
Output Feedback Stabilisation over Bandwidth Limited, Signal to
Noise Ratio constrained Communication Channels

Abstract— Stabilisability of an open loop unstable plant is
studied under the presence of a bandwidth limited additive
coloured noise communication channel with constrained Signal
to Noise Ratio. The problem is addressed through the use of an
LTI filter explicitly modelling the bandwidth limitation, and
another LTI filter to model the additive coloured noise. Results
in this paper show that a bandwidth limitation increases
the minimum value of Signal to Noise Ratio required for
stabilisability, in comparison to the infinite bandwidth, white
noise case. Examples are used to illustrate the results in the
continuous and discrete framework.

I. INTRODUCTION

Feedback control over communication links has become an
area of growing interest in recent years with works such
as, for example, [1], [2], [3] and [4]. See also [5] and the
references therein.
Generally, the communication link involves some pre- and
post-processing of the signals that are sent through a
communication channel, for example, filtering, analog-to-
digital (A-D) conversion, coding, modulation, decoding,
demodulation and digital-to-analog (D-A) conversion.
Of the two possible configurations for the location of the
idealised communication channel (measurement path and
control path), we consider the case of a communication
channel over the control link. Such a setting is common in
practice and arises, for example, when actuators are far from
the controller and have to communicate through a (perhaps
partially wireless) communication network. Nonetheless,
in a single-input single-output LTI setting both forms are
equivalent, and it is a simple matter to restate the results
for the case of where measurement is performed over a
communication channel.
Stabilisability of the resulting feedback loop has been
studied in relation to quantisation, bit rate limitations, band-
widths constraint or time delays over the communication
channel. A different line of investigation is pursued in [6],
[7] and [8], which make use of topological and entropy
concepts.
Yet another line of investigation has been developed in
[9], [10], [11],[12], and more recently in [13], which has
been linked to the topological results in [6]. The analysis
introduced in those papers includes the effects of non-
minimum phase zeros and time delays in the plant, both in
the continuous and discrete setting, with output feedback
and state-space feedback, hinting to the possibility of a
common ground between the two lines of research.
This article, as [14], continues this last line of research
which model the communication channel through the ide-
alisation of an additive white Gaussian noise (AWGN)

channel, see for example [15], imposing a power constraint
on the signal that has been sent. Thus the stabilisability
problem is expressed through a bound in the signal to noise
ratio (SNR) defined by the imposed power constraint and
the white noise power spectral density.
In this paper, as in [14], we neglect all pre- and post- signal
processing involved in the communication link, which is
then reduced to the communication channel itself, modelled
as an additive coloured Gaussian noise (ACGN) channel
with limited bandwidth. This bandwidth constraint may
be imposed, for example, to avoid interference between
different channels in a communication system, meanwhile,
the coloured noise is a more realistic feature for a commu-
nication channel than the white noise case studied in [9],
[10], [11] and [12].
Only output feedback structure is considered in this work,
first in a continuous time scenario and then in a discrete
time one. The reasons to introduce the discrete framework
are many and different, and just to list a few consider:

1) the relative degree is a relevant issue in the discrete
case (as different from the continuous time case).

2) a plant model can be continuous time initially, but
implementation will require a sampling process, for
which discrete counterpart results will be required.

3) most of the results from Communication theory are
devoted to the case of discrete communication links.

The points highlighted above are the main motivation be-
hind the inclusion of results for the discrete output feedback
structure. An interested reader should see [9] and [12] for
more detailed arguments and justification on the inclusion
of the discrete case.
Extensions to the state feedback case (both continuous and
discrete) should also follow in a similar fashion to [9], when
dealing with a minimum phase unstable plant with no time
delays.
The main result of the present work is an expression for
the minimum SNR required to guarantee stabilisability of
an output feedback loop when we face the case of a ACGN
communication channel with an assigned bandwidth in both
the continuous and discrete framework.
The paper is organised as follows: in Section 2 we address
the continuous output feedback stabilisability problem over
a band limited ACGN channel. Section 3 does the same
for the discrete output feedback case. Section 4 presents
concluding remarks with interpretations on the results. All
proofs are listed in the Appendix.



II. GENERAL PROBLEM: CONTINUOUS CASE.

Consider the stabilisation problem for a continuous, unsta-
ble, non-minimum phase plant with delay, defined as:

G(s) = Go(s)e
−sτ , (1)

where Go(s) contains m different unstable poles (pi, i =
1, · · · ,m) and q different non minimum phase (NMP) zeros
(zj , j = 1, · · · , q).
We assume a limited bandwidth ACGN channel with input
output relation given by:

ur(t) = f(t) ∗ us(t) + h(t) ∗ n(t), t ≥ 0, t ∈ R, (2)

where us(t) is the channel input, ur(t) is the channel
output, and n(t) is a zero-mean white Gaussian noise with
power spectral density Φ1. We restrict our attention to the
case where the overall feedback system is stabilised, such
that for any distribution of initial conditions, the distribution
of all signals converges exponentially fast to a stationary
distribution. Without loss of generality, we therefore con-
sider directly the properties of the stationary distribution of
the relevant signals. Denote the power spectral density of
us(t) by Sus

(ω). The power in the channel input, defined
by ‖us‖Pow , E

{

u2
s(t)

}

, is related to its spectral density
by

‖us‖Pow =
1

2π

∫ ∞

−∞

Sus
(ω) dω (3)

The channel input is required to satisfy the power constraint

P > ‖us‖Pow, (4)

for some predetermined input power level P > 0. A power
constraint such as (4) may arise from a range of factors such
as electronic hardware limitations or regulatory constraints
introduced to minimise interference to other communication
system users. The limited bandwidth ACGN channel is thus
characterised by two stable transfer functions, F (s) and
H(s), and two parameters: the admissible input power level
P , and the noise spectral density Φ.
Consider now the control feedback described in Figure 1
in which Us(s) = −K(s)Y (s). The closed loop transfer
function from channel noise n(t) to channel input us(t) is
equal to −(T (s)/F (s))H(s), where T is the complemen-
tary sensitivity function of the output feedback loop:

TFH(s) = −(T/F (s))H(s) = −
KG

1 + KGF
H (5)

If the feedback system is stable, then the power of the
channel input signal is given by:

‖us‖Pow = ‖TFH‖
2
H2

Φ. (6)

1A formal approach of stochastic differential equations (see for example
[16]) requires the use of Ito Calculus and related tools. However, under
reasonable stationarity assumptions presented in [17]§4.4, it reduces to the
analysis proposed here.
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Fig. 1. Stabilisation via output feedback over a band limited ACGN
channel.

We see that the input power constraint (4) may be restated
as a constraint imposed on the transfer function (5) by the
admissible channel SNR, specifically

P

Φ
> ‖TFH‖

2
H2

(7)

Let K denote the class of all proper controllers K(s) that
internally stabilise the feedback system of Figure 1.

Problem 1: (Continuous-Time SNR Constrained
Band Limited Output Feedback Stabilisation). Find a
proper rational function K(s) ∈ K such that the transfer
function (5) satisfies the constraint (7) imposed by the
admissible channel SNR.
Denote the Blaschke product containing the C

+ poles of
Go(s) by

Bp(s) =

m
∏

i=1

s − pi

s + p̄i

(8)

Equivalently denote the Blaschke product for the NMP
zeros of Go(s) by

BzG(s) =

q
∏

i=1

s − zi

s + z̄i

(9)

There are also cases in which is common to model a
communication channel as having NMP zeros, see for
example [18], [19] and [20]. Define therefore the analog
of (9) for F as:

BzF (s) =

f
∏

i=1

s − zi

s + z̄i

(10)

In general, if it is not necessary to stress the different origin
of the zeros we will use Bz as notation, with Bz = BzG ·
BzF .

Theorem 1: Consider the feedback system of Figure 1.
Define TFH as in (7) and assume also that G(s) has m
unstable poles {pi; i = 1, 2, · · · ,m} and that these poles
are distinct. Denote the NMP zeros of G(s) and F (s) by
{zi; i = 1, · · · , q + f} and assume also that these zeros are
distinct2. Then

P

Φ
> inf

K(s)∈K
‖TFH‖

2
H2

=

m
∑

i=1

m
∑

j=1

rir̄j

pi + p̄j

e(pi+p̄j)τ , (11)

2The assumptions of distinct zeros and distinct poles simplify the result
of this theorem, but they are not essential to it.



where

ri = 2Re {pi}B−1
z (pi) F̃−1 (pi) H (pi)

m
∏

k=1
k 6=i

pi + p̄k

pi − pk

(12)
Where F̃ = FB−1

zF is the filter F with its NMP zeros
mirrored to their MP counterpart locations (if no NMP zeros
are contained in F then F̃ = F and Bz = BzG).

Proof: See Appendix Part A.
The result from this theorem nicely put to the front the
important features of a continuous plant model in terms of
the minimum required SNR to guarantee stabilisability, that
is: unstable poles, NMP zeros and time delay. All other
possible features of the plant do not play a role in this
discussion. The following example considers the case of an
infinite bandwidth AWGN channel and a plant with time
delay, therefore not taking full advantage of the result in
Theorem (1), but allowing to tie this same theorem with
earlier results presented in [11].

Example 1: Consider the case of two unstable real
poles p1 and p2, and an infinite bandwidth AWGN com-
munication channel. For this selection (11) becomes:
P

Φ
> inf

K(s)∈K
‖TFH‖

2
H2

=

=
r2
1

2p1
e2p1τ +

2r1r2

p1 + p2
e(p1+p2)τ +

r2
2

2p2
e2p2τ

= 2p1

(

p1 + p2

p1 − p2

)2

e2p1τ −
8p1p2

p1 + p2

(

p1 + p2

p1 − p2

)2

e(p1+p2)τ

+ 2p2

(

p1 + p2

p1 − p2

)2

e2p2τ

(13)

The expression obtained in (13) matches the result in
example 2.2, equation (21), in [11].

Example 2: Consider in this example at first a plant
with unstable pole located at p = 5. The LTI filters used to
model the finite bandwidth and coloured noise features of
the communication link are both chosen to be Butterworth
filters of order 4. The result presented in Figure 2 shows
the effect of bandwidth limitation on one axis and coloured
noise on the other axis. The vertical scale is the SNR value
in Decibels required to guarantee stabilisability.
Two facts can be appreciated from Figure 2. First, the
bandwidth limitation of the communication link forces an
increase in the value of SNR required to guarantee stabil-
isability, and second the colouring of the noise by a low
pass filter has the opposite effect of reducing this required
value. The overall result approaches the case of SNR for
an infinite bandwidth AWGN communication channel, that
is 10 ∗ log10(2p) = 10[dB] in this occasion.
More generally for the case of one unstable real pole p and
two possible selections for filters F and H , say (F̃1, H1)
and (F̃2, H2), with the following condition:

Fig. 2. SNR bound for stabilisability, unstable pole at 5. Limited
bandwidth coloured noise case.

|F̃1(jω)−1H(jω)| ≥ |F̃2(jω)−1H(jω)|, ∀ω (14)

It is possible to verify, through Poisson integral formula,
see [22], that:

log |F̃−1
1 (p)H1(p)| =

1

π

∫ ∞

−∞

log |F̃−1
1 (jω)H1(jω)|

p

p2 + ω2
dω ≥

1

π

∫ ∞

−∞

log |F̃−1
2 (jω)H2(jω)|

p

p2 + ω2
dω

= log |F̃−1
2 (p)H2(p)|

(15)

This is equivalent to claim |F̃−1
1 (p)H1(p)| ≥

|F̃−1
2 (p)H2(p)| and since for this general case the

SNR required for stabilisability as a closed form given by
2p|F̃−1(p)H(p)|2, we can conclude that the first case will
always demand a higher SNR for stabilisability than the
second case.
The second plant presented here as an example has an
unstable pole at p = 5, as before, but also includes now
a variable NMP zero, in a range between 0 and 15. The
communication link in this occasion is set to be a finite
bandwidth AWGN channel. The coloured noise is dropped
in order to make the result presentable in a 3 dimensional
graphic, as per Figure 3.
It is possible to observe, again from Figure 3, that limiting
the bandwidth of the communication channel embedded in
a LTI continuous output feedback scheme forces an increase
in the SNR value necessary to guarantee stabilisability. The
presence of an NMP zero also increases the minimum SNR



Fig. 3. SNR bound for stabilisability. Unstable pole at 5, NMP zero
between 0 and 15. Limited bandwidth, white noise case.

value required for stabilisability, as per the same figure. The
closer the NMP zero is to the pole the harder the system
is to stabilise and therefore the greater the necessary value
of SNR. The extreme case happens when the NMP zero
is exactly at the unstable pole location, in which case the
system would be not stabilisable and the SNR value would
be infinite.

The plot in Figure 3 has been limited on the z-axis to
approximately 50[dB] to make its appreciation more clear.
The summary for this section leaves us with an expression
in terms of the unstable poles, NMP zeros and time delay
of the plant which quantify the minimum SNR required to
guarantee stabilisability in an output feedback continuous
time case. This result can be used as a first approach to
quantify a communication channel parameters in a control
design solution which may use a modem or radio commu-
nication to send the control signal to the plant, moreover it
can also be used to study the feasibility of a given design
solution. Lastly, but not less important, it can be used as
a first approach in lifting the usual ideal assumption in
control feedback loop design of exact transmission for all
the signals involved in the loop.

III. GENERAL PROBLEM: DISCRETE CASE.

We now turn to the problem of using output feedback
to stabilise an unstable discrete-time plant over a noisy
discrete-time channel. Let the plant have transfer function
Gd(z) and state variable description

xk+1 = Adxk + Bduk, ∀k = 0, 1, 2, · · ·

yk = Cdxk

(16)

Assume that (Ad, Bd, Cd) is minimal. We assume a
discrete-time Gaussian channel with input output relation

wk = fd[k] ∗ vk + hd[k] ∗ nk, (17)

where nk is zero mean Gaussian white noise with variance
σ2. The channel input vk is assumed to be a discrete-
time stationary stochastic process with power spectral den-
sity Sv (ω). The power in the channel input, defined by
‖v‖Pow , E

{

v2
k

}

may be computed from its spectral
density by

‖v‖Pow =
1

2π

∫ π

−π

Sv (ω) dω. (18)

Note that the power in a discrete-time white noise signal is
equal to its variance. The discrete channel input is required
to satisfy the power constraint

Pd > ‖v‖Pow , (19)

for some predetermined input power level Pd. Consider

−
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Fig. 4. Stabilisation of a discrete-time system via output feedback over
a discrete band limited ACGN channel.

the discrete-time feedback system of Figure 4, where
the channel input is dynamic output feedback, V (z) =
−Kd(z)Y (z). If the feedback system is stable, then

‖v‖Pow = ‖TFHd‖
2
H2

σ2, (20)

where

TFHd(z) = −
Kd(z)Gd(z)

1 + Kd(z)Gd(z)Fd(z)
Hd, (21)

is the transfer function that relates vk with nk. The input
power constraint (17) imposed by admissible SNR is thus
equivalent to requiring that TFHd satisfies the bound

Pd

σ2
> ‖TFHd‖

2
H2

(22)

Denote the class of all stabilising output feedback con-
trollers by Kd.

Problem 2: (Discrete-Time SNR Constrained Band
Limited Output Feedback Stabilisation). Find a proper
rational function Kd(z) such that the transfer function in
(21) satisfies the constraint (22) imposed by the admissible
channel SNR.
Denote the Blaschke product containing the D

C
poles of

Gd(z) (D
C

= {z ∈ C : |z| > 1}) by:

Bφ(z) =

m
∏

i=1

z − φi

1 − zφ̄i

, (23)



and define

βk ,
1

k!

dk

dzk
Bφ(z)

∣

∣

∣

∣

z=0

(24)

Denote, also, the Blaschke product containing the D̄
C zeros

of Gd(z) by

BζGd
(z) =

q
∏

i=1

z − ζi

1 − zζ̄i

, (25)

and the Blaschke product containing the D̄
C zeros of Fd(z)

by

BζFd
(z) =

f
∏

i=1

z − ζi

1 − zζ̄i

(26)

In general, if it is not necessary to stress the different origin
we will use Bζ as notation, with Bζ = BζGd

· BζFd
.

Theorem 2: Consider the feedback system of Fig-
ure 4, assume that Ad has D̄

C distinct eigenvalues
{φi; i = 1, 2, · · · ,m}, and define TFHd(z) as in (21). Let
Gd(z) have relative degree r ≥ 1. Let also Gd(z) and Fd(z)
have q + f distinct zeros {ζi; i = 1, 2, · · · , q + f} in D̄

C ,
then

Pd

σ2
> inf

Kd(z)∈Kd

‖TFHd‖
2
H2

=

m
∑

i=1

m
∑

j=1

rir̄j

φiφ̄j − 1
+ δ, (27)

in which

ri = (1 − |φi|
2
)B−1

ζ (φi) F̃−1
d (φi) Hd (φi)

m
∏

j=1
j 6=i

1 − φiφ̄j

φi − φj

δ =

{

0, if r = 1
∑r−1

k=1 |µk|
2

if r > 1
,

(28)

where

µk =

r−1
∑

i=k

βi

(i − k)!

di−kB−1
ζ F̃−1

d Hd

dzi−k

∣

∣

∣

∣

∣

z=0

, ∀k = 1, · · · , r−1,

(29)
and F̃d is the filter Fd with its NMP zeros mirrored to their
MP counterpart locations (if no NMP zeros are contained
in Fd then F̃d = Fd and Bζ = BζGd

).
Proof: See Appendix Part B.
Remark 1: Please note that the definition of µk will

require the knowledge of the filters F̃d(z) and Hd(z) and
their derivatives on z, up to r − 2, at z = 0.

Remark 2: It may be also be possible to think of the
relative degree case for discrete time as equivalent to having
repeated non-trivial, NMP zeros at infinity. Note that in
continuous time, there are also repeated zeros at infinity,
but in some sense they are trivial, since they are on the
stability boundary and turn out not to affect the final result.
The discrete output feedback case proves to be algebraically
more demanding due to the presence of potentially a relative
degree greater than one. Nonetheless a similar objective as
per section 2 is achieved. Theorem 2 present us with a lower

bound for the required SNR which guarantees stabilisability,
in terms of specific features of the plant, namely unstable
poles, NMP zeros and relative degree. Any other aspect
involved in an discrete output feedback scheme is not
relevant in terms of the required SNR for stabilisability.

Example 3: Consider a plant with unstable pole lo-
cated at φ = 2. Since the main difference between the
discrete and continuous case is the presence of relative
degree in the plant, the communication link characteristic of
coloured noise is dropped in favour of a limited bandwidth
AWGN communication channel model and the possible
plant zeros are chosen all to be minimum phase. The filter
modelling the bandwidth limitation is selected to be a
Butterworth low pass filter of order 4. For discrete filters
as the one chosen, the cut off frequency of the filter is
expressed in terms of a factor Wn between 0 and 1, in
which 1 corresponds to half the sample rate (in order to
avoid aliasing issues). In Figure 5 the result is presented and
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Fig. 5. SNR bound for stabilisability. Unstable pole at 2, relative degree
1, solid line, relative degree 2, dashed line, relative degree 3, dash-dotted
line. Limited bandwidth, white noise case.

we can observe that an increase in relative degree implies an
increase in the minimum required SNR value to guarantee
stabilisability. The point around 0.55 is a consequence of the
filter selection and indeed disappears when one considers a
Chebyshev filter instead (not shown).

IV. CONCLUSION AND REMARKS.

In this paper a lower bound expression for the SNR nec-
essary in order to guarantee stabilisability of an output
feedback scheme, both in the continuous and discrete time
frameworks, has been achieved. This bound solely depends
on features from the plant, unstable pole locations, NMP
zeros locations and time delay or relative degree, depending
on the case. This result is valuable in terms of adding
explicitly the condition of limited bandwidth and coloured
noise in the communication channel model. The bandwidth
limitation, modelled as a low pass filter, has proved to



increase the required value of SNR which guarantees stabil-
isability of the control feedback loop. Opposite, the adding
of low-pass coloured noise has proved to lower the same
required SNR value. This nicely expose the flexibility of
the chosen communication model to fit different possible
scenarios for the communication link. Future lines of work
will include on the side of the communication channel
model the possible effect of NMP zeros in the filter transfer
function modelling the bandwidth limitation, and the case
of more complex channel models, e.g., fading channel case.
On the side of the plant, future lines of work will include
a study of target performances for the closed control loop,
inspired by [13], and possible consequences of modelling
error in the plant.

V. APPENDIX.

Part A.

Consider a coprime factorisation for F (s)G(s) as:

F (s)G(s) =
e−sτN

M
(30)

Where N,M ∈ RH∞. The Youla parameterisation of all
controllers that stabilise G is given by:

K(s) =
X + MQ

Y − e−sτNQ
(31)

Where Q,X ∈ RH∞, Y ∈ H∞ and X and Y satisfy the
Bezout identity:

e−sτNX + MY = 1 (32)

A constructive demonstration on the well posedness of
the above Bezout Identity can be found in [11], for a
comprehensive treatment see [21] and references therein.
Replacing these factorisations for FG and K into (5) gives:

TFH =
(

1 − BpMoY + e−sτBpBzMoNoQ
)

F−1H (33)

Where we also have M = BpMo and N = BzGBzF No.
Bp, BzG and BzF are the Blaschke products defined in
equations (8), (9) and (10). Since Bp and BzG are all pass
they have norm one and recalling F = BzF F̃ , we have:

inf
K(s)∈K

‖TFH‖
2
H2

=
∥

∥

∥B−1
p B−1

z F̃−1H−

−B−1
z MoY F̃−1H + e−sτMoNoQF̃−1H

∥

∥

∥

2

L2

(34)

Where L2 denotes (see for example [9]):

L2 :=

{

G(s) :

∫ ∞

−∞

|G (jω)|
2
dω < ∞

}

Next, define (also from [9]):

H2 = L2 ∩
{

G(s) : analytic in C
+
}

H⊥
2 = L2 ∩

{

G(s) : analytic in C
−
}

Where C
+

denotes the closed right half of the complex
plane C and C

−
denotes the closed left half of the plane.

The third term on the RHS of equation (34), if not for the
delay, would belong to H2. The other two terms, instead,
are mixed terms which benefit from an alternative notation:

B−1
p B−1

z F̃−1H = Γ⊥ + Γ

B−1
z MoY F̃−1H = Θ⊥ + Θ

(35)

Where
(

Γ⊥ − Θ⊥
)

∈ H⊥
2 and therefore:

inf
K(s)∈K

‖TFH‖
2
H2

=
∥

∥Γ⊥ − Θ⊥
∥

∥

2

H⊥

2
+

+ inf
K(s)∈K

∥

∥

∥
Γ − Θ + e−sτMoNoQF̃−1H

∥

∥

∥

2

L2

(36)

By means of a partial fraction description it is possible to
quantify Γ⊥ and Θ⊥:

Γ⊥ =

m
∑

i=1

ri

s − pi

+

q+f
∑

j=1

tj
s − zj

Θ⊥ =

q+f
∑

j=1

mj

s − zj

(37)

Where

ri = 2Re {pi}B−1
z (pi) F̃−1 (pi) H (pi)

m
∏

k=1
k 6=i

pi + p̄k

pi − pk

tj = 2Re {zj}B−1
p (zj) F̃−1 (zj) H (zj)

q+f
∏

k=1
k 6=j

zj + z̄k

zj − zk

= mj

(38)

Note that from (32), MoY = B−1
p at any zero of G or F ,

and together with (35) gives that tj and mj must be equal.
The net result for the first term on the RHS of equation
(36) is therefore:

Γ⊥ − Θ⊥ =
m
∑

i=1

ri

s − pi

, (39)

and its norm, by Residue Theorem (see[22]), is:

∥

∥Γ⊥ − Θ⊥
∥

∥

2

H⊥

2
=

m
∑

i=1

m
∑

j=1

rir̄j

pi + p̄j

(40)

From (35) and the Bezout identity we have:

Θ = −Θ⊥ + B−1
z MoY F̃−1H

Y = B−1
p M−1

o

(

1 − e−sτBzNoX
)

(41)



Replacing (41) in the second RHS term of (36) will give:

inf
K(s)∈K

‖TFH‖
2
H2

=
m
∑

i=1

m
∑

j=1

rir̄j

pi + p̄j

+

+ inf
K(s)∈K

∥

∥

∥Γ + Θ⊥ + e−sτMoNoQF̃−1H−

−B−1
z B−1

p

(

1 − e−sτBzNoX
)

F̃−1H
∥

∥

∥

2

L2

(42)

Some algebra in (42) let us also recognise Γ⊥:

inf
K(s)∈K

‖TFH‖
2
H2

=
m
∑

i=1

m
∑

j=1

rir̄j

pi + p̄j

+

+ inf
K(s)∈K

∥

∥

∥−Γ⊥ + Θ⊥ + e−sτB−1
p NoXF̃−1H+

+e−sτMoNoQF̃−1H
∥

∥

∥

2

L2

(43)

Since e−sτ is all pass, as for the Blaschke products, we
have:

inf
K(s)∈K

‖TFH‖
2
H2

=

m
∑

i=1

m
∑

j=1

rir̄j

pi + p̄j

+ inf
K(s)∈K

∥

∥esτ
(

−Γ⊥ + Θ⊥
)

+

+B−1
p NoXF̃−1H + MoNoQF̃−1H

∥

∥

∥

2

L2

(44)

In the time domain the minimum the L2 norm that can be
achieved in (44), through the selection of Q, is given by:

inf
K(s)∈K

‖TFH‖
2
H2

=

m
∑

i=1

m
∑

j=1

rir̄j

pi + p̄j

+

∫ τ

0

∣

∣L−1
{

−Γ⊥ + Θ⊥
}

(t)
∣

∣

2
dt (45)

From (39) we have:

L−1
{

−Γ⊥ + Θ⊥
}

(t) = −

m
∑

i=1

rie
pit (46)

Since in general pi ∈ C
+ we also have to consider

that
∣

∣L−1
{

−Γ⊥ + Θ⊥
}

(t)
∣

∣

2
= L−1

{

−Γ⊥ + Θ⊥
}

(t) ·

L−1 {−Γ⊥ + Θ⊥} (t). Replacing in (45) gives:

inf
K(s)∈K

‖TFH‖
2
H2

=

=

m
∑

i=1

m
∑

j=1

rir̄j

pi + p̄j

+

∫ τ

0

(

−

m
∑

i=1

rie
pit

)(

−

m
∑

i=1

riepit

)

dt

=

m
∑

i=1

m
∑

j=1

rir̄j

pi + p̄j

+

m
∑

i=1

m
∑

j=1

rir̄j

∫ τ

0

e(pi+p̄j)tdt

=

m
∑

i=1

m
∑

j=1

rir̄j

pi + p̄j

+

m
∑

i=1

m
∑

j=1

rir̄j

pi + p̄j

(

e(pi+p̄j)τ − 1
)

=

m
∑

i=1

m
∑

j=1

rir̄j

pi + p̄j

e(pi+p̄j)τ

(47)

Which ends the proof.

Part B.

We proceed by considering the function spaces L2 (D),
H2 (D), H⊥

2 (D), and H∞ (D), whose stability region is the
open unit disk. Introduce a coprime factorisation FdGd =
N/M , and the parametrisation of all stabilising controllers
Kd = (X + MQ) / (Y − NQ), where X and Y satisfy
the Bezout identity, NX + MY = 1. It follows that
TFHd = (1 − M (Y − NQ)) F−1

d Hd. Further factorise
M = BφM0, where Bφ is the Blaschke product in (23)
and N = BζGd

BζFd
N0, where BζGd

and BζFd
are the

Blaschke products in (25) and (26). It follows from the
Bezout identity that B−1

φ and M0Y have power series
expansions at infinity of the form

B−1
φ =

∞
∑

k=0

βkz−k

M0(z)Y (z) =

r−1
∑

k=0

βkz−k +

∞
∑

k=r

αkz−k,

(48)

where βk is defined by (24). Since Bφ is biproper,
N and N0 have relative degrees r, and the set
{

z−k; k = 0, · · · ,∞
}

forms an orthonormal basis for H2.
Where L2, H2 and H⊥

2 denote in this case (see for example
[23]):

L2 :=

{

Gd(z) :
1

2π

∫ π

−π

∣

∣Gd

(

ejθ
)∣

∣

2
dθ < ∞

}

H2 = L2 ∩
{

Gd(z) : analytic in D
C
}

H⊥
2 = L2 ∩ {Gd(z) : analytic in D}



Where D
C

= {z ∈ C : |z| > 1}, D = {z ∈ C : |z| < 1}
and ∂D is the unit disk itself. It follows that

inf
Kd(z)∈Kd

‖TFHd‖
2
H2

=

inf
Kd(z)∈Kd

∥

∥

∥

(

B−1
φ B−1

ζ − M0Y B−1
ζ + M0N0Q

)

F̃−1
d Hd

∥

∥

∥

2

L2

= inf
Kd(z)∈Kd

∥

∥

∥
B−1

φ B−1
ζ F̃−1

d Hd−

− B−1
ζ F̃−1

d Hd

r−1
∑

k=0

βkz−k − B−1
ζ F̃−1

d Hd

∞
∑

k=r

αkz−k+

+M0N0QF̃−1
d Hd

∥

∥

∥

2

L2

(49)

Consider first, for B−1
φ B−1

ζ F̃−1
d Hd a partial fraction de-

scription which allows to alternatively define this term as:

B−1
φ B−1

ζ F̃−1
d Hd = Γ⊥ + Γ (50)

where

Γ⊥ =

m
∑

i=1

ri

z − φi

+

q+f
∑

i=1

ni

z − ζi

(51)

and

ri = (1 − |φi|
2
)B−1

ζ (φi) F̃−1
d (φi) Hd (φi)

m
∏

j=1
j 6=i

1 − φiφ̄j

φi − φj

ni = (1 − |ζi|
2
)B−1

φ (ζi) F̃−1
d (ζi) Hd (ζi)

q+f
∏

j=1
j 6=i

1 − ζiζ̄j

ζi − ζj

(52)

Now consider the expression:
(

r−1
∑

k=0

βkz−k

)

B−1
ζ F̃−1

d Hd = β0B
−1
ζ F̃−1

d Hd

+
β1

z
B−1

ζ z−1F̃−1
d Hd + · · · +

βr−1

zr−1
B−1

ζ zr−1F̃−1
d Hd

(53)

Since filters F̃−1
d and Hd have been selected to be biproper

and stable, the first term on the RHS of (53) have the zeros
of G and Fd as poles,

β0B
−1
ζ F̃−1

d Hd =

q+f
∑

i=1

β0
mi

z − ζi

+ θ0

mi = (1 − |ζi|
2
)F̃−1

d (ζi) Hd (ζi)

q+f
∏

j=1
j 6=i

1 − ζiζ̄j

ζi − ζj

(54)

Where θ0 is in H2. Consider now the following term in
(53):

β1B
−1
ζ F̃−1

d Hd

z
=

β1B
−1
ζ (0)F̃−1

d (0)Hd(0)

z
+

+

q+f
∑

i=1

β1

ζi

mi

z − ζi

+ θ1 (55)

Where θ1 is in H2. Consider now the third term in (53):

β2B
−1
ζ F̃−1

d Hd

z2
=

β2
d(B

−1
ζ

F̃
−1
d

Hd)
dz

∣

∣

∣

∣

z=0

z
+

β2B
−1
ζ (0)F̃−1

d (0)Hd(0)

z2
+

q+f
∑

i=1

β2

ζ2
i

mi

z − ζi

+ θ2 (56)

The term θ2 represents all other terms involved in the partial
fraction description from F̃d(z)−1 and Hd, but since they
will be in H2 there is no need at this point to express them
explicitly. Generalising this process we have :

(

r−1
∑

k=0

βkz−k

)

B−1
ζ F̃−1

d Hd =

r−1
∑

k=1

µkz−k +

q+f
∑

l=1

(

r−1
∑

i=0

βi

ζi
l

)

ml

z − ζl

+ Θ(z) (57)

where

µk =

r−1
∑

i=k

βi

(i − k)!

di−kB−1
ζ F̃−1

d Hd

dzi−k

∣

∣

∣

∣

∣

z=0

ml = (1 − |ζi|
2
)F̃−1

d (ζi) Hd (ζi)

q+f
∏

j=1
j 6=i

1 − ζiζ̄j

ζi − ζj

(58)

and Θ(z) is in H2. Consider now the term defined by:

(

∞
∑

k=r

αkz−k

)

B−1
ζ F̃−1

d Hd =

q+f
∑

i=1

qi

z − ζi

+ Ω (59)

In which the RHS is obtained using partial fraction descrip-
tion, where

qi = (1 − |ζi|
2
)









q+f
∏

j=1
j 6=i

1 − ζiζ̄j

ζi − ζj









F̃−1
d (ζi) ·

· Hd (ζi)

(

B−1
φ (ζi) −

r−1
∑

k=0

βi

ζk
i

)

= ni −

(

r−1
∑

k=0

βi

ζk
i

)

mi

(60)



Finally, this allow us to redefine the expression in (49) as:

inf
Kd(z)∈Kd

‖TFHd‖
2
H2

=

∥

∥

∥

∥

∥

m
∑

i=1

ri

z − φi

+

q+f
∑

i=1

ni

z − ζi

−

−
r−1
∑

k=1

µkz−k −

q+f
∑

l=1

(

r−1
∑

i=0

βi

ζi
l

)

ml

z − ζl

−

−

q+f
∑

i=1

qi

z − ζi

− Ω − Θ + Γ + M0N0QF̃−1
d Hd

∥

∥

∥

∥

∥

2

L2

(61)

A close analysis of the zeros related residues reveals that:

ni −

(

r−1
∑

k=0

βi

ζk
i

)

mi − qi = 0, ∀i = 1, · · · , q + f (62)

This noticeable simplify expression (61):

inf
Kd(z)∈Kd

‖TFHd‖
2
H2

=

∥

∥

∥

∥

∥

m
∑

i=1

ri

z − φi

∥

∥

∥

∥

∥

2

H⊥

2

+

+ inf
Kd(z)∈Kd

∥

∥

∥−Ω − Θ + Γ + M0N0QF̃−1
d Hd

∥

∥

∥

2

H2

+

+

∥

∥

∥

∥

∥

−
r−1
∑

k=1

µkz−k

∥

∥

∥

∥

∥

2

∂D

=
m
∑

i=1

m
∑

j=1

rir̄j

φiφ̄j − 1
+

r−1
∑

k=1

|µk|
2

+ inf
Kd(z)∈Kd

∥

∥

∥
−Ω − Θ + Γ + M0N0QF̃−1

d Hd

∥

∥

∥

2

H2

(63)

It is possible to choose Q such the term belonging to H2

in (63) has norm zero (or if Q results to be not proper a Q̃
with stable extra poles in the denominator to overcome the
problem and still guarantee norm zero). Therefore, with the
proper selection of Q, equation (63) becomes:

inf
Kd(z)∈Kd

‖TFHd‖
2
H2

=
m
∑

i=1

m
∑

j=1

rir̄j

φiφ̄j − 1
+

r−1
∑

k=1

|µk|
2 (64)

with

ri = (1−|φi|
2
)B−1

ζ (φi) F̃−1
d (φi) Hd (φi)

m
∏

j=1,j 6=i

1 − φiφ̄j

φi − φj

(65)
which ends the proof.
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