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Abstract— Previous papers have considered the problem of
using linear time invariant control to stabilize an unstable
plant over a signal-to-noise ratio constrained communication
channel, and have shown that this problem reduces to one
of minimizing the H2 norm of the complementary sensitivity
function. Different techniques were used to derive the state
and output feedback results, and it is not straightforward to
characterize the performance that is achieved when output
feedback is used with a nonminimum phase plant. In the
present paper, a unified treatment of the state and output
feedback cases is obtained by posing the problem as one of LQG
optimal control. Doing so allows us both to analyze the achieved
performance, in terms of sensitivity reduction, as well as to
incorporate performance into the problem statement. When
performance is considered, the results have interpretations in
terms of Wiener filtering.

I. I NTRODUCTION

Recent papers [1]–[3] have studied the problem of using
linear time invariant (LTI) control to stabilize an unstable
plant over an infinite bandwidth additive white Gaussian
noise (AWGN) communication channel whose input must
satisfy a power limitation. The ratio of this power constraint
to the spectral density of the channel noise is termed the
signal-to-noise ratio (SNR) of the channel. The power limited
stabilization problem is thus feasible if and only if theH2

norm of the transfer function from the channel noise to the
channel input is bounded above by the maximum allowable
SNR. It turns out that this transfer function is equal to the
complementary sensitivity function of the feedback system.
With state feedback, its minimalH2 norm is determined
solely by the unstable plant poles, which thus determine the
minimal SNR compatible with closed loop stability. On the
other hand, with output feedback the minimal SNR will be
greater than that in the state feedback case if the plant has
nonminimum phase zeros or a time delay [4].

References [1]–[3], as well as much of the related liter-
ature (e.g., [5], [6]), are concerned solely with the problem
of stabilization. Other important issues, such as those of
performanceand robustness, are not addressed. It is thus
desirable to assess the performance and robustness of the
stabilizing controllers designed in [1]–[3], as well as to
design controllers to achieve a given level of performance
or robustness in addition to closed loop stabilization, subject
to the channel SNR limitation. To develop such results by
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extending the approach of [1]–[3] is problematic, in part
because the state and output feedback results were derived
using different techniques.

The purpose of the present paper is to propose a unified
framework within which to derive the results of [1]–[3]. To
do so, we shall follow the approach of Stein and Athans [7],
and show that the desiredH2 minimization may be performed
using an appropriately formulated linear quadratic Gaussian
(LQG) optimal control problem. An important advantage of
this framework is that it allows us to consider the problem
of using LTI control to achieve performance as well as
stabilization over an SNR limited communication channel.
By “performance” we mean the shape of the sensitivity
function, which embodies many key properties of a feedback
system, including sensitivity to parameter variations, stability
robustness, and the response to disturbances.

There is a large literature on the relation between commu-
nications and control. See for example, [8]–[10].

Terminology: Denote byC−, C̄−,C+ and C̄+ respec-
tively the open-left, closed-left, open-right and closed-right
halves of the complex planeC. A square matrixA∈ Rn×n

is called Hurwitz if all its eigenvalues are inC−. The
expectation operator is denoted byE . A rational transfer
function of a continuous-time system is termed minimum
phase if all its zeros lie in̄C−, and is nonminimum phase
if it has zeros inC+. Given G(s), the transfer function of
a continuous-time system, we say thatG(s) ∈ H2 if G(s)
is strictly proper and stable; i.e., all its poles lie inC−.
The H2 norm of G(s), denoted by‖G‖H2, satisfies‖G‖2

H2
=

(1/2π)
∫ ∞
−∞ |G( jω)|2dω.

II. PREVIOUS RESULTS

Consider the problem of stabilizing an unstable
continuous-time plant by using feedback over a noisy
continuous-time communication channel. Let the plant have
state equations

ẋ(t) = Ax(t)+Bu(t), x∈ Rn,u∈ R
y(t) = Cyx(t), y∈ R,

where (A,B,Cy) is assumed to be a minimal realization of
the transfer functionPyu. We assume an infinite bandwidth
AWGN channel with input-output relation

ur(t) = us(t)+n(t), (1)

whereus(t) is the channel input,ur(t) is the channel output,
and n(t) is zero-mean white Gaussian noise with power
spectral densityΦ. If the feedback system is stable then, after



transients die away, the channel input will be stationary, and
will be assumed to satisfy the power constraintE {u2

s(t)}<
P. By a mild abuse of terminology, we shall refer toP/Φ
as the signal-to-noise ratio of the channel [3].

Suppose first that the channel input is a stabilizing state
feedback,us(t) =−Kx(t), and that the control input is given
by u(t) = ur(t). Define the resultingstate feedback sensitivity
and complementary sensitivity functions

Ss f = (1+KφB)−1, Ts f = KφB(1+KφB)−1, (2)

whereφ(s) , (sI−A)−1. Then the power in the channel input
is given byE {u2

s(t)}= ‖Ts f‖2
H2

Φ.
Denote the set of all stabilizing state feedback gains by

Ks f = {K : A−BKis Hurwitz}. It is shown in [1], [3] that

inf
K∈Ks f

‖Ts f‖2
H2

= 2
Np

∑
i=1

Re{pi} , (3)

where{pi ; i = 1, . . . ,NP} denote theC+ eigenvalues ofA.
Suppose next that dynamic output feedbackU(s) =

−C(s)Y(s) is used to stabilize the plant, and define the
resultingsensitivity and complementary sensitivity functions

S= (1+CPyu)−1, T = CPyu(1+CPyu)−1. (4)

The power in the channel input is given byE {u2
s(t)} =

‖T‖2
H2

Φ, and thus the problem of computing the minimal
SNR required for stabilization with output feedback reduces
to that of minimizing‖T‖H2. If Pyu is minimum phase, then
the minimal value of‖T‖H2 is also given by (3). Otherwise,
it is shown in [2], [3] that the minimal value of‖T‖H2 is
strictly greater than that achievable with state feedback.

A typical design specification requires that sensitivity be
small at low frequencies, converge to one at high frequencies,
and not be excessively large at intermediate frequencies [11].
It is thus of interest to determine the sensitivity properties
of the feedback systems that achieve stabilization with a
minimal SNR. Doing so is straightforward in the state
feedback case.

Lemma 1 Assume thatA has no eigenvalues on thejω-
axis. Then there exists a state feedback gainK∗ that achieves
the infimum in(3), and the resulting sensitivity functionS∗s f
defined by(2) must satisfy|S∗s f( jω)|= 1, ∀ω.

Proof: The first claim follows from the proof of
Theorem 2.1 in [3]. The rest follows by noting that (i)S∗s f
must have zeros at the unstable open loop poles, (ii)S∗s f has
poles only at the mirror images of the unstable open loop
poles [12, Theorem 3.11], and (iii)KφB is strictly proper.
It is hardly surprising that the optimal solution to (3) does
not exhibit sensitivity reduction at any frequency, because
performance was not explicitly considered in the cost func-
tion.

The solution to the state feedback problem in [1], [3]
was obtained by solving a deterministic minimum energy
regulation problem, and it is the well-known structure of the
optimal regulator that allows us to characterize the resulting

sensitivity function. The solution to the output feedback
problem in [2], [3], on the other hand, was obtained by using
a Youla parametrization. Except in the minimum phase case,
it is not easy to characterize performance properties of the
optimal solution.

In the next section, we propose a unified framework within
which to derive both the state and output feedback results
from [1]–[3]. As we shall see in the sequel, this approach
allows us to characterize performance in the output feedback
case, as well as to incorporate performance penalties into the
cost function.

III. SNR M INIMIZATION VIA LQG OPTIMAL CONTROL

It was shown by Stein and Athans [7] thatH2 minimization
problems involving the sensitivity and complementary sensi-
tivity functions of a feedback system may be solved using an
appropriately formulated Linear Quadratic Gaussian (LQG)
optimal control problem.

A. The LQG Problem

We now state the LQG problem using notation that enables
us to present the results of [7]. Consider the system

ẋ(t) = Ax(t)+Bu(t)+Ed(t) (5)

y(t) = Cyx(t)+ µn(t)
z(t) = Hx(t)

whered andn are each unit intensity Gaussian white noise
processes,u is a control signal,z a performance output, and
y a measured output. We assume thatu, d, n, y, and z are
all scalar, and denote the open loop transfer functions from
u andd to y andz by Pyu, Pzu, Pyd, andPzd.

The LQG cost has the form

JLQG = E

{
lim

T→∞

1
T

∫ T

0
z2(t)+ρ2u2(t)dt

}
(6)

We seek to minimize (6) using dynamic output feedback,
U(s) =−C(s)Y(s). Substituting this control law into (6) and
applying Parseval’s theorem reduces the LQG cost to

JLQG =
1
π

∫ ∞

0
trace

(
M( jω)MT(− jω)

)
dω, (7)

where

M ,
[
Pzd−PzuSCPyd −µPzuSC

ρSCPyd µρSC

]
, (8)

andS is given by (4).
We saw in Section II that the problem of minimizing the

power in the channel input using output feedback reduces
to that of minimizing‖T‖H2. We now present two ways to
solve the latter problem by considering special cases of the
LQG cost (7).

B. Loop Transfer Recovery at the Plant Input

Consider first the problem of minimizing (6) using con-
stant feedback of noise free state measurements,u(t) =
−Kx(t). In this case the resulting cost has the form

Js f =
1
π

∫ ∞

0
trace

(
Ms f( jω)MT

s f(− jω)
)

dω, (9)



where

Ms f =
[
Pzd−PzuSs fKφE

ρSs fKφE

]
, (10)

and Ss f is given by (2). We can findK to minimize (9) by
making the following observations. Suppose thatE = B in
system (5), so that the disturbance enters the system at the
actuator. Then it is easy to show that (9) reduces to

Js f =
1
π

∫ ∞

0

(|Pzu( jω)|2|Ss f( jω)|2 +ρ2|Ts f( jω)|2)dω,

(11)
and thus the minimization problem involves a tradeoff be-
tween theH2 norms of the state feedback sensitivity and
complementary sensitivity functions (2). SettingH = 0 and
ρ = 1 thus reduces the problem of minimizing (11) to that
of minimizing ‖Ts f‖H2.

We now use the approach of [7] to pose the output
feedback problem in the same framework. Again setE = B,
and letµ → 0, so that the measurement noise vanishes. Then
M defined in (8) satisfies

M →
[
Pzd−PzuC(I +PyuC)−1Pyd 0
−ρC(I +PyuC)−1Pyd 0

]
,

and the LQG cost (6) reduces to anH2 tradeoff between the
sensitivity and complementary sensitivity functions (4),

JLQG =
1
π

∫ ∞

0

(|Pzu( jω)|2|S( jω)|2 +ρ2|T( jω)|2)dω. (12)

Once again we see that, by settingH = 0 and ρ = 1, we
are able to solve the problem of minimizing‖T‖H2 by using
LQG techniques. IfA has no eigenvalues on thejω-axis,
then we compute the state feedback gainK = BTP, whereP
is the stabilizing solution to the Riccati equation

0 = ATP+PA−PBBTP. (13)

The optimal compensator has the formC(s) = K(sI−A+
BK + LCy)−1L, where L is the solution to the optimal
estimation problem with a process disturbance entering at
the plant input (E = B) in the limit as measurement noise
that becomes small,µ → 0.

The procedure just described is referred to as “loop
transfer recovery (LTR) at the plant input” [7]. IfPyu(s)
is minimum phase, the input sensitivity and complementary
sensitivity functions will approach those with state feedback,

S(s)→ Ss f(s), T(s)→ Ts f(s), (14)

where convergence is pointwise in frequency. It follows
that if the plant is minimum phase, then the minimal SNR
required for stabilization with output feedback is identical to
that required with state feedback.

If the plant is nonminimum phase, then it is known that the
“recovery” in (14) cannot occur. Instead,S and T converge
to transfer functions determined by the locations of the NMP
plant zeros. It is shown in [13] that

S(s)→ Ss f(s)(1+∆(s)), (15)

where
∆(s) , Kφ(s)(B−BmBz(s)) , (16)

Bz(s) is a Blaschke product of NMP plant zeros, andBm is
chosen so thatCyφ(s)B = Cyφ(s)BmBz(s). A procedure for
computingBm may be found in [13], where it is also shown
that ∆(s) has poles only at the mirror images of the NMP
plant zeros. Furthermore,

T(s)→ Ss f(s)Kφ(s)BmBz(s).

In case there is only one nonminimum phase plant zero, at
s= z, the results simplify to

S(s)→ Ss f(s)
(

1+
2zLs f(z)

s+z

)

T(s)→ Ts f(s)−Ss f(s)
2zLs f(z)

s+z
, (17)

whereLs f(s) , Kφ(s)B.

Example 2 Consider the unstable nonminimum phase plant
from [2, Example 3.1],P(s) = (2− s)/(s2− 1), with state
variable realization

A =
[−1 0

0 1

]
, B =

[
1
1

]
, Cy =

[−3/2 1/2
]
.

Solving (13) reveals thatK =
[
0 2

]
, and thus thatTs f(s) =

2/(s+ 1). It then follows from (17) thatT(s) → (−6s+
12)/((s+ 1)(s+ 2)), which agrees with [2, Example 3.1].

The preceding discussion has shown that minimizing
‖T‖H2 by using an equivalent LQG problem allows us
to derive explicit expressions for the optimal sensitivity
and complementary sensitivity functions, and thus we can
characterize performance and robustness properties of the
resulting feedback system even if the plant is nonminimum
phase. It remains to derive an explicit expression for the
optimal cost. With the assumptions thatρ = 1 and E = B,
the optimal cost for a specific value ofµ is given by [12]

J∗LQG(µ) = BTPB+KΣ(µ)KT , (18)

whereP solves the minimum energy control Riccati equation
(13) andΣ(µ) denotes the solution to the filtering Riccati
equation

0 = AΣ(µ)+Σ(µ)AT +BBT − (1/µ2)Σ(µ)CT
y CyΣ(µ). (19)

The first term on the right hand side of (18) is simply the
state feedback cost given by (3). The second term may be
evaluated by considering the limiting value ofΣ(µ) asµ → 0.
For minimum phase plants, this limit is equal to zero. For
nonminimum phase plants, the limit is nonzero, and may
be computed explicitly in terms of the NMP zero locations
by applying formulas dual to those for the cheap control
optimal regulator cost. An expression for the latter appears
in the dissertation [14], was derived independently by Shaked
[15], and reported in [16].

Example 3 Let us return to Example 2, and consider the
limiting value of the optimal estimation costΣ(µ) with E = B
and µ → 0. This cost may be obtained by solving the dual



Riccati equation (19). Dualizing the results of [14] shows
that limµ→0 Σ(µ) = Σ0, where

Σ0 =
1
2z

xT
mBBTxmξ ξ T ,

z = 2, xm = (−zI−A)−1CT
y , and ξ is the first row of the

matrix
[
xm CT

y

]−1
. This yieldslimµ→0J∗LQG(µ) = 18, which

agrees with [2, Example 3.1].

C. Loop Transfer Recovery at the Plant Input

The results of [7] may be used to obtain an alternate
approach to minimizing the complementary sensitivity func-
tion. Consider the problem of designing an observer,

˙̂x = (A−LCy)x̂+Ly,

for the state of system (5), denote the state estimate byx̂, and
the estimation errors inx andzby x̃= x− x̂ andz̃= Hx̃. Many
properties of an observer are dual to those of state feedback,
includingsensitivity and complementary sensitivity functions
dual to those in (2):

Sobs, (1+CyφL)−1, Tobs, CyφL(1+CyφL)−1. (20)

The response of̃z to the process disturbance and measure-
ment noise satisfies

Z̃ =
(
Pzd−HφLSobsPyd

)
D+ µHφLSobsN,

and thus the mean square estimation error is given by

E {z̃2(t)}=
1
π

∫ ∞

0
Mobs( jω)MT

obs(− jω)dω, (21)

where

Mobs=
[(

Pzd−HφLSobsPyd
)

µHφLSobs
]
.

Suppose that the performance output is identical to the
measured output,H = Cy. Then (21) reduces to

E {z̃2(t)}=
1
π

∫ ∞

0

(|Sobs( jω)|2|Pyd( jω)|2 + µ2|Tobs( jω)|2)dω, (22)

and thus the problem of finding an observer gain to minimize
the mean square estimation error involves a tradeoff between
the H2 norms of the transfer functions (20).

We now use the results of [7] to connect the cost function
(6) to the estimation error (22). Suppose again thatH = Cy

and let the control cost satisfyρ → 0. Then the matrix (8)
satisfies

M →
[
(I +PyuC)−1Pyd −µ(I +PyuC)−1PyuC

0 0

]
,

and the LQG cost (7) for observer based output feedback
becomes a frequency weighted tradeoff betweenS andT:

JLQG =
1
π

∫ ∞

0

(|S( jω)|2|Pyd( jω)|2 + µ2|T( jω)|2)dω. (23)

If we suppose thatE = 0 and µ = 1, then the LQG cost
(23) reduces to theH2 norm of T, the transfer function that
describes the response of the plant output to the measurement

noise. It follows that we may minimize‖T‖H2 with output
feedback by first solving the estimation problem with zero
process noise, and then applying the LTR procedure by
tuning the state feedback gain.

The procedure described above is referred to as “loop
transfer recovery at the plant output”, and is dual to the
procedure for LTR at the plant input. IfPyu is minimum
phase, then it is known that as the control cost becomes van-
ishingly small the output sensitivity and complementary sen-
sitivity functions satisfyS(s)→ Sobs(s) and T(s)→ Tobs(s).
It follows that the optimal LQG cost with output feedback
is identical to the optimal state estimation cost. IfPyu is
nonminimum phase, then results dual to those described in
Section III-B show that the recovery no longer takes place,
and provide a procedure for computing the limiting values
of S andT in terms of the observer gain and the NMP plant
zeros.

D. Comparison

We have just outlined two procedures for using LQG
optimal control to minimize the channel SNR required for
stabilization, corresponding to the two block diagrams in
Figure 1. The procedure described in Section III-B, and
depicted in Figure 1(a), uses minimal energy state feedback
applied to state estimates from an observer designed by
assuming a fictitious process disturbance entering at the plant
input, E = B, and tuned by letting the measurement noise
approach zero. Note that the configuration in Figure 1(a)
models a communication link between the controller and
the plant actuators, and that the channel noise enters the
feedback system in the same way as does the fictitious
process disturbance. It is this situation that is considered in
[1]–[3].

The alternate procedure, described in Section III-C and
depicted in Figure 1(b), assumes that the channel is used to
communicate the plant output to the controller, as in [6]. The
channel noise thus enters the system in the same way as does
measurement noise in the LQG problem. The assumptions
that no process disturbance is present (E = 0) and thatH =Cy

imply that the estimator is designed solely to minimize the
effect of the channel noise upon the channel input. The state
feedback is then tuned by allowing the control weighting to
approach zero.
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Fig. 1. Recovery at the Input,E = B, vs. Recovery at the Output,H = Cy.

IV. PERFORMANCEISSUES

The results described in [1]–[3] and Section III are con-
cerned only with stabilization in the sense that the opti-



mization problem is trivial if the plant is stable. There is
considerable motivation to consider problems of performance
in addition to stabilization. First, we have seen that the
optimal sensitivity function obtained with state feedback, or
output feedback and a minimum phase plant, is allpass and
thus does not achieve sensitivity reduction or disturbance
attenuation at any frequency. Second, consider the results of
Nair and Evans [6], who study the problem of stabilization
over a channel that is noise free but has a limited data rate.
They show that the presence of a process disturbance renders
attempts to communicate near the theoretical minimum rate
problematic, in the sense that the state will exhibit large
excursions even though it is guaranteed to remain finite [6,
p. 418]. Evidently, requiring some measure of performance in
addition to stabilization would necessitate communication at
a higher bit rate. This argument is adapted in [17] to apply to
the problem of communication over a discrete-time Gaussian
noise channel. It is shown in [17, Corollary III.2] that if
stabilization is achieved over a channel with capacity close
to the theoretical minimum, then the response to disturbances
will be very large.

The preceding considerations motivate us to consider per-
formance by shaping the sensitivity function to influence the
differential sensitivity, robustness, and disturbance response
of the system. First, we will impose a performance penalty
by adding a state weighting to the LQG cost criterion and
extending the analysis of Section III-B. The dual version of
this problem, to be discussed in Section IV-B, has an inter-
pretation in terms of Wiener filtering and optimal estimation.

A. State Feedback with a Penalty on State Variables

Suppose that we wished to impose a performance penalty
by letting H be nonzero. Then the results of [18] (see
also [19]) show that the optimal cost for thestate feedback
problem withρ = 1 is given by

J∗s f =
1
π

∫ ∞

0
log(1+ |Pzu( jω)|2)dω +2

Np

∑
i=1

Re{pi} . (24)

It follows from the Kalman return difference equality [20]
that the optimal sensitivity functionS∗s f must satisfy

1+PT
zu(−s)Pzu(s) =

1
S∗s f(−s)S∗s f(s)

, (25)

and thus (24) is equivalent to

J∗s f =− 2
π

∫ ∞

0
log|S∗s f( jω)|dω +2

Np

∑
i=1

Re{pi} . (26)

It follows from (26) that the optimal state feedback cost with
a performance penalty imposed is greater than that for mere
stabilization by an amount equal to the arithmetic inverse
of the area under the log sensitivity integral curve. The
additional cost has two components, one associated with the
penalty imposed onz, and the other with that imposed on
u. Since only the latter contributes to the required channel
SNR, we now separate it from the total cost.

Equating (24) with (11), forρ = 1, shows that

1
π

∫ ∞

0

(|Pzu( jω)|2|S∗s f( jω)|2 + |T∗s f( jω)|2)dω

=
1
π

∫ ∞

0
log(1+ |Pzu( jω)|2)dω +2

Np

∑
i=1

Re{pi} ,

and thus

‖T∗s f‖2
H2

=
1
π

∫ ∞

0
log(1+ |Pzu( jω)|2)dω

+2
Np

∑
i=1

Re{pi}− 1
π

∫ ∞

0
|Pzu( jω)|2|S∗s f( jω)|2dω.

Applying (25) yields the main result

‖T∗s f‖2
H2

=
1
π

∫ ∞

0
log(1+ |Pzu( jω)|2)dω

− 1
π

∫ ∞

0

|Pzu( jω)|2
1+ |Pzu( jω)|2 dω +2

Np

∑
i=1

Re{pi} . (27)

It is obvious from first principles that the right hand side
of (27) must be at least as large as2∑

Np
i=1Re{pi}. Indeed,

if the control signal used to stabilize the system and satisfy
a performance objective were smaller than that required to
stabilize alone, then this control signal would have been
obtained as the solution to the minimum energy stabilization
problem previously obtained. The dual estimation problem,
to be considered in Section IV-B, yields an appealing alter-
nate proof of this fact.

Let us now consider the output feedback problem. It
follows from (12) and (18) that, forρ = 1, we have

J∗LQG = BTPB+KΣ(µ)KT

=
1
π

∫ ∞

0

(|Pzu( jω)|2|S∗( jω)|2 + |T∗( jω)|2)dω, (28)

whereP is the solution to the Riccati equation for the state
feedback problem, andΣ(µ) is the solution to the dual
estimation Riccati equation (19). We have already observed
that, in the minimum phase case,limµ→0 Σ(µ) = 0, S∗→S∗s f,
andT∗→T∗s f. Hence, for a minimum phase plant, the optimal
value of‖T‖H2 is the same as that with state feedback in (27).

For a nonminimum phase plant, the limiting estimation
error is nonzero,Σ0 , limµ→0 Σ(µ) 6= 0, and the results
of [14] may be adapted to computeΣ0 in terms of the
nonminimum phase plant zeros. Substituting (15) into (28)
and rearranging yields

‖T‖2
H2

= BTPB+KΣ∗KT−
1
π

∫ ∞

0

|Pzu( jω)|2|1+∆( jω)|2
1+ |Pzu( jω)|2 dω, (29)

whereBTPB, the cost with state feedback, is given by (24).
The state feedback gainK satisfies no special property unless
we solve a specific state feedback control problem such as
the minimum energy problem considered above.



B. A Dual Problem: Estimation with a Process Disturbance

Let us now consider the problem of state estimation with
a process disturbance present. The counterparts to (24) and
(26) for the optimal estimation problem are given by

E {z̃2(t)}=
1
π

∫ ∞

0
log

(
1+ |Pyd( jω)|2)dω +2

Np

∑
i=1

Re{pi}
(30)

=− 2
π

∫ ∞

0
log|S∗obs( jω)|dω +2

Np

∑
i=1

Re{pi} . (31)

Expression (30) for the optimal estimation error is due, in
the case of a stable plant, to Yovits and Jackson [21]. It
was extended to unstable open loop plants by Anderson and
Mingori [18]. See also the discussion by Braslavsky, et al
[19]. Expression (31) follows from the dual version of the
return difference identity (25).

With output feedback, the optimal sensitivity and comple-
mentary sensitivity functions must satisfy (23) withµ = 1,

J∗LQG =
1
π

∫ ∞

0

(|S∗( jω)|2|Pyd( jω)|2 + |T∗( jω)|2)dω. (32)

If the plant is minimum phase, then applying the recovery
procedure implies thatS∗ → S∗obs and T∗ → T∗obs, and thus
(31) and (32) must be equivalent. Setting these expressions
equal to one another, and rearranging reveals that

‖T∗obs‖2
H2

=
1
π

∫ ∞

0
log

(
1+ |Pyd( jω)|2)dω

− 1
π

∫ ∞

0

|Pyd( jω)|2
1+ |Pyd( jω)|2 dω +2

Np

∑
i=1

Re{pi} . (33)

Recall thatTobs is the transfer function from channel noise to
the channel input in Figure 1(b). Hence, (33) represents the
transmission power required due to the response of the chan-
nel input to the channel noise. To provide an interpretation of
(33), suppose that the plant were stable, so that the third term
on the right hand side is equal to zero. Then the first term is
the optimal estimation error associated with a causal Wiener
filter [21]. The second term is the optimal estimation error
for the infinite delay, noncausal Wiener filter that appears in
the work of Bode and Shannon [22]. It is thus clear that the
sum of these two terms must be nonnegative. Furthermore,
a plot of log(1+x) vs. x/(1+x) reveals that the difference
between the two terms will be large whenever the gain of the
transfer function from the process disturbance to the output,
Pyd is large over a significant frequency range. The fact that
more transmission power is required in this case is intuitively
reasonable. Since the measurement noise is assumed to
have unity variance, as the size of the process disturbance
increases, the optimal estimator must rely more heavily on
the measured system output, that has been transmitted over
the noisy channel, to obtain the optimal state estimate.

V. CONCLUSIONS

In this paper we have used LQG optimal control theory
to place earlier results on stabilization over signal-to-noise

ratio constrained channels into a common framework. Doing
so allows us to incorporate performance directly into the
problem statement, and to obtain interesting interpretations
in terms of classical concepts from Wiener filtering.
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