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Abstract—Previous papers have considered the problem of extending the approach of [1]-[3] is problematic, in part
using linear time invariant control to stabilize an unstable pecause the state and output feedback results were derived
plant over a signal-to-noise ratio constrained communication using different techniques.

channel, and have shown that this problem reduces to one Th f th ¢ is t ified
of minimizing the H, norm of the complementary sensitivity € purpo_se_o _e presen _paper IS 10 propose a uniiie
function. Different techniques were used to derive the state framework within which to derive the results of [1]-[3]. To
and output feedback results, and it is not straightforward to  do so, we shall follow the approach of Stein and Athans [7],
characterize the performance that is achieved when output and show that the desiréth minimization may be performed
feedback is used with a nonminimum phase plant. In the ging an appropriately formulated linear quadratic Gaussian
present paper, a unified treatment of the state and output LOG timal trol bl AN i tant advant f
feedback cases is obtained by posing the problem as one of LQG ( Q ) optima cpn ro pro em. An impor a}n advantage o
optimal control. Doing so allows us both to analyze the achieved this framework is that it allows us to consider the problem
performance, in terms of sensitivity reduction, as well as to of using LTI control to achieve performance as well as
incorporate performance into the problem statement. When  stabilization over an SNR limited communication channel.
performanc_e is cc_>n5|_dered, the results have interpretations in By “performance” we mean the shape of the sensitivity
terms of Wiener filtering. . - . .
function, which embodies many key properties of a feedback
|. INTRODUCTION system, including sensitivity to parameter variations, stability
. . robustness, and the response to disturbances.

. Rece_nt papers [1}-[3] have studied the_ problem of using There is a large literature on the relation between commu-
linear time invariant (LTI) control to stabilize an unstable

oo . " . ._nications and control. See for example, [8]-[10].
plant over an infinite bandwidth additive white Gaussian Terminology: Denote byC~,C~,C* and C* respec-

noise (AWGN) c_:or_nm_unlcanon c_hannel_whose input m!’sﬁvmy the open-left, closed-left, open-right and closed-right
satisfy a power limitation. The ratio of this power constraint .\ of the complex plang. A square matrixA € R™"
to the spectral density of the channel noise is termed t called Hurwitz if all its éigenvalues are i€—. The

signal-to-noise ratio (SNR) of the channel. The power limite xpectation operator is denoted & A rational transfer

stabilization problem is thus feasible if and only if th function of a continuous-time system is termed minimum
norm of the transfer function from the channel noise to th hase if all its zeros lie itC—. and is nonminimum phase

channel input is bounded above by the maximum allowabig i, ,,¢ erog inC*. Given G(s), the transfer function of

SNR. It turns out that this transfer function is equal to thecl continuous-time system, we say t@ts) € Hy if G(s)
complementary sensitivity function of the feedback system X

. ; - ) i i$ strictly proper and stable; i.e., all its poles lie @r.
With state feedback, its minimaH, norm is determined -5 2
solely by the unstable plant poles, which thus determine tr{{/zg;fnworg(c;;e)‘(Zs()j,a;jenoted by Gl sat|sf|es||GHH2 N
minimal SNR compatible with closed loop stability. On the - '
other hand, with output feedback the minimal SNR will be
greater than that in the state feedback case if the plant has Il. PREVIOUS RESULTS
nonminimum phase zeros or a time delay [4]. Consider the problem of stabilizing an unstable

References [1]-[3], as well as much of the related litereontinuous-time plant by using feedback over a noisy
ature (e.g., [5], [6]), are concerned solely with the problengontinuous-time communication channel. Let the plant have
of stabilization Other important issues, such as those oftate equations
performanceand robustness are not addressed. It is thus : n
desirable to assess the performance and robustness of the X(t) = Ax(t) +Bu(t), xeR"ueR
stabilizing controllers designed in [1]-[3], as well as to y(t) =Cyx(t), YeER,
design controllers to achieve a given level of performanc\?’here(
or robustness in addition to closed loop stabilization, subjeﬁ]ie tra
to the channel SNR limitation. To develop such results b)&WGN

A,B,Cy) is assumed to be a minimal realization of
nsfer functiorB,. We assume an infinite bandwidth
channel with input-output relation
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transients die away, the channel input will be stationary, argknsitivity function. The solution to the output feedback
will be assumed to satisfy the power constraftfu2(t)} <  problem in [2], [3], on the other hand, was obtained by using
2. By a mild abuse of terminology, we shall refer#8/® a Youla parametrization. Except in the minimum phase case,
as the signal-to-noise ratio of the channel [3]. it is not easy to characterize performance properties of the
Suppose first that the channel input is a stabilizing statgptimal solution.
feedbackus(t) = —Kx(t), and that the control input is given  In the next section, we propose a unified framework within
by u(t) = u,(t). Define the resultingtate feedback sensitivity which to derive both the state and output feedback results
and complementary sensitivity functions from [1]-[3]. As we shall see in the sequel, this approach
1 1 allows us to characterize performance in the output feedback
St=(1+KgB)™",  Tsr =KeB(1+KeB)™",  (2) case, as well as to incorporate performance penalties into the
whereg(s) 2 (s|—A)~1. Then the power in the channel input €St function.
is given by &{ug(t)} = HTsf”az_‘_D-_ _ [1l. SNR MINIMIZATION VIA LQG OPTIMAL CONTROL
Denote the set of all stabilizing state feedback gains by

et = {K : A—BKis Hurwitz}. It is shown in [1], [3] that It was shown by Stein and Athans [7] thdég minimization

problems involving the sensitivity and complementary sensi-
_ 5 Np tivity functions of a feedback system may be solved using an

Klenszf [ Tstlli, =2 ZlRe{ pi}, (3)  appropriately formulated Linear Quadratic Gaussian (LQG)
P £

optimal control problem.
- + aj
where{pi;i=1,...,Np} denote-th&‘; eigenvalues oA\ A. The LQG Problem
Suppose next that dynamic output feedbadKs) = ) .
—C(s)Y(s) is used to stabilize the plant, and define the Ve now state the LQG problem using notation that enables
resultingsensitivity and complementary sensitivity functiong'S to present the results of [7]. Consider the system

S=(14+CRy) % T=CRu1+CRy)™™> (4 X(t) = Ax(t) +Bu(t) + Ed(t) (5)
The power in the channel input is given k§{uZ(t)} = zg:; zﬁyi(tt))+un(t)

HTHﬁz(D, and thus the problem of computing the minimal
SNR required for stabilization with output feedback reduceghered andn are each unit intensity Gaussian white noise
to that of minimizing||T||u,. If Ry is minimum phase, then processesy is a control signalz a performance output, and
the minimal value of|T ||, is also given by (3). Otherwise, y a measured output. We assume that, n, y, andz are
it is shown in [2], [3] that the minimal value ofT||n, is all scalar, and denote the open loop transfer functions from
strictly greaterthan that achievable with state feedback. uandd toy andz by Ru, Pou, R, andPyg.

A typical design specification requires that sensitivity be The LQG cost has the form
small at low frequencies, converge to one at high frequencies, 1 T
and not be excessively large at intermediate frequencies [11]. Joc= g{ lim —/ Z(t) +p2u2(t)dt} (6)
It is thus of interest to determine the sensitivity properties T==T Jo
of the feedback systems that achieve stabilization with We seek to minimize (6) using dynamic output feedback,
minimal SNR. Doing so is straightforward in the statel(s)=—C(s)Y(s). Substituting this control law into (6) and

feedback case. applying Parseval's theorem reduces the LQG cost to
1 /® . .

Lemma 1 Assume thatA has no eigenvalues on thigo- Jioe = 7.[/0 trace(M(jo)M' (—jw)) dw, ()

axis. Then there exists a state feedback g¢sdinthat achieves where

the_infimum in(3), and .the resglting sensitivity functicgi; Mo Poa—PuSCRy  —UPASC @®

defined by(2) must satisfy|Si;(jw)| = 1, Yw. = PSCRy ppSC |

Proof: The first claim follows from the proof of andSis given by (4).

Theorem 2.1 in [3]. The rest follows by noting that &); We saw in Section Il that the problem of minimizing the
must have zeros at the unstable open loop polesS{jihas power in the channel input using output feedback reduces
poles only at the mirror images of the unstable open loo that of minimizing||T||n,. We now present two ways to
poles [12, Theorem 3.11], and (ii§ @B is strictly proper.m  solve the latter problem by considering special cases of the
It is hardly surprising that the optimal solution to (3) doed-QG cost (7).
not exhibit sensitivity redu_c_t|on at any frequency, becausgl Loop Transfer Recovery at the Plant Input
performance was not explicitly considered in the cost func-
tion. Consider first the problem of minimizing (6) using con-

The solution to the state feedback problem in [1], [3ptant feedback of noise free state measuremerity, =
was obtained by solving a deterministic minimum energy KX(t). In this case the resulting cost has the form
regulation problem, and it is the well-known structure of the 1 [ ) _—_
optimal regulator that allows us to characterize the resulting Jsf = 71/0 trace(Mss(jw)Ms¢(—jw)) do, )



where B,(s) is a Blaschke product of NMP plant zeros, aBg is

Mqf = {Pzd—qu%fK(PE:| (10) chosen so tha€,q(s)B = Cyp(s)BmB,(s). A procedure for

PSsiK@E ’ computingBp, may be found in [13], where it is also shown
and St is given by (2). We can fin&k to minimize (9) by thatA(s) has poles only at the mirror images of the NMP
making the following observations. Suppose tiat B in  plant zeros. Furthermore,
system (5), so that the disturbance enters the system at the
a)étuator.( 1)'hen it is easy to show that (9) reduce)s/ to T(8) = Sst(KQ(S) BBy (S).
In case there is only one nonminimum phase plant zero, at

Jof = 711/0 (IPau(jw)Sst(jw) >+ p?[Tsr(jw)|?) dow, s=z, the results simplify to
(11) 2715¢(2)
and thus the minimization problem involves a tradeoff be- S(s) — Sst(s) <1+ —
tween theH, norms of the state feedback sensitivity and 2215(2)
complementary sensitivity functions (2). Settirg= 0 and T(s) — Tst(s) — S¢(S) , a7)
p = 1 thus reduces the problem of minimizing (11) to that S+2
of minimizing || Ts¢||n,- whereLs¢(s) £ K(s)B.

We now use the approach of [7] to pose the output
feedback problem in the same framework. AgainBset B, Example 2 Consider the unstable nonminimum phase plant
and letu — 0, so that the measurement noise vanishes. Thérom [2, Example 3.1],P(s) = (2—5)/(s*> — 1), with state

M defined in (8) satisfies variable realization
Pra—PC(1 +RWC) IRy O A [—1 0] B H __3/2 1/7
MH{ —pC(1+RC)*Ra 0]’ 0 1) 1 &= 12

and the LQG cost (6) reduces to Bia tradeoff between the Solving (13) reveals thaf = [0 2|, and thus thafs¢(s) =
sensitivity and complementary sensitivity functions (4), 2/(s+ 1). It then follows from (17) thatT (s) — (—6s+
1 oo _ _ _ 12)/((s+1)(s+2)), which agrees with [2, Example 3.1].

o= [ (Palio)2S(0)P+pAT(10)P) do. (12)

Once again we see that, by settifg=0 and p = 1, we The preceding discussion has shown that minimizing
are able to solve the problem of minimizif@ ||, by using ||T|4, by using an equivalent LQG problem allows us
LQG techniques. IfA has no eigenvalues on thigo-axis, to derive explicit expressions for the optimal sensitivity
then we compute the state feedback gais- B'P, whereP  and complementary sensitivity functions, and thus we can
is the stabilizing solution to the Riccati equation characterize performance and robustness properties of the
0— ATP+PA_PBE'P (13) resulting feedbgck system even if thg plant is nqnminimum
phase. It remains to derive an explicit expression for the
The optimal compensator has the fogs) = K(sl— A+  optimal cost. With the assumptions that=1 and E = B,
BK +LC,)~IL, where L is the solution to the optimal the optimal cost for a specific value pfis given by [12]
estimation problem with a process disturbance entering at N T T
the plant input E = B) in the limit as measurement noise Hao(H) =B PB+KZ()K", (18)
that becomes smally — 0. whereP solves the minimum energy control Riccati equation
The procedure just described is referred to as “loopl3) andZ(u) denotes the solution to the filtering Riccati
transfer recovery (LTR) at the plant input” [7]. Ru(S) equation

is minimum phase, the input sensitivity and complementary T T 2 -
sensitivity functions will approach those with state feedback,O =AZ(K) +Z(H)A" +BB" —(1/u)Z(1)Cy GZ(H)- (19)

S(s) — Sf(9), T(s) — Tst(9), (14) The first term on the _right hand side of (18) is simply the
state feedback cost given by (3). The second term may be
where convergence is pointwise in frequency. It followssvaluated by considering the limiting valueXffu) asu — 0.
that if the plant is minimum phase, then the minimal SNR-or minimum phase plants, this limit is equal to zero. For
required for stabilization with output feedback is identical tthonminimum phase plants, the limit is nonzero, and may
that required with state feedback. be computed explicitly in terms of the NMP zero locations
If the plant is nonminimum phase, then it is known that theyy applying formulas dual to those for the cheap control
“recovery” in (14) cannot occur. InsteaB,andT converge optimal regulator cost. An expression for the latter appears
to transfer functions determined by the locations of the NM#h the dissertation [14], was derived independently by Shaked
plant zeros. It is shown in [13] that [15], and reported in [16].

Xs) = Sr(9(L+4(s), (15) Example 3 Let us return to Example 2, and consider the
where limiting value of the optimal estimation cosfu) with E=B
A(s) £ Kg(s) (B—BmB,(9)), (16) andu — 0. This cost may be obtained by solving the dual



Riccati equation (19). Dualizing the results of [14] showsnoise. It follows that we may minimiz&T||n, with output

thatlim,_oZ(u) = Zo, where feedback by first solving the estimation problem with zero
1 process noise, and then applying the LTR procedure by
So= Z—ZXI]BBTmeET, tuning the state feedback gain.

_ _ The procedure described above is referred to as “loop
z2=2, Xn=(—2zI—A)"Cy, and ¢ is the first row of the transfer recovery at the plant output’, and is dual to the

matrix [xm CyT]*l. This yieldslimp_,oJfQG(u)zls, which procedure for LTR at the plant input. Ry is minimum

agrees with [2, Example 3.1]. m phase, then it is known that as the control cost becomes van-
ishingly small the output sensitivity and complementary sen-
C. Loop Transfer Recovery at the Plant Input sitivity functions satisfyS(s) — Sops(S) and T(S) — Tops(S).

The results of [7] may be used to obtain an alternath follows that the optimal LQG cost with output feedback
approach to minimizing the complementary sensitivity funcis identical to the optimal state estimation cost.Rf, is

tion. Consider the problem of designing an observer, nonminimum phase, then results dual to those described in
: . Section IlI-B show that the recovery no longer takes place,
%= (A-LG)X+Ly, and provide a procedure for computing the limiting values

for the state of system (5), denote the state estimate agd of SandT in terms of the observer gain and the NMP plant
the estimation errors iRandz by X=x—XandZ=HX. Many  Z€ros.

properties of an pbserver are dual to those of .st.ate feedba@g, Comparison

including sensitivity and complementary sensitivity functions

dual to those in (2): We have just outlined two procedures for using LQG

optimal control to minimize the channel SNR required for

Sobs = (1+Cy(pL)*l, Tobs = CygoL(1+Cy<pL)*l. (20) stabilization, corresponding to the two block diagrams in

Figure 1. The procedure described in Section IlI-B, and
ed’epicted in Figure 1(a), uses minimal energy state feedback
applied to state estimates from an observer designed by
7 — (pzd — H(PLS)bsPyd) D+ uH LS, assuming a fictitious process disturbance entering at the plant

o o input, E = B, and tuned by letting the measurement noise

and thus the mean square estimation error is given by 555r0ach zero. Note that the configuration in Figure 1(a)
o 1/ . T, models a communication link between the controller and
E{Z W) = 7-[/0 Mobs(JW)Mobs( —j@)dw,  (21) e plant actuators, and that the channel noise enters the
feedback system in the same way as does the fictitious

process disturbance. It is this situation that is considered in

Mops = [(Pzd_ HQDLS)bsPyd) IJH(PLSJbs] . [1]-[3].

Suppose that the performance outout is identical to th The alternate procedure, described in Section 1lI-C and
PP P P (?epicted in Figure 1(b), assumes that the channel is used to
measured outputl = Cy. Then (21) reduces to

communicate the plant output to the controller, as in [6]. The
5{22(,{)} _ channel noise thus enters the system in the same way as does
1 e measurement noise in the LQG problem. The assumptions
f/ (1Sobs(j@)[?|Ra(jw) [ + 12| Tobs(jw) |?) dow, (22)  that no process disturbance is pres@i(0) and thatH = C,
TtJo imply that the estimator is designed solely to minimize the
and thus the problem of finding an observer gain to minimizgffect of the channel noise upon the channel input. The state

the mean square estimation error involves a tradeoff betwegsedback is then tuned by allowing the control weighting to
the H, norms of the transfer functions (20). approach zero.

We now use the results of [7] to connect the cost function
(6) to the estimation error (22). Suppose again that C,
and let the control cost satisfy — 0. Then the matrix (8)
satisfies

M — [U + Pyugflpyd —H(I+ Py5C>1PyuC} ,

and the LQG cost (7) for observer based output feedback
becomes a frequency weighted tradeoff betwS8emd T

1
Joe=—

[ UsG@PIRa@) + 12T (j00)P) deo. (23)

If we suppose thaE = 0 and u = 1, then the LQG cost IV. PERFORMANCEISSUES
(23) reduces to thél, norm of T, the transfer function that  The results described in [1]-[3] and Section IIl are con-
describes the response of the plant output to the measuremestned only with stabilization in the sense that the opti-

The response of to the process disturbance and measur
ment noise satisfies

where

@ (b)
Fig. 1. Recovery at the InpuE = B, vs. Recovery at the Output =C,.



mization problem is trivial if the plant is stable. There is Equating (24) with (11), fop = 1, shows that
considerable motivation to consider problems of performance

in gddmon t_o' 'stab|I|zafuon. F|r§t, we have seen that the }/ (|qu(jw)|2|5§f(jw)|2+\Ts*f(jw)\z) deo

optimal sensitivity function obtained with state feedback, or 71T./o

output feedback and a minimum phase plant, is allpass and 1 e o Np

thus does not achieve sensitivity reduction or disturbance = E/o log(1+ [Pru(jw)| >dw+221Re{Pi},
attenuation at any frequency. Second, consider the results of =

Nair and Evans [6], who study the problem of stabilizatiorand thus

over a channel that is noise free but has a limited data rate.

They show that the presence of a process disturbance rendergr I3, == /m log(1+ |Pa( j)|?)dw

attempts to communicate near the theoretical minimum rate 0

problematic, in the sense that the state will exhibit large Np 1 [ o o
excursions even though it is guaranteed to remain finite [6, +2_ZRe{pi}— E/o IPau(j0)|71S5¢(jw)|[“dw.
p. 418]. Evidently, requiring some measure of performance in =

addition to stabilization would necessitate communication &pplying (25) yields the main result

a higher bit rate. This argument is adapted in [17] to apply to

the problem of communication over a discrete-time Gaussian T3, = }/ log(1+ |Pou( j@)[2)dw

noise channel. It is shown in [17, Corollary IIl.2] that if 2

stabilization is achieved over a channel with capacity close IPou(jw)|?
to the theoretical minimum, then the response to disturbances - */ 1+ |Pu(j)|
will be very large.

The preceding considerations motivate us to consider pdt-is obvious from first principles that the right hand side
formance by shaping the sensitivity function to influence thef (27) must be at least as large agi'\‘zpl Re{pi}. Indeed,
differential sensitivity, robustness, and disturbance respongehe control signal used to stabilize the system and satisfy
of the system. First, we will impose a performance penaltg performance objective were smaller than that required to
by adding a state weighting to the LQG cost criterion andtabilize alone, then this control signal would have been
extending the analysis of Section [lI-B. The dual version opbtained as the solution to the minimum energy stabilization
this problem, to be discussed in Section IV-B, has an inteproblem previously obtained. The dual estimation problem,
pretation in terms of Wiener filtering and optimal estimationto be considered in Section IV-B, yields an appealing alter-
nate proof of this fact.

Let us now consider the output feedback problem. It

Suppose that we wished to impose a performance penaftyllows from (12) and (18) that, fop = 1, we have
by letting H be nonzero. Then the results of [18] (see . T T
also [19]) show that the optimal cost for tistate feedback Jige =B PB+KX(u)K

problem withp =115 given by =2 [ (Puli@)PIS (@) + T () ) do, (28)
N
1 0 . p
5= 71/ log(1+ |qu(jw)|2)dw+zlee{ pi}. (24) whereP is the solution to the Riccati equation for the state
0 i= feedback problem, and(u) is the solution to the dual
It follows from the Kalman return difference equality [20] €stimation Riccati equation (19). We have already observed

dw—i—ZZRe{ pit. (27)

A. State Feedback with a Penalty on State Variables

that the optimal sensitivity functiof; must satisfy that, in the minimum phase caden, .oZ(i) =0, S — &,
andT* — Tg. Hence, for a minimum phase plant, the optimal
1 value of|| T ||, is the same as that with state feedback in (27)
1+ P (—9)Pyy(s) = , 25 Ha ™= N
2 =S)PulS) S¢(—9)S(9) (25) For a nonminimum phase plant, the limiting estimation

error is nonzeroYy £ limy_oX(t) # 0, and the results
of [14] may be adapted to compuf® in terms of the

o e Np nonminimum phase plant zeros. Substituting (15) into (28)
5= —7—_[/0 log|Si¢(jw)|dw+ Z;Re{pi}. (26) and rearranging yields

and thus (24) is equivalent to

It follows from (26) that the optimal state feedback cost with || T/, =BTPB+KZ*KT—

a performance penalty imposed is greater than that for mere ® |Py(jw) 2|1+ A(jw)|?
stabilization by an amount equal to the arithmetic inverse / 1+ Pu(jw)?
of the area under the log sensitivity integral curve. The

additional cost has two components, one associated with tidaere BT PB, the cost with state feedback, is given by (24).
penalty imposed orz, and the other with that imposed on The state feedback galfi satisfies no special property unless
u. Since only the latter contributes to the required chann&e solve a specific state feedback control problem such as
SNR, we now separate it from the total cost. the minimum energy problem considered above.

dow, (29)



B. A Dual Problem: Estimation with a Process Disturbanceatio constrained channels into a common framework. Doing
Let us now consider the problem of state estimation witR® &llows us to incorporate performance directly into the

a process disturbance present. The counterparts to (24)
(26) for the optimal estimation problem are given by

o Np
S{2(1) = %/0 091+ [Ralj&) ) deo+ 2 Re(p)

(1

(30)
, . Ne [2]
- oglSudjo)dw 23 Relp). @)

Expression (30) for the optimal estimation error is due, in
the case of a stable plant, to Yovits and Jackson [21]. It
was extended to unstable open loop plants by Anderson and
Mingori [18]. See also the discussion by Braslavsky, et al[4]
[19]. Expression (31) follows from the dual version of the
return difference identity (25).

With output feedback, the optimal sensitivity and comple- (5]
mentary sensitivity functions must satisfy (23) with= 1,
(6]

Yoo= [ (IS (i)PRa(io)+T*(10)P) do. (2)

mJo
7
If the plant is minimum phase, then applying the recovery[ ]

procedure implies tha8" — S, and T* — T}, and thus
(31) and (32) must be equivalent. Setting these expressior@
equal to one another, and rearranging reveals that

[l
. 1= .
Moo, = - [ Tog (1+[Ra(i) ) dao
Jo " [10]
1 * |Ra(iw)? X
- = —————dw+2 Re{p}. (33
7T/0 + [Rd(jw)[? i; {pif (33) [11]

Recall thatT,ps is the transfer function from channel noise toj12]
the channel input in Figure 1(b). Hence, (33) represents the
transmission power required due to the response of the chah®
nel input to the channel noise. To provide an interpretation of
(33), suppose that the plant were stable, so that the third tefit]
on the right hand side is equal to zero. Then the first term is
the optimal estimation error associated with a causal Wiengis)
filter [21]. The second term is the optimal estimation error
for the infinite delay, noncausal Wiener filter that appears in
the work of Bode and Shannon [22]. It is thus clear that thge)
sum of these two terms must be nonnegative. Furthermore,
a plot oflog(1+Xx) vs. x/(1+ x) reveals that the difference s
between the two terms will be large whenever the gain of the
transfer function from the process disturbance to the output,
Ry is large over a significant frequency range. The fact that®!
more transmission power is required in this case is intuitively

4Hgblem statement, and to obtain interesting interpretations
in terms of classical concepts from Wiener filtering.
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