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Abstract

It has been known for some time that real non-minimum phase zeros imply undershoot in
the step response of linear systems. Bounds on such undershoot depend on the settling time
demanded and the zero locations. In this paper we review such constraints for linear time
invariant systems and provide new stronger bounds that consider simultaneously the effect of
two real NMP zeros. Using the concept of zero dynamics, we extend these results to a class
of nonlinear systems. In particular, using concepts of constrained reachability, we show that
scalar separable unstable zero dynamics imply undershoot in the step response. Furthermore,
this undershoot cannot be small if a rapid settling time is required and the zero dynamics are
slow.

1 Introduction

The study of performance trade-offs for feedback control systems has been studied for many years
(see for example the monographs: [1] and [2]). This area of research aims to examine and expound
fundamental compromises in the achievable performance of a feedback control system. Such studies
have used both frequency domain (sensitivity functions, interpolation constraints, achievable H,
performance) and time domain (cheap control, undershoot-overshoot, settling time and rise time,
L, and Lo performance) analyses. The study of performance trade-offs is most clearly developed
for linear systems from a frequency domain perspective.

In attempting to extend these results to nonlinear systems, one natural avenue to explore is
the extension of time domain constraints. Such an approach has been taken in [3] to extend the
cheap control results of [4] to a class of nonlinear systems.

In this paper, we consider the extension of the results on undershoot and settling time con-
straints for non-minimum phase linear systems obtained in [5] using frequency domain tools. As
in [3], we use the concept of zero dynamics [6] for the characterisation of non-minimum phase
nonlinear systems. In the context of the zero dynamics formulation, we first rederive the results of
[5] for linear systems, and provide new, stronger undershoot bounds that consider simultaneously
the effect of two real non-minimum phase zeros.

We then present an extension of these results for a class of nonlinear systems with unstable zero
dynamics. Using concepts of constrained reachability, we show that the step response of systems
with scalar separable unstable zero dynamics must necessarily undershoot. Furthermore, as is the
case for linear systems, the undershoot cannot be small if a short settling time is required when
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the zero dynamics are comparatively slow. We expound these results on two nonlinear system case
studies, which qualitatively illustrate the extent of the performance trade-off.

1.1 Background and Definitions

Consider the general problem of trying to control a single input single output nonlinear time
invariant plant,

y=Pru (1)

where P denotes, in the most general setting, a dynamic nonlinear operator mapping input signals
u(t) to output signals y(¢). In this paper, we are primarily interested in step response tracking
examples, where we wish to move from an equilibrium! (y = 0) to a new equilibrium (y = 7). We
are particularly interested in the undershoot that may occur during such a transition. Given an
output signal y(t) we define the relative undershoot r,s as

Fs () = — _inf {M}

te(0,00) | ¥

Undershoot is an important time domain characteristic of a control system. There are several
reasons why it may be undesirable to permit excessive undershoot in a plant response. Firstly,
large undershoot may cause state constraints to be violated. Secondly, large undershoot may be,
and in the linear case definitely is, an indication of poor sensitivity robustness properties. Thirdly,
large undershoot may deceive a supervisor or operator into believing the control system is faulty,
and therefore manually intervening in a control system.

We are also interested in the settling time of a feedback control system. The settling time
has a variety of definitions by different authors. In this paper, for simplicity, we use the following
definition of an exact settling time, Ty :

To@() = inf {r:t>7=y()=7}.

Note that for many real control systems (for example, linear time invariant systems), the
output y may not be able to settle exactly in finite time. However, the output may be able
approximate, to an arbitrary degree of accuracy, an ’ideal’ output signal which does have finite
exact settling time. This approximation significantly simplifies the analysis in this paper.

2 Linear Time Invariant Plants

In the case where the plant can be described by a linear, causal, finite dimensional operator, we
replace the description of Equation (1) by the following rational transfer function description:

y = P(s) xu,

where the notation ‘P(s) % v’ represents convolution of the impulse response of P(s) with w.

In this case, we say that the plant transfer function P(s) is minimum phase if all of its zeros
have non-positive real parts. If any of the zeros of P(s) have positive real part, then we say that
P(s) is non-minimum phase (NMP). The study of NMP zeros, and their effects on time domain
control properties have been studied previously by several authors [5], [2], [7, Chap. 4], [8], [9].
We first review the situation for a single real NMP zero.

1We assume, without loss of generality, that the initial equilibrium is at the origin.



2.1 Single real NMP Zero

Consider the case where we have a single real NMP zero at s = A\. We then have the following
result:

Proposition 2.1 [5] Suppose that P(\) = 0 where X is a positive real number. Consider any
input-output signals such that u(t) is bounded and the output y(t) settles exactly to § in time T.
Then the relative undershoot must satisfy

Tus(y) > AT 1

Proof

2Since u(t) is bounded, A is in the region of convergence of U(s) = . {u(t)} (the Laplace transform
of u(t)). Therefore, since Y (\) = P(A)U(\) =0,

Awyme“%tz(L (2)

Then by splitting the interval of integration in Equation (2), and using the definitions of exact
settling, we obtain

e—)\T oo_)\t
(/\ )-/T e dt

1 oo
= / y(t)e Mdt
yJr

:/T—ﬂl—“ﬁ
0

y
o (=5)
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from which the result follows. O

We now wish to expand on this result to consider the case where we have two real NMP zeros.

2.2 Two Real NMP Zeros

Suppose that we have a LTI plant with two real NMP zeros at s = A; and s = Aa. Then using the
same arguments as in the previous section, we obtain two interpolation constraints of the form of
Equation (2). Of course, Proposition 2.1 applies (at least as a lower bound) individually to each of
these two NMP zeros. However, the interaction of the two interpolation constraints gives stronger
results as we now show:

Proposition 2.2 Suppose that P(A1) = P(A2) = 0 where Ay > Xy > 0 are real numbers. Consider
any input-output signals such that u(t) is bounded and the output y(t) settles exactly to § in time
T. Then the relative undershoot must satisfy

—2oT _ AT
rasy) > e E T T Aee . (3)
)\1 (]. — €_>‘2T) — )\2 (]. — 6_)‘1T)

2We include the proof here since it is brief, and is instructive for the remaining development of the paper.



Proof

In a similar fashion to Proposition 2.1 we obtain the following interpolation conditions:

/ y(t)e Midt = 0
0

/ y(t)e 2tdt = 0.
0

Because of the exact settling time assumption, and defining r; = m+_1, ry = e*le—v ~y(t) =

(—% - r2) these conditions may be transformed to the equations:

T —aT —aT
Tt [€Y e 1—e M
/0 y(t)e Midt = ( " ) T (7)\1 ) ; (4)

/OT y(t)e 2tdt = 0. (5)

We now split y(t) = v+ (t) — v~ (t) where both v (¢) and v~ (¢) are non-negative functions of time.
Note that these definitions with Equation (5) imply that

T T
/ v (t)e tdt = / v~ (t)e P 2tdt.
0 0

From Equation (4) we have

1 _ e—)\lT e—/\1T T
- - _ — _ t — A1t
" ( A1 ) ( A1 ) /0 D)e ™ dt

et (5) - (50))

from which the desired result follows. O

This result may be illustrated as shown in Figure 1. Note that by taking each constraint
individually, we would only get the results for i—; — o00. Clearly from the figure, if the zeros are
not widely spaced, the results when the two constraints are considered together may be many
times worse than for the individual constraints. For example, consider A2T = 1. As A\ — oo the
lower bound on the relative undershoot is 0.6 but when \; is close to A2 the bound on r,s(y) is
approximately 2.78.
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Figure 1: Graph showing the bound on rys(y) given in Inequality (3) versus A;/A2 for Ay > Ao
and A\:T =1,2,3 and 4.

The results have been derived based on Laplace transform analysis of an LTI plant. However,
when considering nonlinear plants, such analysis may be inappropriate and difficult to generalise.
To facilitate analysis of nonlinear plants, we now consider the same problems, using a zero dynamics
formulation.

2.3 Linear Zero Dynamics Formulation

The zero dynamics formulation (see for example [10, pp538]) for a linear system performs a state
transformation from the generic state space form:

% = Az + Bu
y=Cz
to the zero dynamics form:
£ = Acé + BcCoz + Beu
2= Aoz + Byy (6)
y=Cc.

In this case, the zero dynamics refers to the dynamics of the equation 2 = Agz and in particular, the
eigenvalues of Ay are the zeros of the transfer function, P(s). Hence a NMP system has unstable
zero dynamics.

With the system in zero dynamics form, one way of considering the relationship of undershoot
to settling time and NMP zeros is as follows: Take the target output § and form the target final
state, z = — Ay ! Bog. Without loss of generality, let § > 0. For each a > 0, let )V, denote the set
of functions y which satisfy

y(t) > —aVt>0.



Given a permissable level of relative undershoot p we seek an answer to the constrained reachability
question: Does there exist an output y € Y,y which takes z (0) = 0 to z(t) = 27
2.3.1 First Order Linear Zero Dynamics

In the case of unstable first order zero dynamics, the constrained reachability question has a
straightforward answer as we will now show. Without loss of generality, we take Ag = A > 0 and
B =1, 3 > 0. In this case, clearly z = —% and the general solution to the linear zero dynamics
equation is given by

z(t) = /Ot e)‘(t_T)y (1) dr. (7

From Equation (7), and for y € V4, a > 0, we obtain

T
—z(T) </ AN dr
0

/\T_l
A

(8)

=

Clearly therefore, unless a (e*” — 1) > § Inequality (8) contradicts z(t) = z. It follows that
rus(y) (e — 1) > 1 which is equivalent to the lower bound on the undershoot given in Proposi-
tion 2.1. Thus we have rederived the result of Section 2.1 without using Laplace transforms.

2.3.2 Second Order Linear Zero Dynamics
Suppose that § > 0 and we have two distinct real NMP zeros A\; > Ay > 0. Without loss of
generality, we can take Ao to be diagonal, that is, A9 = diag {\1, A2} and By =[1, 1 ]T. In this

T
case Z = —Ay ' Bog = —§ [/\Ll, /\%] . We also use the notation By = [1, —1]" and the definition

(>

T
(D) 2 —a / e4o(T=") By g7 )
0

= —ady! (e’ — 1) B, (10)
e*T 1
A1

e*2T 1
A2

= -

With this background, we state our first proposition:

Proposition 2.3 For the second order zero dynamics system defined above, any state, z(T') reach-
able in time T with y € Y4, a > 0 must satisfy both

B¢ (A(T) - 2a(T)) > 0 (11)
and Bire 4T (2(T) — 24(T)) < 0. (12)
Proof
Firstly we note that using the Cayley Hamilton Theorem (see for example [11, ppl67]), edot =

/\16A217/\26A11) (exlt_eAzt)

I¢0 (t) + A0¢1 (t) where ¢0 (t) = (()\lf/\ﬂ and ¢1 (t) = W



We now consider Inequality (11). From the definition of z,, in Equation (9), and the linear
zero dynamics equation (6), we obtain

B (2(T) = 2a(T)) = BL /0 A=) By (y(r) + a) dr

T
- / BY (Iéo(T — ) + Aoy (T — 1)) Bo (y(r) + a) dr

T
= B Ao By / 61(T —7) (y(r) + a) dr
>0

because By AgBy and (y(7) + a) are both non-negative, and ¢;(T —7) > 0 for T — 7 > 0.

Next we consider Inequality (12). In this case we note that

T
Bd‘e‘AoT (2(T) — 2,(T)) = Bd‘e‘AOT/ eAO(T_T)Bg(y(T) +a)dr
0

T
- / Bi (Igo(~7) + Ao (—1)) Bo(y(r) + ) dr

T
_ B AyBy / b1(=7)(y(r) + ) dr
<0

because both By AgBy and (y(7) + ) are non-negative, and ¢ (—7) is non-positive for 7 > 0.
O

At first sight, there might not appear to be any correspondence between this result and the
earlier result based on Laplace transforms (Inequality (3)). However, as we now show, the two
results give identical bounds on the undershoot.

Corollary 2.4 For any plant with two real distinct NMP zeros, Inequality (12) implies Inequal-
ity (3).

Proof

Suppose that 7, (y) = p. Inequality (12) ,together with 2(T) = zZ = —jA; ' By and Equation (10),
gives

0> Bie 4T (2(T) — 2,(T))
= Bye T (—=gA; ' By + pjA, ' (e*T —1I) By) .
Since gy > 0, this is equivalent to
0> By Ayte™ T (=1 + p (e™T - I)) By
= —ByAyle T By + pBy Ayt (1 — e T By.



This implies, therefore, that since By Ag* (I — e_AoT) By <0,

By Ay'e 4T By

r >
w2 T AT) By
=T e— 22T
M X
- 1—e—M7T 1—e— 22T
A1 o A2
which is equivalent to Inequality (3). O

We therefore see that in the case of a linear time invariant plant, the zero dynamics form
allows the same results as those obtained using Laplace transforms for relating zeros, undershoot
and settling time.

3 Performance Limitations for Systems with Unstable Zero
Dynamics

In the previous section the zero dynamics form of a linear system was used to derive a bound on

the undershoot for a given settling time. This was achieved by finding a relationship between the

relative undershoot at the output and the reachable states of the zero dynamics. In this section
we will show that these ideas can be extended to nonlinear systems with unstable zero dynamics.

Suppose that a nonlinear system has the form
£=F(zu), E€R,
2= Fy(z,y), =z€eR™,
y = H(9),
where u is the input and y is the output. We focus on the zero dynamics equation,
2= Fy(z,y), z€R™, (13)

which represents the internal dynamics of the system. Note that although we assume that Equa-
tion (13) represents the full zero dynamics, for the purpose of this paper, it is actually sufficient
for this equation to describe part of the internal dynamics.

The following assumptions will be made:
Assumptions
e Vy€eR, 2= Fy(z,7) has a unique equilibrium point Z which implies 0 = Fy(Zz, §)
e the Jacobian matrix at Z is nonsingular

o F5(0,0)=0

We shall be concerned with the problem of taking the system from rest to the equilibrium at
y(t) = ¢ > 0. This is equivalent to finding y which satisfies the following constraints:

Jlim y(t) =7 > 0, (14)
Jim 2(t) = 2, (15)



where z(t) is the solution to Equation (13) with z(0) = 0. If, in addition, y(t) =y V ¢t > T, then
we shall say that y has finite (exact) settling time.

Definition 1 (Stability Definitions)

The equilibrium point Z defined above is unstable if it is not (locally) asymptotically stable. It is
anti-stable if 2 = —Fy(z,7) is (locally) asymptotically stable. The internal dynamics are unstable
(anti-stable) if Vg, the corresponding equilibrium point is unstable (anti-stable). If Z is unstable
then the stable manifold, M5, corresponding to Z is given by

M; = {zo ER™: i = Fo(z,9) and 2(0) = 70 = lim 2(t) = z} .

— 00

O

Note that in the case where Z is anti-stable, Mz = {Z}. Also, if Z is globally asymptotically
stable, then Mz = R™.

Recall that, for each a > 0, ), is the set of functions y which satisfy

y(t) > —a Vt2>0.

Definition 2 (Reachability Definitions)

Consider the system described by Equation (13). For each triple (29, a, T') the reachable set, Ry o,
is the set given by

Riepar ={2" € R™: Ty € Vyst. 2(T) =2", 2= Fy(z,y), and 2(0) = 2o} .

Similarly, the set S, C R™ is unreachable if R, o1 C S¢, where S =R\ S,. O

Definition 3 (Positive Invariance)

Suppose that z satisfies Equation (13). The set S C R™ is positively invariant with respect to Y,
ifz2000eS = 2zt) eSVY€EV,, t>0. O

Note that if S is positively invariant for y € Y, then S¢ is unreachable from any z(0) € S (for
all t).

The reachability definitions given above are quite general. In this paper, we consider only
reachability from the origin, and the value of « is usually clear from the context. Hence, we use
the simplified notation Rt for the reachable set at t =T

Remark 1 For any given a > 0, R; has the additional property that R;, C Ry, if t1 < t2. This
can be seen by noting that, if 21 € Ry, then 21 can be reached in time t2 by letting y(t) = 0 for
t < to —t1. It follows that a set is reachable at ¢ = T if and only if it is reachable for t < T.

O

If y satisfies constraints (14) and (15), and Z is unstable, then y must stabilise the internal dynamics
by driving z to M;. In the special case in which Z is anti-stable, y must move z to Z. This leads
to the following Lemma:

Lemma 3.1 Consider the system described by Equation (13). Suppose that the assumptions in
Section 3 are satisfied and that y satisfies constraints (14) and (15). Then the following statements
hold:

(a) If the open set Sy, is unreachable V y € Yy and zZ € S, then y must undershoot.



(b) If, for a given §, M3 is unreachable at t =T V y € V,, then rys(y) > /7.

Proof

The proof is immediate, in both cases, by contradiction. O

4 Case Studies

In this section we analyse, in detail, two examples of unstable zero dynamics. In the first example
we assume that the zero dynamics are scalar and have a particular structure. The general case and
a particular system are both considered. In the second example we study the zero dynamics of a
magnetic suspension system. We use the ideas of Section 3 and Lemma 3.1 to show that in each
of these examples, the instability of the zero dynamics implies that the output y must undershoot.
Bounds on the undershoot for a given exact settling time are also found.

The following definitions will be used in this section:

Let Veonstr be the set of functions y which satisfy constraints (14) and (15). For a given g,
the minimum relative undershoot for a specified exact settling time 7' can be defined by

Tous (T, 9) = inf {rus(y) : ¥ € Veonstr, Tes(y) =T} .

Similarly, if § and the allowable relative undershoot p are specified, then the minimum exact
settling time can be defined as

Te*s (P, 17) = inf {Tes (y) 1Y € Veonstrs Tus (y) < p} .
Remark 2 It can be seen that, if one of these two functions is known, then so is the other because

s (T2 (0, 9), ) = p.

O
4.1 Scalar Zero Dynamics
4.1.1 General Case
Suppose the internal dynamics satisfy
z=Fo(z,y) = fo(2) + 9o(2)y, 2(0) =0, (16)
where
z€R,

fo(2) is monotonically increasing and continuous,

fo (0) =0,

and go(z) has constant sign V z.
Without loss of generality, we take go(z) > 0. Note that the conditions on fo ensure that the
system satisfies the assumptions of Section 3.

Suppose that y is required to track a step of height § > 0. Let the corresponding equilibrium
point be z. Z < 0 because f(Z) = —g(2)y < 0. Z is also anti-stable because of the monotonicity of
fo- It follows that y must drive z to Z.

For this system the following proposition holds [12]:

10



Proposition 4.1 Consider the system above. Suppose that y € Vo and let z,(t) be the solution to
initial value problem (16) with y(t) = —a.

2(t) 2 za(2).
Proof
The proof [12, Prop. 2] is a direct application of the comparison principle. O

Suppose that y € Vo. When a = 0, z,(¢t) = 0. Thus from the proposition, z(t) > 0 V ¢t. But
then Z is unreachable, and so y must undershoot.

We can also quantify the required undershoot for a given exact settling time. In [12], it was
shown that if the relative undershoot is < p, then z is unreachable for ¢t < T (p, §), where

/ fo(z pygo( ) az

Thus, for a given settling time T, Tus > PT, Where pr is the solution of
Te*s(pTa g) =T.
4.1.2 A Particular Example

Consider the particular example in which fo(z) = 2% and go(z) = 1, i.e.
1=22+y.
Then

s _ —171/3
and

dz.

o 22—py

Let b = p'/3. An expression for T* can be derived as follows:

|
[a—y

1 /Z 1 2z
C3(b2)2 Jo z+bz 22 —bzz + (b2)2

_ 1 g1 2 _ s =12 17 1
= 3097 [ln|z+bz| 21n|z: bZz + (bZ) |] + sz/ T 3(bf)2 dz

= 6(b1) [ln 1(inri);] i \/§(lbz)2 [tan_l 2\"‘/;62’2]0

= 6(52/3 [m l(ij;i); +2V3 (tan_l \[bb + %)] .

From Remark 2, a plot of r} (T,7) as a function of T' may be obtained by plotting p against
T7,. Several of these plots are shown in Figure 2. Note that the bound on the relative undershoot
increases for fast settling times and smaller § (slower zero dynamics). This is qualitatively similar
to the linear case where the bound (»%—71 is worse for fast settling and slow zero dynamics.

11
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Figure 2: Scalar example - bound on relative undershoot versus settling time for several values of
Y.

4.2 Magnetic Suspension System

mg
Figure 3: Diagram of magnetic suspension system.

We consider the magnetic suspension system illustrated in Figure 3. If we neglect viscous
damping (air resistance), then the model is given by [10], [13]

T =0
Loa 2
— g I
v=9 2m(a + z)?
a
i=—|-R 0% oI
@ | @y T

where

12



x > 0 is the vertical distance of the ball below the electromagnet,
m, v are the mass and velocity of the ball,

g is the acceleration due to gravity,

R is the resistance of the circuit,

Ly, Ly, a are positive constants,

L(x) = Ly + Lo/(1 + z/a),

I is the current through the electromagnet and

u is the applied voltage.

The ball is stationary when the force from the electromagnet balances the gravitational force.

If we make E = I? the output of the system instead of z, as was done in [13], then the first
two equations above are the internal dynamics of the system.

We assume that the system is initially at equilibrium and that z(0) = z¢ and E(0) = Ej.
Note that Eg = 2gm(a + z0)?/Loa. The change of variables
Zn=x—2x9, 2=v, and y=FE-E
yields

21:2,’2

k1
=9 ——=(y+ Ep), 17
2 g (’Y ¥ 21)2 (y 0) ( )
where z € D= {2 € R?: 21 > —x0}, k1 = Loa/2m > 0 and v = a+zo > 0. Note that y(t) > —E,.
This is in the zero dynamics form of Equation (13) and satisfies the assumptions in Section 3. In
the discussion that follows, the subscripts 1 and 2 will be used to denote the components of an

element of R2. Thus 2 is equivalent to [21,22]” .

Suppose that y is required to track a step of height § > 0. The equilibrium point, Z, of system
(17) with y(t) = 7 is given by

%(g o) -, (18)
% = 0. (19)

21 =

The stability matrix of the linearisation of system (17) at the equilibrium point is given by

0 1
Ag = |: 23 O :| .
(v+z1)

This has eigenvalues at +, /(Vi—’%), and so z is saddle point. It follows that the equilibrium is
unstable but not anti-stable.

It is useful to note that
97’ = kiE (20)
and gy + 7)) = ki (Ey + 7). (21)

13



These two relations hold because y = 0 and y = y correspond to equilibrium points at z; = 0 and
21 = Z1, respectively.

The ideas of Section 3 can be used to show that y must undershoot. A lower bound on the
undershoot for a given exact settling time will also be found. We first prove two propositions.

Proposition 4.2 For the above system, the stable manifold is given by

MzZ{ZED:ZQ :ql(zl)}7

where q1(21) = \/ 7__2|_gz_1(21 —21).

Proof

Since z is a saddle point, there will be exactly two trajectories approaching Z along opposite
directions [14], [15]. The trajectories will be unique because the vector field of the system is
continuously differentiable on D. In order to find the trajectories the internal dynamics equations
can be combined to yield

|: _ k1(ﬂ + E())
(v + 21)?

This can be integrated with respect to ¢ to give

kl(g+E0) z%
—==+uc, 22
(v + 1) 2 (22)

where c¢ is the constant of integration and is determined by the initial condition of the system.

:| 2'71 = 2222.

g9z +

The trajectories which converge to, or diverge from Z are referred to as separatrices. By
substituting z = Z into the above equation we obtain the value of ¢ for the separatrices as

_ k(g + Eo)

c = 9%+ —F——+
ERRCETA
With this value of ¢ Equation (22) becomes
2

2 = _ 1 1
= = —Z1) + k(g + E - .
9 g(Zl 21) 1(y 0) (’Y"'zl) (’Y+21)

By using relation (21) we get

z =g(zn1—21) +g9(v+ 21)7(21 — )
2 (v + 21)
= ﬁ [(y+21)(z1 —21) + (v + 21)(Z1 — 21)]-

It follows that the separatrices are given by

[ 2g
=4 here = Z1 — ?1)-
22 qi(z1), where g(z1) o, (71— 21)

Now suppose that z2(t) = ¢1(21(¢)) . Then

sgn(z(t)) = sgn(za(t)) = —sgn(z1(t) — z1),
and so, as t = 00, 21(t) = 21 and 22(t) = ¢1(z1(¢)) = ¢1(Z1) = Z2. Thus we have shown that

Mz:{ze'D:zQ :ql(zl)}

14



Proposition 4.3 Suppose a € [0,Eq]. Let z,(t) be the solution to (17) with y(t) = —a and
2(0) = 0. Let z(t) be the solution for another element of V. Then 2(t) = 2(t) — z4(t) satisfies

#(t)eQs={2€R?:% <0,% <0}.

Proof

Suppose that Z(tp) € Q3 at some time to. Then, at t = tq,
51 =% <0

and

L 1 1 kl(y+a)
e S LA C TP o] [y S oy

Since Eg — a > 0, and #; < 0 implies that (y + 21)% — (y + 2a1)? <0,

25 (y+m)? T

Thus, at every point in Qs, Z; and Z» are decreasing. Hence Qs is a positively invariant set for Z
and the proposition follows from the fact that Z(0) = 0.

O

Suppose that y € )y. Then Proposition 4.3 implies that z(t) € Qs (because z,(t) = 0 when
a = 0). However, it is clear from Equations (18) and (19) that z ¢ Q3. Thus, Z is unreachable V ¢.
It follows that y must undershoot.

Now suppose that a € [0, Eg] and y € ),. The derivation of Equation (22) can be used to
show that the z,(t) lies on the curve defined by

2 _ _
2_2 921 + kl (E() a) _ kl (E() a)
2 (v + 21) v

— gz k121 (EO — Oé)
= 1 —
(v + 21)

Equation (20) can be used to simplify this to

23 _ z(gyz + ki)

2 y(y+2)

By noting the direction of the vector field along this curve we get,

221(gyz1 + k10)
Y(y + 21)

2a2(t) = q2(241(t)), where ga(z1) = \/

It follows that, along the trajectory, z41 = ¢2(241) > 0.

Recall that the stable manifold is given by 22 = g1(z1). We note that g»(z1) increases mono-
tonically and passes through the origin whilst ¢;(21) decreases monotonically and crosses the z;
axis at z2 = Za > 0. The point of intersection of these curves occurs when ¢;(z1) = g2(21). This
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equation can be solved as follows:

z1(gyz1 + k1)

- 2
ZL— 2 =

7+z1( 1= #) y(v + 21)

kiaz

9z — 2212 +2) = g+
_ nE

21 = 7 =

kia + 297z

p(a).

It can be seen that z4(t) meets M; when 241(t) = p(a). Suppose the time at which this
occurs is tq. Since Zq1 = ¢q2(2a1),

p(a) 3
(v + =) )
ta dZ .
V2 / ( (9721 + k1) !

The diagram in Figure 4 shows 24(t), M; and p(a). The region labelled S;, is Qs shifted
by z4(t1) for t = t; < t, and contains z(t;) V y € V4. From the monotonic nature of ¢;(21) and
¢2(z1) (and from the figure), it is clear that M; is unreachable for t < ¢,. Hence, T2 (p,§) = tpy.
It follows from Remark 2 that, if y is required to settle at time T, then

Tus(Y) > po,

where pg is the solution to T (po,y) = T.

Suppose that m = 0.01kg, ¥ = 0.001N/m/s, g = 9.81m/s?, a = 0.05m, Ly = 0.01H,
Li =0.02H, R =1Q and z = 0.1 m. Note that this gives k1 = 0.025, Ey = 8.829 and v = 0.15.
For this particular case, plots of r_(T,4), for § = 1, 3, 10, and 100, are given in Figure 5. It can
be seen that, as for the scalar example, the bound on the undershoot increases for smaller § and
faster settling times. We note that in this system there is a physical limit to the achievable settling
time because y(t) + Eo = I? > 0.

22

Za(tl)\

Sty

p(a) 2\ 21
M

z

Figure 4: Magnetic suspension system - diagram showing the region (S;,) which contains z(t;)
Vye€V,.
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Figure 5: Magnetic suspension system - bound on the relative undershoot versus settling time for
several values of §.

5 Conclusions

‘Non-minimum phase’ behaviour can be understood in the linear and nonlinear case using the zero-
dynamics formulation. In this formulation, the ‘constraints’ imposed by plant NMP behaviour can
be examined. In particular, the permissible output behaviour must drive the state of the zero
dynamics onto the stable manifold. Furthermore, in cases where we wish to achieve this in a finite
time, a lower bound on the required output deviation is imposed. Several examples illustrate the
use of these results. These generalise the linear system conclusions that real NMP zeros, fast
settling and small undershoot are incompatible requirements.
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