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Abstract— In this paper we propose a feedback control
strategy to increase the copper recovery in a heap bioleaching
process. The control strategy is implemented using Internal
Model Control based on a multivariable linear state-space
model obtained by the Maximum Likelihood method. The
linear model describes the variations of the average temperature
around a nominal trajectory. This trajectory is obtained as the
response to nominal inputs that have been proved to work
well in real leaching applications, and is computed using a
comprehensive high complexity mathematical model developed
by BHP Billiton Innovation. The results show that significant
increments in copper extraction can be obtained using limited
control actions with the proposed feedback strategy.

I. INTRODUCTION

This paper proposes a simple feedback control strategy
to improve mineral extraction in heap bioleaching processes
for copper sulphidic ores. Mineral heap leaching is a mining
technology based on the dissolution of minerals by a perco-
lating solution through large piles of crushed copper ore. In
heap bioleaching the mineral extraction is enhanced by the
catalytic action of naturally occurring bacteria. Bioleaching
appears as a lower-cost and more environmentally friendly
alternative to smelting for the production of high purity
cathodic copper from low grade sulphidic ores [1].

Although heap bioleaching process has been used for
copper extraction in stand-alone facilities worldwide for
many years, its efficiency has been marred by lower than
expected production rates and longer than expected start
up times [2]. Hence in recent years, the interest of mining
companies in developing control and optimisation strategies
to improve the technology has increased, leading to greater
research efforts to understand the mechanisms that make the
process work better [3], [4].

The present work aims to contribute to the optimisation
of the bioleaching technology by utilising model-based feed-
back control methods—to the best of our knowledge, without
precedents in the literature. On one hand, typical heap
bioleaching facilities around the world operate in essentially
an open-loop mode, with fixed set-points for the entire
life of the process (sometimes of the order of two years
long for leaching of chalcopyrite [5]). On the other hand,
although there exist accurate models to describe important
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aspects of the process such as oxidation, bacterial growth,
and temperature [6], [2], [4], such models are typically of a
great mathematical complexity, which makes the design of
model-based control strategies very hard.

In our approach we consider an important model esti-
mation aspect well known in the area of identification for
control: very often, a relatively simple model suffices as the
basis for successful control design for complex processes, as
long as essential dynamic aspects of the process are captured
by the model [7]. Having this statement in mind, in Section
II we focus on the estimation of a simple multivariable state-
space linear model maximising the Likelihood function [8].

To generate model estimation data we use a comprehensive
high complexity mathematical model developed by BHP-
Billiton, which we shall refer to as the BHPB model. This
proprietary model has of the order of 45 state-space variables
and 100 tuning parameters, and operates as a black-box, in
that the user is allowed to set up its inputs and has access to
its outputs once the model has been run, but has no access
to internal computations or structure. The BHPB model
has been validated against real data from an experimental
bioleaching test column. Given the typical proportions of real
heap bioleaching implementations (several square kilometres
in area) and time scales (transients of the order of months in
the leaching of chalcocite), the use of accurate models such
as the BHPB model appear as a necessary step in devising
effective feedback control strategies for these processes [9]

A reduced number of input variables for control is selected
based on an open-loop sensitivity analysis performed on
the BHPB model (Section II-B). Such sensitivity analysis
quantifies the effect of small input variations around nominal
set-point values on the total amount of extracted copper after
a full life-cycle of the heap.

The output of interest to regulate in the present paper is
the average temperature in the heap. We use the Expecta-
tion Maximisation (EM) algorithm to find linear Maximum
Likelihood (ML) model estimates [10], [11]. The linear
model obtained describes incremental variations of the output
of interest to the selected control inputs around nominal
trajectories, which are generated with the BHPB model under
nominal conditions. The perturbations on the nominal values
of the inputs are generated as multisine signals with an
important component of low frequencies [12, chap.4].

In Section III we use the linear incremental model es-
timated following the procedures described in Section II to
design a feedback controller using the Internal Model Control
architecture [13], [14], to regulate small increments around
the nominal values of the outputs. The closed-loop results



simulated using the BHPB model are discussed in Section
III-B and show around4% improvement in the total mass of
extracted copper. These results appear very promising given
the extreme simplicity of the estimated model (third order)
used, and the limited (incremental) action of the control
inputs applied, and indicates good potential for feedback
operation of heap bioleaching processes.

Note that the proposed approach requires a priori knowl-
edge of the nominal trajectory of interest for model esti-
mation and control design. In an implementation on a real
heap, the BHPB model could be used to predict the heap
nominal trajectories with periodic parameter tuning to fit its
predictions to the real heap measured trajectories. Therefore,
further work will concentrate on such implementation struc-
ture by considering robustness and measurement noise issues.

II. M ODEL IDENTIFICATION

A. The Process

In copper heap leaching, large heaps of up to several
square kilometres by 6 to 10 metres height of crushed copper
mine tailings are formed. A sulphuric acid solution, called
raffinate, is sprinkled by means of an arrangement of drip
lines at the top of the heap. As the solution percolates
down through the heap, it becomes enriched by the copper
dissolved from the heaped ore, forming thepregnant leach
solution (PLS). The PLS is then collected at the base of
the heap by an impervious liner and pumped to an electro-
winning extraction plant, which produces cathodic copper
of 99.99% purity. The residual solution is then recycled as
raffinate to the top of the heap. The process is illustrated in
Fig. 1.

Copper for industrial use

Copper extraction plant

PLS pond

Raffinate drip lines

Impervious liner

Pump

Raffinate pond

Raffinate

3 Fe oxidation

2

1 Ore leaching

Metallic Cu extraction

Air
PLS

PLS

Heap of crushed copper sulfide oreBlower

Forced aireation lines

Fig. 1. Simplified copper heap leaching process

To tackle the complexity of this process, we consider
a single geometric dimension of the process, namely, the
vertical direction, assuming process homogeneity in every
direction on the horizontal plane. Given that there are three
fundamental inter-coupled sub-processes in bioleaching [15],
[4], we focus on the identification of a model for the average
temperature, which is one of these three sub-processes which
directly affects bacteria population and thereby, efficiency of
copper extraction [2].

B. Input Selection by Sensitivity Analysis

A sensitivity analysis of a selected set of potential control
variables is carried out to determine the input variables with
best control authority to affect copper extraction.

The candidate manipulated variables are:
• Irrigation rate (Fi) and input Acid Concentration

(H2SO4i
),

• Aeration Rate (Ai) and Raffinate Temperature (T o
i ),

• Input Ferric Sulphate Concentration (Fe2(SO4)3) and
input Ferrous Sulphate Concentration (FeSO4),

• Air Humidity and Air Temperature.
The sensitivity analysis of these variables is carried out by

running the BHPB model. We choose each pair of variables
listed above and variate them by small values around their
nominal set point values to obtain a 2-dimensional grid. Then
the BHPB model is run with the set point values defined by
the grid, while keeping all other variables at nominal set
point values.

The effect of the set point in the open loop process is
quantified using the functional defined by

J =
N∑

k=1

CCu [k]Fo[k]e−θk, in [g/h.m2], (1)

whereCCu [k] is the concentration of copper in[g/L] and
Fo[k] is outflux in [L/h.m2]. The functional (1) considers
the total copper extracted (per hour× m2) during the
bioleaching process for a given set-point. Thus, for each
pair of manipulated variables, and for each point in the
grid of set-point variations, we obtain a valueJ of total
copper extracted. The exponential factore−θk weights more
favourably runs of the BHPB model that render copper more
rapidly. We chooseθ = 4.81 10−5, which corresponds to a
value decrease of approximately10% in one year; around
3000 samples when the process is sampled every 4 hrs. This
exponential term is very small when time approaches the last
samples in the simulation (at about 3000 samples). In this
way, runs that extract copper over a long period of time are
penalised over runs that extract the same amount of copper
in a shorter period of time.

The results obtained are shown in the following plots.
Fig. 2 (a) shows sensitivity ofJ with respect to raffinate
influx (Fi) and acid concentration (H2SO4); and Fig. 2 (b)
shows the corresponding for aeration rate (Ai) and raffinate
temperature (Ti). We observe in Fig. 2 (a) a monotone
relationship between input variables and the functional value,
which increases when variables do. On the other hand, in
Fig. 2 (b), there is an interesting aspect. Namely, there is
an optimal extremum value for aeration rate. The existence
of such local extremum in copper extraction with respect to
aeration rate is reasonable, since we should expect a less
productive heap with little or no aeration [16], but also with
excessive aeration, since then the heap will be cooled down.

The effect of the pair Ferric Sulphate (Fe2(SO4)3) and
Ferrous Sulphate (FeSO4) is shown in Fig. 3 (a). We can
observe from Fig. 3 (a) that increasing the values for each of
the variables increases the copper extraction, but its effect is



less notorious than, for example, the pairAeration Rateand
Raffinate Temperature.

0
2

4
6

8
10

0
2

4
6

8
10

1.35

1.4

1.45

1.5

1.55

1.6

x 104

H2SO4 [g/L]Irrigation Rate [L/h.m2 ]

Fu
nc

tio
na

l V
al

ue
 J

(a) Functional Value varyingFi andH2SO4i.

18
20

22
24

26
28

0
0.02

0.04
0.06

0.08

1.35

1.4

1.45

1.5

1.55

1.6

x 104

Raffinate Temperature [ o C]Aeration rate [N m3/h.t]

Fu
nc

tio
na

l V
al

ue
 J

(b) Functional Value varying Aeration Rate and Raffinate
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Fig. 2. Functional Value varying different possible manipulated variables.

Finally, the last pair considered is given by Air Humidity
and Air Temperature. As we can see in Fig. 3 (b), they have
little effect on copper extraction. Thus, we discard them as
possible control variables.
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Fig. 3. Functional Value varying different possible manipulated variables.

We conclude from this sensitivity analysis that the most
influential inputs affecting the bioleaching process in open
loop are: Influx (Fi), input sulphuric acid concentration
(H2SO4i

), input raffinate temperature (T o
i ) and aeration rate

(Ai). We expect that these variables also affect significantly
the process in closed loop.

C. Input signal selection

Once we have identified the most influential variables and
in order to drive the process to a better copper recovery
performance, we need to design inputs to the system in order
to collect the data which will be used in the routines for
identification.

Notice that in this paper, the improvement on copper
extraction will be done indirectly regulating the average
temperature. We discard the raffinate temperature as an input
variable since it is obvious that the average temperature in
the heap raises if raffinate temperature does. We want to
explore with the remaining variables which seem to be easier
to implement. Within these variables, we also discard the
sulphuric acid concentration because it has little effect on
the temperature [17].

In the average temperature modelling, the selected input
variablesFi andAi persistently excite the BHPB model as
shown in Fig. 4.

The multisine signals generated as inputs change about
±70% around the nominal values (dashed line). These nomi-
nal values have been proven to be efficient in copper recovery
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Fig. 4. Exciting the BHPB model with signals (solid line) around nominal
values (dashed line).

in an open loop scheme. As output, we obtain a signal
varying around the nominal output (dashed line) as seen in
Fig. 4.

We generate two sequences of inputs as shown in Fig. 5.
The first sequence (thick line) is used for estimation and the
second one (thin line) is used for a posteriori validation of
the obtained model. Notice that the data, in Fig. 5, shows
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Fig. 5. Data for the modelling of the average temperature. Excited selected
inputs and outputs for estimation (thick line) and validation (thin line).

the variation of temperature with respect to its nominal
trajectory, and it considers only the values after day 50th
because the BHPB model shows little effect on the outputs
before that day, to any kind of variation in the inputs [17].
Also, notice that in the same figure, after approximately 300
[days], the BHPB model does not have a significant response
to the selected inputs. This is expected as the temperature, in
a real heap bioleaching process, will start stabilising around
a low set-point after most of the chemical reactions are
exhausted. This physical phenomena has an impact on the
data to be consider in the routines for identification. In fact,
we will only consider the significant data, for estimation and
validation, in the range of[50, 300] days.

In a general case, with noise acting on the system, the
model to be found is in the following form:

xt+1 = An×nxt + Bn×nu
ut + wt

yt = Cny×nxt + Dny×nu
ut + vt,

(2)

where xt ∈ Rn, yt ∈ Rny , and ut ∈ Rnu are the state,
the output and the input of the system, respectively. The



vectorηt =
[
wt vt

]T
, which combineswt andvt, describes

the process and output noise respectively. The disturbance
input ηt is assumed to be a zero mean Gaussian process
with covariance matrix given by

E{ηtη
T
t } =

[
Q 0
0 R

]
. (3)

The initial statex0 is assumed to be Gaussian with meanµ
and covarianceP0: x0 ∼ N(µ, P0).

In this case, to the data generated by the BHPB model and
shown in Fig. 5, has been added a noisy term to the output
to account for the uncertainty of the measurements. Notice
that, the noisy terms given in (2) also account for the model
uncertainty as we are modelling a nonlinear system using a
linear approximation.

The procedure for obtaining the matricesA, B, C andD
in (2) is explained in the following Section.

D. Review of the Expectation Maximisation algorithm

In order to obtain a model for the average temperature
in the heap bioleaching process, we use an iterative algo-
rithm called Expectation Maximisation (EM). EM provides
the Maximum-Likelihood (ML) estimate for a vector of
parametersθo. We choose a ML approach because of the
desirable properties of the estimators such as: consistency,
unbiasedness and efficiency [18], [8]. In the ML framework,
the following log-likelihood function is maximised:

l(θ) = log p(Y1:N |θ), (4)

whereYN denotes the given data set containing the system
outputs i.e.Y1:N := {y1, y2, . . . , yN}. For future use, we
also introduce the state sequenceX1:N := {x1, . . . , xN}.

The EM algorithm may be summarised as follows [10],
[19]:

1) Choose an initial estimatêθ0 ∈ Ω, where Ω is a
constraint set in the parameter space.
Then, fori = 0, 1, · · ·

2) E-step: Compute the auxiliary functionQ(θ, θ̂i) which
is the expected value of the complete data log-
likelihood with respect to the random variableX1:N

(usually called “hidden data” in the statistics literature)
given the observed dataY1:N and the previous estimate
θ̂i:

Q(θ, θ̂i) = E
X1:N

{log[p(X1:N , Y1:N |θ)]|Y1:N , θ̂i} (5)

3) M-step: Set̂θi+1 = arg max
θ∈Ω

Q(θ, θ̂i).

4) Go to step 2, and continue until convergence.
Steps 2 and 3 are usually known as the E-Step and M-Step

respectively. Under quite general conditions [10], [20], [21],
the EM algorithm can be proven to converge to a stationary
point of the likelihood function which in many practical
applications will be a local maximum of the likelihood
function [22].

The advantage of using the EM (apart from the usual
statistical properties of a ML estimator) to identify a linear
state-space model is that the algorithm is simple and has a
closed form solution for both steps.

E. EM applied to linear state space models

To apply the EM algorithm for the problem of interest in
the current paper we assume that the data has been generated
by the model given in (2).

The parameters to be identified areθ =
( ~AT , ~BT , ~CT , ~DT , µT , ~P0

T
, ~Q, ~R)T where the arrow

~(·) denotes thevec operator which creates a vector from a
matrix by stacking its columns [23]. The state vector,xk,
as thehidden variable.

We describe the proposed algorithm under the two head-
ings of E and M step.

The E-step: The E-step requires that we calculate the
following

−2Q(θ, θi) = (n + Nny + Nn) log 2π + log |P0|
+N log |Q|+ N log |R|
+tr{P−1

0 [Σ0|N + (x̂0|N − µ)(x̂0|N − µ)T ]}
+tr{Q−1

[
[A,B]Γ[A,B]T −Ψ[A,B]T − [A,B]ΨT + Φ

]
}

+tr{R−1
[
[C,D]Π[C,D]T − Λ[C,D]T − [C,D]ΛT + ∆

]
},

(6)

where|A| = det(A), tr(A) =
∑

aii, and where the matrices
∆, Φ, Π, Γ, Λ andΨ can be calculated as shown in [17].

The M-step: In the M-step, the estimates have the follow-
ing closed form (just set the derivatives ofQ(θ, θi) equal to
zero and solve forθ):

[A,B] = ΨΓ−1 (7)

[C,D] = ΛΠ−1 (8)

Q =
1
N

[Φ−ΨΓ−1ΨT ] (9)

R =
1
N

[∆− ΛΠ−1ΛT ] (10)

µ = x̂0|N (11)

P0 = Σ0|N . (12)

F. Model Validation

Once the model has been obtained, it is necessary to decide
if the model is “good” enough for our purposes. The required
degree of accuracy of the obtained model will ultimately
depend on the final application [8, pg.509]. For example,
if the application is the regulation of one chosen output of
the system, then the accuracy of the model may be less
demanding than if the model is intended to predict or to
get new insights about the system.

In our example, we apply the input validation data in Fig.
5, to both the linear obtained model with state-space matrices
A,B,C, D in (14) and to the BHPB model. The results of
this test are presented in [17], and not included here for
simplicity purposes.

III. C ONTROL DESIGN

We now discuss one feedback configuration to improve the
copper extraction in an aerated heap. The configuration takes
the average temperature in the heap as the control objective.



We initially focus on the temperature as control objective
because temperature is related to the bacterial activity [16].
We can expect that maintaining high temperature for longer
periods of time will improve bacterial activity and conse-
quently make the copper extraction more efficient.

We implement the IMC strategy considering control of the
average temperature in the heap.

A. Brief Review of IMC

A typical Internal Model Control scheme [14], [13] is
shown in Figure 6. The following relationships can be
established

∆u = [I + G(P − P̃ )]−1G(∆r − d)

∆y = P [I + G(P − P̃ )]−1G(∆r − d) + d,

whereI is the identity matrix,P is the plant,P̃ is a model of
the plant, andG is a controller. Signals∆r, ∆y, d, ∆u are
defined as reference, output, disturbance and control action
respectively. The output of the model is defined as∆ym.

In this case,∆ denotes the variation of a variable with
respect to its nominal value, e.g.,∆u = u − ū and ∆y =
y − ȳ, whereū and ȳ are the nominal values for the inputs
and outputs, respectively.

−

G

∆u

P

d ȳ

∆y

P̃

ū

∆ym −
+

+
+

+ +
+

−

+∆r

Fig. 6. Classical IMC configuration.

In IMC we intend to use asG the inverse of the model
for the plant, multiplied by a functionFd used to adjust the
bandwidth of the closed loop and to account for uncertainties
in the model [14]. Due to the non-square characteristic of
the modelP̃ (the model of the plant has different number of
inputs and outputs), we use ageneralised inverse type 1of
P̃ as defined in [25]. In particular we choose

G = FdP̃
T [P̃ P̃T ]−1, (13)

where the filterFd is a scalar bi-proper transfer function.
Notice that the inverse of the term̃PP̃T is, in general, well
defined since it is a scalar transfer function. In the case when
non-minimum phase zeros are present, we replace them by
using their corresponding mirrored ones (with respect to the
unit circle).

B. Control of average temperature in the heap

For the control of the average temperature in the heap,
we have chosen a third order model. Using the procedure
structure explained in Section II-D, we estimate the incre-
mental model for the variations in the average temperature,

with matrices A,B,C,D given by

A =

240.9188 −0.0029 0.0214
0.2886 1.0030 0.2311
1.023 0.0239 0.2161

35 , B =

24 0.0108 −0.0627
−0.0344 −0.5897
−0.5036 2.6640

35
C = −

ˆ
0.6149 0.1054 0.0330

˜
, D = −

ˆ
0.0709 0.0217

˜
(14)

The matrices obtained above corresponds to a linear
discrete-time model, with sampling timeT = 4 [h].

The results in Fig. 7 show that the linear controller used
for the incremental gives consistent results when different∆r
are applied. These∆r corresponds to the desired increment
in the output being controlled. In this case, the output being
controlled is the temperature, then∆r corresponds to the
variations for this variable in [oC]. The case for∆r = 0 is
the open loop case using nominal inputs.
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Fig. 7. Response of the average temperature in the BHPB model to different
values of∆r..
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Fig. 8. Control effort in the chosen inputs and % of copper extraction,
regulating the average temperature.

We also notice in Fig. 8 that the control efforts are
reasonable in terms of variations regarding the nominal



values (continuous line). Notice that the control actions are
applied once those actions can make a difference in the
output of the closed loop, that is, after the day 50th in the
process. Before that day, changes in the selected inputs do
not produce a visible change in the outputs of interest, then
we have designed the control scheme to operate only after
the day 50th. The best improvement on copper extraction
controlling the temperature is approximately4% (seen almost
at the end of the heap’s life) when the maximum control
effort is used (for∆r = 10 [oC]).

IV. CONCLUSIONS AND FUTURE WORK

We have identified a model for the increments in the av-
erage temperature. The model has been obtained solving the
maximum likelihood (ML) estimators using EM algorithms
in a time domain framework.

The use of incremental models for this kind of process on
an IMC strategy indicates significant potential improvements
on the copper extraction which is our final objective. This
improvement on the copper extraction has been carried out
controlling the average temperature in the heap.

The drawback of the proposed approach is the requirement
of the nominal trajectory for the variable to be controlled.
This trajectory is necessary because the models to be esti-
mated are incremental, that means, they describe the vari-
ations around a nominal trajectory of the chosen variable.
This nominal trajectory is obtained using the BHPB model,
but this one is another model and its predicted value could
be different to the real one. Hence, as a future research
topic, we will focus on a robustness analysis considering
that the predicted nominal trajectory by the BHPB model
could be slightly different to the real one. This can be
done by adding noise to the nominal trajectory and running
Montecarlo simulations.
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