þ C�1
RRR3Þ

�1 ð57Þ
where CRRR1 = CRRR,o.
The output displacements due to applied forces/moments can be expressed as,
½Dx Dy Dc �T3RRR ¼ C3RRR � F o ð58Þ
4. Case studies and comparison of results with FEA

Table 1 shows the geometries and material properties of a RRR and 3-RRR compliant micro-motion
stages. All flexure hinges in these micro-motion stages have the same geometries and material properties.
Therefore, all flexure hinges have the same compliances of [Daz/Mz]i, [Dy/Fy]i and [Dx/Fx]i (i = 1,2,3), respec-
tively. The t/R ratio of all the flexure hinges is 0.63. Four cases were studied where flexure hinge equations
developed by [3,7,6,18] and the FEA determined flexure hinge results obtained in this paper were used to esti-
mate the compliances of flexure hinges. Since the flexure hinge compliance results of Paros & Weisbord (full
equations) [7], Lobontiu [6] and Wu & Zhou [18] are the same (see Figs. 2–4), the results of this group will be
represented by the results of Lobontiu. Table 2 shows the flexure hinge compliances calculated from the cho-
sen hinge equations in each case.

For Daz/Mz, it can be seen in Fig. 2 that at t/R = 0.63, the results of Schotborgh’s equation are the closest
to the FEA results, followed by Paros and Weisbord’s simplified equation and Loboutiu’s equation. For Dy/Fy
1
tries and material properties of the compliant micro-motion stages

tries/material properties Value

’s modulus, E (GPa) 71.7
n’s ratio, m 0.33
) 15.5
) 8
) 10.5
) 28
) 27

3 (mm) 0.94
, R3 (mm) 1.5
) 12.7



Table 2
Flexure hinge compliances calculated using various equations

Case Chosen flexure hinge equation Flexure hinge compliance

Daz/Mz (rad/Nm) Dy/Fy (m/N) Dx/Fx (m/N) Daz/Mz (rad/Nm) Dy/Fy (m/N) Dx/Fx (m/N)

Case 1 Sch [3] Sch [3] Sch [3] 0.0254 1.561 · 10�8 4.143 · 10�9

Case 2 PW (simplified) [7] PW (simplified) [7] PW (simplified) [7] 0.0222 4.994 · 10�8 1.534 · 10�9

Case 3 Lob [6] Lob [6] Lob [6] 0.0204 5.155 · 10�8 2.402 · 10�9

Case 4 Sch [3] FEA determined FEA determined 0.0254 7.190 · 10�8 2.415 · 10�9

Sch: Schotborgh et al., PW: Paros and Weisboard and Lob: Lobontiu.
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and Dx/Fx, it can be seen in Figs. 3 and 4 that the results of Loboutiu’s equations are the closest to the FEA
results, followed by Paros & Weisbord’s (simplified) and Schotborgh’s equations. The results of Schotborgh’s
equations for Dy/Fy and Dx/Fx have large differences when compared to the FEA and the analytical results of
Paros & Weisbord (simplified) and Lobontiu. This is because Schotborgh’s equations consider different
aspects of the hinge compared to the others. Nevertheless, the discussion of Schotborgh et al.’s modelling
method is beyond the scope of this paper.

The output compliances of the RRR and 3-RRR micro-motion stages are calculated using the flexure hinge
equations aforementioned to study the effect of the accuracy of these hinge equations on the output compli-
ances. The results of the analytical output compliances of the stages are shown in Tables 3–5. These analytical
compliances are compared to the FEA results.
Table 3
Comparison between analytical and FEA results for the RRR micro-motion stage

Flexure hinge compliance equation Analytical output compliance matrix (m/N, m/Nm, rad/N, rad/Nm) % difference

Case 1: Sch [3] 3.669 · 10�5 3.117 · 10�5 �1.603 · 10�3 �0.6 �0.9 �0.3
3.117 · 10�5 3.958 · 10�5 �1.628 · 10�3 �0.9 �1.3 �0.9
�1.603 · 10�3 �1.628 · 10�3 7.634 · 10�2 �0.3 �0.9 �0.3

Case 2: PW (simplified) [7] 3.234 · 10�5 2.719 · 10�5 �1.398 · 10�3 �13.1 �13.6 �13.0
2.719 · 10�5 3.449 · 10�5 �1.421 · 10�3 �13.6 �14.0 �13.6
�1.398 · 10�3 �1.421 · 10�3 6.659 · 10�2 �13.0 �13.6 �13.0

Case 3: Lob [6] 2.978 · 10�5 2.503 · 10�5 �1.287 · 10�3 �19.9 �20.5 �19.9
2.503 · 10�5 3.174 · 10�5 �1.308 · 10�3 �20.5 �20.8 �20.4
�1.287 · 10�3 �1.308 · 10�3 6.130 · 10�2 �19.9 �20.4 �19.9

Sch: Schotborgh, PW: Paros and Weisboard and Lob: Lobontiu.

Table 4
Comparison between analytical and FEA results for the 3-RRR micro-motion stage

Flexure hinge design equation Analytical output compliance matrix (m/N, m/Nm, rad/N, rad/Nm) % difference

Case 1: Sch [3] 5.676 · 10�7 0 0 �11.4 – –
0 5.676 · 10�7 0 – �11.4 –
0 0 3.593 · 10�4 – – �13.1

Case 2: PW (simplified) [7] 5.091 · 10�7 0 0 �20.5 – –
0 5.091 · 10�7 0 – �20.5 –
0 0 3.226 · 10�4 – – �22.0

Case 3: Lob [6] 4.720 · 10�7 0 0 �26.3 – –
0 4.720 · 10�7 0 – �26.3 –
0 0 2.992 · 10�4 – – �27.6

Sch: Schotborgh et al., PW: Paros and Weisboard and Lob: Lobontiu.



Table 5
Case 4 – Comparison between analytical and FEA results for the two micro-motion stages

Case 4 Analytical output compliance matrix (m/N, m/Nm, rad/N, rad/Nm) % difference

RRR 3.711 · 10�5 3.117 · 10�5 �1.603 · 10�3 �0.3 �0.9 �0.3
3.117 · 10�5 3.966 · 10�5 �1.628 · 10�3 �0.9 �1.1 �0.9
�1.603 · 10�3 �1.628 · 10�3 7.633 · 10�2 �0.3 �0.9 �0.3

3-RRR 6.193 · 10�7 0 0 �3.3 – –
0 6.193 · 10�7 0 – �3.3 –
0 0 3.953 · 10�4 – – �4.4
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4.1. Finite element analysis (ANSYS)

A FEA model was generated using ANSYS. The stage was generated using 8-node, two-dimensional, plane
elements (PLANE82) with two DOFs on each node, which are translations in the nodal x- and y-directions.
Meshes, constraints and applied forces/moments of the FEA model are shown in Fig. 11. Unit forces/
moments are applied at output point o and the corresponding nodal deformations at the point were read.
The output compliance matrix of the RRR and 3-RRR micro-motion stages determined using FEA are shown
in Eqs. (59) and (60), respectively.
CRRR½FEA� ¼
3:720� 10�5 3:146� 10�5 �1:608� 10�3

3:15� 10�5 4:010� 10�5 �1:644� 10�3

�1:608� 10�3 �1:644� 10�3 7:653� 10�2

2
64

3
75 ð59Þ

C3RRR½FEA� ¼
6:405� 10�7 0 0

0 6:405� 10�7 0

0 0 4:134� 10�4

2
64

3
75 ð60Þ
The off-diagonal compliances of C3RRR½FEA� in Eq. (60) are very small and insignificant compared to the diag-
onal terms. Therefore, the off-diagonal compliances are assumed to be zero. This is expected as the 3-RRR
compliant stage has a RCC (remote-centre-of-compliance) configuration and deformations occur only along
the direction of the applied force/moment [20].

Analytical output compliances calculated from Eqs. (50) and (57) using the chosen flexure hinge equations
(see Table 2) were compared with FEA results. The differences between the analytical and the FEA results are
shown in Tables 3–5.
Fig. 11. FEA model of 3-RRR compliant micro-motion stage.
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4.1.1. Results and discussions

The results in Tables 3 and 4 show that the analytical output compliances of RRR and 3-RRR compliant
stages calculated using Schotborgh et al.’s flexure hinge equations are the closest to the FEA results, followed
by Paros & Weisbord’s (simplified) and Loboutiu’s equations. The accuracies of the output compliance results
follow the trend of the accuracies of the hinge equation, Daz/Mz, but not the accuracies of Dy/Fy and Dx/Fx.

The large differences of output compliances (when compared to FEA results) obtained using Paros and
Weisbord’s simplified equations are expected because the t/R ratio of flexure hinges in this case is large, which
violates the assumption of these analytical equations. The output compliances of the stages calculated using
Lobontiu’s equations produce larger differences compared to that of Schotborgh’s equations. However, Lob-
ontiu’s equations may produce accurate results if it would be used to calculate compliances of flexure hinges
with t/R ratio other than 0.63.

The Dy/Fy and Dx/Fx equations of Schotborgh et al. have large differences compared to the FEA deter-
mined compliances for t/R = 0.63 as shown in Figs. 3 and 4. The large differences (approximately 80%) in
the Dy/Fy and Dx/Fx results do not cause large discrepancies in the output compliance results of the micro-
motion stages. In order to study the degree of discrepancies of the output compliances due to Schotborgh
et al.’s Dy/Fy and Dx/Fx equations, these two flexure hinge equations in case 1 are replaced by the FEA deter-
mined Dy/Fy and Dx/Fx and this new case is referred to as case 4. The calculated output compliances for case 4
are shown in Table 5.

From Table 5, it can be seen that the output compliance results of case 4 for the RRR stage are similar to
that of case 1. This suggests that, for this particular geometry of the RRR stage, the accuracies of the Dy/Fy

and Dx/Fx have insignificant effects on the output compliances of the stage. The axial and transverse defor-
mations of the flexure hinges are very small and insignificant to influence the results of the output compliances
of the RRR stage. Meanwhile, the output compliances of case 4 for the 3-RRR stage are closer to the FEA
results compared to that of case 1. The maximum difference of the output compliance results in case 4 is 4.4%
compared to 13% in case 1. This suggests that for this particular 3-RRR stage, the accuracies of the Dy/Fy and
Dx/Fx have some effects on the output compliances of the stage (but not up to the extend of 80%). The axial
and transverse deformations of flexure hinges are small but are significant enough to have small influences to
the results of the output compliances of the 3-RRR stage. As a conclusion, accurate output compliances of the
3-RRR micro-motion stage can be obtained when the suitable flexure hinge equations are used.

Results in Tables 3–5 also show the advantage of the closed-form output compliance equations of the
micro-motion stages presented in this paper. The flexure hinge equations, Daz/Mz, Dy/Fy and Dx/Fx are vari-
ables in the output compliance equations. Therefore, researchers can choose the most suitable flexure hinge
compliance equation by referring to Figs. 2–4 (based on the t/R ratio of the flexure hinges) in order to accu-
rately calculate the output compliances of the micro-motion stages.
5. Conclusions

The effect of the accuracies of flexure hinge equations on the output compliances of micro-motion stages are
studied. Simple closed-form equations are derived in this paper to determine the output compliances of a RRR
and a 3-RRR micro-motion stage. The flexure hinge equations, Daz/Mz, Dy/Fy and Dx/Fx are variables in the
output compliance equations of the stages; therefore flexure hinge compliance equations with different accu-
racies (which vary with the t/R ratios of hinges) can be used to calculate the output compliances. It was found
that the accuracy of the output compliances mainly influenced by the accuracies of the Daz/Mz equations. It
was also found that the accuracies of the Dy/Fy and D x/Fx equations have insignificant effects on the accu-
racies of the output compliances of the RRR stage. However, the accuracies of these equations influence
the accuracies of the output compliances of the 3-RRR stage. As a conclusion, accurate output compliances
of the 3-RRR micro-motion stage can be obtained when the most suitable flexure hinge equation are used. The
suitable flexure hinge equations can be chosen (based on the t/R ratio of the flexure hinges) by referring to
Figs. 2–4.

Experiments will be conducted in the near future to further justify the accuracies of the presented output
compliance results. Closed-form equations of calculating the input compliances of the stages are derived. The
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effect of the accuracies of flexure hinge equations on the input compliances of micro-motion stages will be pre-
sented in near future.
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