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The Receding Horizon Control Principle

Fixed horizon optimisation leads to a control sequence
{ui , . . . , ui+N−1}, which begins at the current time i and ends at
some future time i + N − 1.

This fixed horizon solution suffers from two potential drawbacks:

(i) Something unexpected may happen to the system at some
time over the future interval [i, i +N − 1] that was not predicted
by (or included in) the model. This would render the fixed
control choices {ui , . . . , ui+N−1} obsolete.

(ii) As one approaches the final time i + N − 1, the control law
typically “gives up trying” since there is too little time to go to
achieve anything useful in terms of objective function
reduction.
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The Receding Horizon Control Principle

The above two problems are addressed by the idea of receding
horizon optimisation.

This idea can be summarised as follows:

(i) At time i and for the current state xi , solve an optimal control
problem over a fixed future interval, say [i, i + N − 1], taking
into account the current and future constraints.

(ii) Apply only the first step in the resulting optimal control
sequence.

(iii) Measure the state reached at time i + 1.

(iv) Repeat the fixed horizon optimisation at time i + 1 over the
future interval [i + 1, i + N], starting from the (now) current
state xi+1.
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The Receding Horizon Control Principle

In the absence of disturbances, the state measured at step (iii) will
be the same as that predicted by the model.

Nonetheless, it seems prudent to use the measured state rather
than the predicted state just to be sure.

The above description assumes that the state is measured at
time i + 1.

In practice, one would use some form of observer to estimate xi+1

based on the available data.

More will be said about the use of observers in the next lecture.

For the moment, we will assume that the full state vector is
measured and we will ignore the impact of disturbances.
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The Receding Horizon Control Principle

If the model and objective function are time invariant, then the
same input ui will result whenever the state takes the same value.

That is, the receding horizon optimisation strategy is really a
particular time-invariant state feedback control law:

PSfrag replacements
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xk+1 = f (xk , uk )

RHC

In particular, we can set i = 0 in the formulation of the open loop
control problem.
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The Receding Horizon Control Principle

More precisely, at the current time, and for the current state x, we
solve:

PN(x) : VN (x) , min VN({xk }, {uk }), (1)

subject to:

xk+1 = f (xk , uk ) for k = 0, . . . ,N − 1, (2)

x0 = x, (3)

uk ∈ U for k = 0, . . . ,N − 1, (4)

xk ∈ X for k = 0, . . . ,N, (5)

xN ∈ Xf ⊂ X, (6)

where

VN({xk }, {uk }) , F(xN) +
N−1
∑

k=0

L(xk , uk ). (7)
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The Receding Horizon Control Principle

The sets U ⊂ Rm, X ⊂ Rn, and Xf ⊂ R
n are the input, state and

terminal constraint set, respectively.

All sequences {uk } = {u0, . . . , uN−1} and {xk } = {x0, . . . , xN}

satisfying the constraints (2)–(6) are called feasible sequences.

A pair of feasible sequences {u0, . . . , uN−1} and {x0, . . . , xN}

constitute a feasible solution.

The functions F and L in the objective function (7) are the terminal
state weighting and the per-stage weighting, respectively.
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The Receding Horizon Control Principle

In the sequel we make the following assumptions:

f , F and L are continuous functions of their arguments;

U ⊂ Rm is a compact set, X ⊂ Rn and Xf ⊂ R
n are closed sets;

there exists a feasible solution to problem (1)–(7).

Because N is finite, these assumptions are sufficient to ensure the
existence of a minimum by Weierstrass’ theorem.
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The Receding Horizon Control Principle

Typical choices for the weighting functions F and L are quadratic
functions of the form

F(x) = xPx and L(x, u) = xQx + uRu,

where P = P ≥ 0, Q = Q ≥ 0 and R = R > 0.

More generally, one could use functions of the form

F(x) = ‖Px‖p and L(x, u) = ‖Qx‖p + ‖Ru‖p ,

where ‖y‖p with p = 1, 2, . . . ,∞, is the p-norm of the vector y.
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The Receding Horizon Control Principle

Denote the minimising control sequence, which is a function of the
current state xi , by

U


xi
, {u0 , u



1 , . . . , u


N−1} ; (8)

then the control applied to the plant at time i is the first element of
this sequence, that is,

ui = u0 . (9)

Time is then stepped forward one instant, and the above procedure
is repeated for another N-step-ahead optimisation horizon.

The first element of the new N-step input sequence is then applied,
and so on.

The above procedure is called receding horizon control (RHC).
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The Receding Horizon Control Principle
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The figure illustrates the RHC
principle for horizon N = 5.

Each plot shows the
minimising control sequence
U 

xi
given in (8), computed

at time i = 0, 1, 2.

Note that only the shaded
inputs are actually applied to
the system.

We can see that we are
continually looking ahead to
judge the impact of current
and future decisions on the
future response.
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The Receding Horizon Control Principle

The above receding horizon procedure implicitly defines a
time-invariant control policy KN : X→ U of the form

KN(x) = u0 . (10)

The receding horizon controller is implemented in closed loop as
follows.
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The Receding Horizon Control Principle

PSfrag replacements

uk

uk

xk

xk
xk+1 = f (xk , uk )

KN(·)

u0

























u0
.
.
.

uN−1
























Finite horizon

optimisation
solver

[I 0 . . . 0]

Figure: Receding horizon control
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The Receding Horizon Control Principle

Note that the strict definition of the function KN(·) requires the
minimiser to be unique.

Most of the problems treated in this course are convex and hence
satisfy this condition.

One exception is the “finite alphabet” optimisation case that will be
discussed on Day 4, where the minimiser is not necessarily unique.

However, in such cases, one can adopt a rule to select one of the
minimisers.

Centre for Complex Dynamic
Systems and Control



The Receding Horizon Control Principle

It is common in receding horizon control applications to compute
numerically, at time i, and for the current state xi = x, the optimal
control move KN(x). In this case, we call it an implicit receding
horizon optimal policy.

In some cases, we can explicitly evaluate the control law KN(·). In
this case, we say that we have an explicit receding horizon optimal
policy.
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The Receding Horizon Control Principle

We will expand on the above skeleton description of receding
horizon optimal constrained control as the course evolves.

For example, we will treat linear constrained problems in the next
lecture. When the system model is linear, the objective function
quadratic and the constraint sets polyhedral, the fixed horizon
optimal control problem PN(·) is a quadratic programme of the type
presented on Day 2. On Day 3 we will study the solution of this
quadratic program in some detail.

If, on the other hand, the system model is nonlinear, PN(·) is, in the
general case, nonconvex, so that only local solutions are available.
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