
Matlab Mini Manual

1997

Eleftherios Gkioulekas

Mathematical Sciences Computing Center
University of Washington

Washington, USA

and

Gjerrit Meinsma

Faculty of Applied Mathematics
University of Twente

Enschede, The Netherlands

This document is to a large extent the same as Eleftherios Gkioulekas’ tutorialProgramming with
Matlab from 1996.
It is available athttp://www.amath.washington.edu/˜elf/tutorials/ .
Gjerrit Meinsma made some modifications to the text and added an appendix.
This document is available athttp://www.math.utwente.nl/˜meinsma/ .

Contents

1 Overview 1
1.1 Matlab essentials and the on-line help facilities. 1
1.2 Loading, saving and m-files . 3

2 Scalars, arrays, matrices and strings 5
2.1 Strings . 5
2.2 Scalars . 6
2.3 Arrays . 7

2.3.1 Polynomials 8
2.3.2 Saving and loading arrays . 9

2.4 Matrices . 10
2.5 Matrix/Array Operations . 11

3 Flow Control 15
3.1 For loops .. 15
3.2 While loops . 16
3.3 If and Break statements . 16

4 Functions 19

5 Examples 23

A Appendix: index of functions, commands and operations 27
A.1 General purpose commands . 27
A.2 Operators and special characters . 29
A.3 Programming language constructs 30
A.4 Elementary matrices and matrix manipulation . 31
A.5 Specialized matrices . 32
A.6 Elementary math functions . 32
A.7 Specialized math functions . 34
A.8 Matrix functions - numerical linear algebra . 34
A.9 Data analysis and Fourier transforms . 35
A.10 Polynomial and interpolation functions .. 37
A.11 Graphics . 37

A.11.1 Three dimensional graphics . 38
A.11.2 General purpose graphics functions . 39
A.11.3 Color control and lighting model functions 40

A.12 Sound processing functions. 41

iii

iv Contents

A.13 Character string functions . 41
A.14 Low-level file I/O functions . 42

1

Overview

Matlab is an interactive programming environment that facilities dealing with matrix computation, nu-
merical analysis and graphics.

Matlab stands formatrix laboratory and was initially intended to provide interactive access to the
LINPACK and EISPACK packages. These packages were written in Fortran and consist of some sophisti-
cated code for matrix problems. With Matlab it became possible to experiment interactively with these
packages without having to write lengthy Fortran code (or C code nowadays). Other features of Matlab
are its extensive help facilities and the ease with which users can make their own library of functions.

Throughout this tutorial we will give you an overview of various things and refer you to Matlab’s
on-line help for more information. The best way to learn is by experimentation, and the best way this
tutorial can help you is by telling you the basics and giving you directions towards which you can take
off exploring on your own.

1.1 Matlab essentials and the on-line help facilities

To begin a Matlab session type at the prompt

Matlab

or from WINDOWS95 you can double-click the Matlab icon to begin the session. If properly installed,
the system will show for split second a small welcoming window and then some general information
and something like

Commands to get started: intro, demo, help help
Commands for more information: help, whatsnew, info, subscribe

If you are new to Matlab you might take their advice and type

>> intro

The>> should not be typed, it is Matlab’s way of saying that it is ready for you to enter a command,
like intro . Typing>> demo will bring up a flashy screen from which various demos can be run, but
it is not the way to learn Matlab. To quit the Matlab session type

>> quit

or

>> exit

1

2 Chapter 1. Overview

Now you have learned to enter Matlab and quit it again. These are the most important things to know
about any program. Before going into the details in the following chapters, let us do some simple tests.
Enter Matlab again and type

>> x=2
>> y=3;
>> z=x*y

After entering the first line, Matlab immediately responds thatx is indeed equal to 2. The second line
produces nothing on screen although it does assign the value 3 to the variabley . The semicolumn; tells
Matlab to execute the command silently. The third line has no; and Matlab responds with

z =

6

If you type>> x*y then there is no variable to assign the value ofx*y to. In such cases Matlab assigns
the outcome to the variableans (from answer).

Typing the following three lines will produce a plot.

>> x=[0 1 2 3 4 5];
>> y=sin(x);
>> plot(x,y);

Herex is assigned the value of the array[0 1 2 3 4 5] . At this stage we do not want to go into
the details of arrays andsin andplot yet (we come to it in later chapters), instead we want to convey
the message to use Matlab’s on-line help whenever you encounter something unfamiliar. Look at the
second line. Apparently we can calculate the sine of an array! How is it defined? Type

>> help sin

and Matlab will tell thatsin(x) is the sine ofthe elementsof x . Okay, soy=sin(x) assignsy the ar-
ray [sin(0) sin(1) sin(2) sin(3) sin(4) sin(5)] . With the commandplot(x,y)
the actual plot is made, see Figure. 1.1.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 1.1: A coarse plot of sin.x/.

To see howplot works type

>> help plot

There is a lot of help available onplot . If it scrolls off your screen you might want to enter>> more
on and then>> help plot again. The help onplot is extensive and it should provide enough
information to answer most questions you may have about plotting.

Another way of getting help is with thelookfor command. Suppose you wish to save the plot in
a file on disk. Typinghelp save turns out to be of little use. In such cases try

1.2. Loading, saving and m-files 3

>> lookfor save

This will print on screen a list of commands that have something to do with “save”:

DIARY Save the text of a MATLAB session.
SAVE Save workspace variables on disk.
HARDCOPY Save figure window to file.
PRINT Print graph or save graph to file.
WAVWRITE Saves Microsoft Windows 3.1 .WAV format sound files.
IDUISESS Handles load and save session as well as renaming of session.

Apparentlyhardcopy or print are the commands we need to look at. The help onprint will tell
you that

>> print -deps myfig.eps

saves the current plot in encapsulated postscript format in the file with namemyfig.eps . Consult
help print once again if you need a format other than postscript.

For more information on getting help, type

>> help help

which, you guessed it, gives help on using help. If you are on a Unix machine with a web browser, try
also

>> doc

1.2 Loading, saving and m-files

The interactive nature of Matlab is useful, but at the end of the day you want your commands and results
saved in a file. Bring up an editor1 and type in the following Matlab program:

%
% These are comments.
% In Matlab you can add comments with a % character
% This is the standard hello world program

disp(’Hello world!’);

Save the program with the filenamehello.m . Then start Matlabunder the same directory where you
saved the fileand typehello at the Matlab prompt. Then you should see the following:

>> hello
Hello world!
>>

Notice that within the Matlab environment you don’t have to type any funny commands toloadyour
program. When you start Matlab from your shell, Matlab will loadall the*.m files that happen to be
under the present working directory at startup time. So, all you have to do when the prompt shows up is
to type the name of the program (without the.m extension) and it will get executed. Note that Matlab
will only look for the files with extension.m so you are forced to use it. There are no work-arounds

1On a Unix system you can use the following editors:emacs, vi and if availablepico . On DOS there isedit on
WINDOWS95 there arenotepad and others. Warning: If you use a word-processor to type in Matlab programs, be sure to
save the file as a plain text file or ASCII file. By default word processors save files in a format that Matlab cannot read.

4 Chapter 1. Overview

for this. Still, Matlab has a provision for the situation where your files are scattered in more than one
directory. You can use the Unixcd , ls , pwd commands to navigate in the file system and change your
current working directory. Also, if you want to be able to have access to the files on two or more separate
directoriessimultaneouslytype

>> help path

for more information. Matlab program files are often calledscripts.
In the previous section you saw how to save a plot. It is also possible to save and load your variables

on disk. Try

>> help save

and to load them the next session, try

>> help load

For simple problems there is no need to save and load the variables. Simply save the m-file that has all
the commands and execute the m-file when needed. Yet another way to save results is with thediary
command. From the moment you type

>> diary myoutput.txt

all subsequent commands that you type, and its output on screen, are also send to the file
myoutput.txt . In fact everythingthat appears on screen will also appear inmyoutput.txt .
With

>> diary off

the filemyoutput.txt is closed.

2

Scalars, arrays, matrices and strings

Matlab has three basic data types: strings, scalars and matrices. Arrays are just matrices that have only
one row. Matlab has also lots of built-in functions to work with these things. You have already seen the
disp function in our hello-world program.

2.1 Strings

Starting with strings, you can assign a string to a variable like this:

name = ’Indiana Jones’;

Note that it is a syntax error to quote the string with anything other than the forward quote marks. So,
the following arewrong!

name = "Indiana Jones"; % wrong!
name = ‘Indiana Jones‘; % wrong!

In a Matlab program you can prompt the user and ask him to enter in a string with theinput command:

% This is a rather more social program, assuming you’re a man
%
yourname = input(’Hello! Who are you? ’,’s’);
dadname = input(’What’’s your daddy’’s name? ’,’s’);
fprintf(1,’Hail oh %s son of %s the Great! \n’,yourname,dadname);

The input command takes two arguments. The first argument is the string that you want the user to
be prompted with. You could stick in a variable instead of a fixed string if you wanted to. The second
argument,’s’ , tells Matlab to expect the user to enter a string. If you omit the second argument, then
Matlab will be expecting a number, and upon you entering your name, Matlab will complain. Finally,
it returnsthe value that the user enters, and that value is passed on through assignment to the variable
yourname .

The fprintf command gives you more flexibility in producing output than thedisp command.
Briefly, fprintf takes two or three or more arguments. The first argument is afile descriptor. File
descriptors are integers that reference places where you can send output and receive input from. In
Matlab, file descriptor 1 is what you use when you want to send things to the screen. The terminology
you may hear is that file descriptor 1 sends things to thestandard output.

The rest of the arguments depend on what you want to print. If all you want to print is a fixed string,
then you just put that in as your second argument. For example:

fprintf(1,’Hello world!\n’);

5

6 Chapter 2. Scalars, arrays, matrices and strings

The \n sequence will switch you over to the next line.disp will do this automatically, infprintf
you must explicitly state that you wish to go to a new line. This is a feature, since there may be situations
where you donot want to go to a new line.

If you want to print the values of variables interspersed with your string then you need to put ap-
propriate markers like%s to indicate where you want your variables to go. Then, in the subsequent
arguments you list the variables in the appropriate order, making sure to match the markers. There are
many markers and the Matlab online help will refer you to a C manual. The most commonly used
markers are the following:

%s Strings
%d Integers (otherwise you get things like5.0000)
%g Real numbers in scientific notation, like1e-06

In our example above, we just used%s. You will see further examples later on.
Note that if you merely want to print a variable, it is better to usedisp since it will format it for

you. fprintf is more useful for those occasions where you want to do the formatting yourself as well
as for sending things to a file.

In Appendix A, Sections A.13 and A.14 you find listings of the standard string commands and the
input/output commands likefprintf .

2.2 Scalars

Scalars can be assigned, inputed and printed in a similar fashion. Here is an example:

% yet another one of these happy programs
age = input(’Pardon for asking but how old are you? ’);
if (age < 75)

ll = 365.25*24*(75 - age);
fprintf(1,’You have %g hours left of average life expectancy.\n’,ll);

else
fprintf(1,’Geez! You are that old?!\n’);

end

Note the following:

• String and numeric variables look the same. You don’t have to declare the type of the variable
anywhere. Matlab will make sure to do the right thing.

• When we useinput to get the value of a numeric variable we omit the second’s’ argument.
This way, Matlab will do error-checking and complain if you entered something that’s not a
number.

• You can usefprintf to print numeric variables in a similar fashion, but you got to use the%g
marker. If you are printing an integer you must use the%dmarker, otherwise Matlab will stick in a
few zeroes as decimal places to your integer. It is obvious that you can mix strings and numbers in
anfprintf command, so long as you don’t mix up the order of the variables listed afterwards.

• On the line

life_left = 365.25*24*(75 - age);

we see how you can do simple computations in Matlab. It’s very similar to C and Fortran and to
learn more about the operators you have available type

2.3. Arrays 7

>> help ops
>> help relops

• Finally, we have an example of anif statement. We will talk of that more later. The meaning
should be intuitively obvious.

In addition to ordinary numbers, you may also have complex numbers. The symbolsi and j are
reserved for such use. For example you can say:

z = 3 + 4*i;

or

z = 3 + 4*j;

wherei andj represent
√−1. If you are already using the symbolsi andj as variables, then you can

get a new complex unit and use it in the usual way by saying:

ii = sqrt(-1);
z = 3 + 4*ii;

Lists on what you can do with scalars and predefined constants, are in Appendix A, Sections A.2,
A.4, A.6 and A.7.

2.3 Arrays

Next we talk about arrays. Arrays and matrices are Matlab’s distinguishing feature. In Matlab arrays are
dynamic and they are indexed from 1. You can assign them element by element with commands like:

a(1) = 23;
a(2) = input(’Enter a(2)’);
a(3) = a(1)+a(2);

It is a syntax error to assign or refer toa(0) . This is unfortunate since in some cases the 0-indexing is
more convenient. Note that you don’t have to initialize the array or state it’s size at any point. The array
will make sure to grow itself as you index higher and higher indices.

Suppose that you do this:

a(1) = 10;
a(3) = 20;

At this point,a has grown to size 3. Buta(2) hasn’t been assigned a value yet. In such situations,
during growth any unset elements are set to zero. It is good programming practice however not to depend
on this and always initialize all the elements to their proper values.

Notice that for the sake of efficiency you might not like the idea of growing arrays. This is because
every time the array is grown, a new chunk of memory must be allocated for it, and contents have to be
copied. In that case, you can set the size of the array by initializing it with thezeros command:

a = zeros(100);

This will seta(1),a(2),...,a(100) all equal to zero. Then, so long as you respect these bound-
aries, the array will not have to be grown at any point.

Here are some other ways to make assignments to arrays:

x = [3 4 5 6];

8 Chapter 2. Scalars, arrays, matrices and strings

will set x equal to the array of 4 values withx(1)=3 , x(2)=4 , x(3)=5 andx(4)=6 . You can
recursively add elements to your arrayx in various ways if you includex on the right hand side. For
example, you can make assignments like

x = [x 1 2] % append two elements at the end of the array
x = [1 2 x 3] % append two elements at the front, one at the back

How about making deletions? Well, first of all notice that we can access parts of the array with the
following indexing scheme:

y = x(2:4);

will return the an array ofx(2) , x(3) , x(4) . So, if you want to delete the last element of the array,
you just have to find the size of the array, which you can do with thesize or length command, and
then

x=x(1:length(x)-1);

effectively deletes the last entry fromx .
You can use multiple indices on the left hand side of the assignment:

x([1 5 10])=[0.1 0.2 0.3];

This assignsx(1)=0.1 , x(5)=0.2 andx(10)=0.3 . By the way, this opens up another way to
delete entries from an array:

x=[1 2 3 4 5];
x([3 5])=[];

Now x=[1 2 4] . In Matlab[] is an array or matrix with zero elements, sox([3 5])=[] instructs
Matlab to removex(3) andx(5) from the arrayx .

Yet another way to setup arrays is like this:

x = 3:1:6;

This will setx equal to an array of equidistant values that begin at 3, end at 6 and are separated from
each other by steps of 1. You can even make backwards steps if you provide a negative stepsize, like
this:

x = 6:-1:3;

It is common to set up arrays like these when you want to plot a function whose values are known at
equidistant points.

2.3.1 Polynomials

A polynomial pnsn+ pn−1sn−1+ · · · + p0 is in Matlab represented as an array of its coefficients

p = [pn pn−1 · · · p0]

Formally, then, arrays and polynomials are the same thing in Matlab. Be aware of the reversed order of
the coefficients:p(1) equalspn andp(length(p)) is the constant coefficient. Matlab has several
commands for polynomials. For example the product of two polynomialsp andq can be found with

r=conv(p,q)

2.3. Arrays 9

And what about this one:

pz=roots(p)

It returns an array of the zeros ofp. As you probably know, there is no general analytic expression
for the zeros of a polynomial if its degree exceeds 4. Numerical computation of zeros is inherently an
iterative process and it is not at all a trivial task.

See Appendix A, Sections A.2, A.4, A.6, A.7, A.9 and A.10 for listings of the standard array and
polynomial commands. Several of thetoolboxeshave many more commands that deal with polynomials.
Seehelp for a list of the installed toolboxes.

2.3.2 Saving and loading arrays

Finally, to conclude, you may want to know how to load arrays from files. Suppose you have a file
that contains a list of numbers separated with carriage returns. These numbers could be the values of a
function you want to plot on known values ofx (presumably equidistant). You want to load all of these
numbers on a vector so you can do things to them. Here is a demo program for doing this:

filename = input(’Please enter filename:’,’s’);
fd = fopen(filename);
vector = fscanf(fd,’%g’,inf);
fclose(fd);
disp(vector);

Here is how this works:

• The first line, prompts the user for a filename.

• Thefopen command will open the file for reading and return a file descriptor which we store at
variablefd .

• Thefscanf command will read in the data. You really need to read the help page forfscanf
as it is a very useful command. In principle it is a little similar tofprintf . The first argument
is the file descriptor from which data is being read. The second argument tells Matlab, what kind
of data is being read. The%gmarker stands for real numbers in scientific notation. Finally the
third argument tells Matlab to read in the entire file in one scoop. Alternatively you can stick in
an integer there and tell Matlab to load only so many numbers from the file.

• Thefclose command will close the file descriptor that was opened.

• Finally thedisp command will show you what has been loaded. At this point you could substi-
tute with somewhat more interesting code if you will.

Another common situation is data files that contain pairs of numbers separated by carriage returns.
Suppose you want to load the first numbers onto one array, and the second numbers to another array.
Here is how that is done:

filename = input(’Please enter filename: ’,’s’);
fd = fopen(filename);
A = fscanf(fd,’%g %g\n’,[2,inf]);
x = A(1,:);
y = A(2,:);
fclose(fd);
disp(’Here comes x:’); disp(x);
disp(’Here comes y:’); disp(y);

10 Chapter 2. Scalars, arrays, matrices and strings

Again, you need to read the help page forfscanf to understand this example better. You can use it in
your programs as a canned box until then. What we do in this code snippet essentially is to load the file
into a two-column matrix, and then extract the columns into vectors. Of course, this example now leads
us to the next item on the agenda: matrices.

2.4 Matrices

In Matlab, arrays are matrices that have only one row. Like arrays, matrices can be defined element by
element like this:

a(1,1) = 1; a(1,2) = 0;
a(2,1) = 0; a(2,2) = 1;

Like arrays, matrices grow themselves dynamically as needed when you add elements in this fashion.
Upon growth, any unset elements default to zero just like they do in arrays. If you don’t want that,
you can use thezeros command to initialize the matrix to a specific size and set it equal to zero, and
then take it from there. For instance, the following example will create a zero matrix with 4 rows and 5
columns:

A = zeros(4,5);

To get the size of a matrix, we use thesize command like this:

[rows,columns] = size(A);

When this command executes, the variablerows is set equal to the number of rows andcolumns is
set equal to the number of columns. If you are only interested in the number of rows, or the number of
columns then you can use the following variants ofsize to obtain them:

rows = size(A,1);
columns = size(A,2);

Since arrays are just matrices with one row, you can use thesize(array,2) construct to get hold of
the size of the array. Unfortunately, if you were to say:

s = size(array);

it would be wrong, becausesize returns both the number of rows and columns and since you only care
to pick up one of the two numbers, you pick up the number of rows, which for arrays is always equal to
1. Not what you want!

Naturally, there are a few other ways to assign values to a matrix. One way is like this:

A = [1 0 0 ; 0 1 0 ; 0 0 1]

This will setA equal to the 3 by 3 identity matrix. In this notation you list the rows and separate them
with semicolons.

In addition to that you can extract pieces of the matrix, just like earlier we showed you how to extract
pieces of the arrays. Here are some examples of what you can do:

a = A(:,2); % this is the 2nd column of A
b = A(3,:); % this is the 3rd row of A
c = A(1:4,3); % this is a 4 by 1 submatrix of A
d = A(:,[2 4 10]); % this is the 2nd, 4th and 10th columns of A stacked

2.5. Matrix/Array Operations 11

In general, ifv andware arrays with integer components, thenA(v,w) is the matrix obtained by taking
the elements of A with row subscripts fromv and column subscripts fromw. So:

n = size(A,2);
A = A(:,n:-1:1);

will reverse the columns of A. Moreover, you can haveall of these constructs appear on the left hand
side of an assignment and Matlab will do the right thing. For instance

A(:,[3 5 10]) = B(:,1:3)

replaces the third, fifth and tenth columns ofA with the first three columns ofB.
In addition to getting submatrices of matrices, Matlab allows you to put together block matrices from

smaller matrices. For example ifA,B,C,D are a square matrices of the same size, then you can put
together a block matrix like this:

M = [A B ; C D]

Finally, you can get the complex conjugate transpose of matrix by putting a’ mark next to it. For
example:

A = [2 4 1 ; 2 1 5 ; 4 2 6];
Atrans = A’;

Matlab provides functions that return many special matrices. These functions are listed in Appendix
A, Section A.5 and we urge you to look these up with thehelp command and experiment.

To display the contents of matrices you can simply use thedisp command. For example, to display
the 5 by 5 Hilbert matrix you want to say:

>> disp(hilb(5))
1.0000 0.5000 0.3333 0.2500 0.2000
0.5000 0.3333 0.2500 0.2000 0.1667
0.3333 0.2500 0.2000 0.1667 0.1429
0.2500 0.2000 0.1667 0.1429 0.1250
0.2000 0.1667 0.1429 0.1250 0.1111

The Hilbert matrix is a famous example of a badly conditioned matrix. It is also famous because the
exact inverse of it is known analytically and can be computed with theinvhilb command:

>> disp(invhilb(5))
25 -300 1050 -1400 630

-300 4800 -18900 26880 -12600
1050 -18900 79380 -117600 56700

-1400 26880 -117600 179200 -88200
630 -12600 56700 -88200 44100

This way you can interactively use these famous matrices to study concepts such as ill-conditioning.

2.5 Matrix/Array Operations

• Matrix addition/subtraction : Matrices can be added and subtracted like this:

A = B + C;
A = B - C;

12 Chapter 2. Scalars, arrays, matrices and strings

It is necessary for both matricesB andC to have the same size. The exception to this rule is when
adding with a scalar:

A = B + 4;

In this example, all the elements ofB are increased by 4 and the resulting matrix is stored inA.

• Matrix multiplication : MatricesB andC can be multiplied if they have sizesn× p and p×m
correspondingly. The product then is evaluated by the well-known formula

Aij =
p∑

k=1

BikCkj; ∀i ∈ {1; : : : ; n}; ∀ j ∈ {1; : : : ;m}

In Matlab, to do this you say:

A = B*C;

You can also multiply all elements of a matrix by a scalar like this:

A = 4*B;
A = B*4; % both are equivalent

Since vectors are matrices that are 1× n, you can use this mechanism to take the dot product of
two vectors by transposing one of the vectors. For example:

x = [2 4 1 5 3];
y = [5 3 5 2 9];
p = x’*y;

This way,x’ is now an× 1 “matrix” andy is 1× n and the two can be multiplied, which is the
same as taking their dot product

∑k=n
k=1 x̄.k/y.k/.

Another common application of this is to applyn× n matrices to vectors. There is a catch though:
In Matlab, vectors are defined as matrices with one row, i.e. as 1× n. If you are used to writing
the matrix product asAx, then you have to transpose the vector. For example:

A = [1 3 2; 3 2 5; 4 6 2]; % define a matrix
x = [2 5 1]; % define a vector
y = A*x; % This is WRONG
y = A*x’; % This is correct

• Array multiplication: This is an alternative way to multiplyarrays:

Cij = Aij Bi j ; ∀i ∈ {1; : : : ; n}; ∀ j ∈ {1; : : : ;m}

This is not the traditional matrix multiplication but it’s something that shows up in many applica-
tions. You can do it in Matlab like this:

C = A.*B;

• Array division: Likewise you can divide arrays in Matlab according to the formula:

Cij = Aij

Bi j
; ∀i ∈ {1; : : : ; n}; ∀ j ∈ {1; : : : ;m}

by using the./ operator like this:

2.5. Matrix/Array Operations 13

C = A./B;

• Matrix division: There are twomatrix divisionoperators in Matlab:/ and\ . In general

X = A\B is a solution toA*X = B
X = B/A is a solution toX*A = B.

This means thatA\B is defined wheneverAhas full row rank and has as many rows asB. Likewise
B/A is defined wheneverA has full column rank and has as many columns asB. If A is a square
matrix then it is factored using Gaussian elimination. Then the equationsA*X(:,j)=B(:,j)
are being solved for every column ofB. The result is a matrix with the same dimensions asB. If A
is not square, it is factored using the Householder orthogonalization with column pivoting. Then
the corresponding equations will be solved in the least squares fit sense. Right divisionB/A in
Matlab is computed in terms of left division byB/A = (A’\B’)’ . For more information type

>> help slash

• Matrix inverse: Usually we are not interested in matrix inverses as much as applying them
directly on vectors. In these cases, it’s best to use the matrix division operators. Nevertheless, you
can obtain the inverse of a matrix if you need it by using theinv function. If A is a matrix then
inv(A) will return it’s inverse. If the matrix is singular or close to singular a warning will be
printed.

• Matrix determinants: Matrix determinants are defined by

det.A/ =
∑
¦∈Sn

{
sign.¦/

n∏
i=1

Ai¦.i/

}

whereSn is the set of permutations of the ordered set.1;2; : : : ; n/, and sign.¦/ is equal to+1
if the permutation is even and−1 if the permutation is odd. Determinants make sense only for
square matrices and can be computed with thedet function:

a = det(A);

• Eigenvalues and singular values:The eigenvalues of a square matrixA are the numbers½ for
which½ I − A is singular. In Matlab you can find the eigenvalues with

E = eig(A)

Perhaps even more important are the singular values and the singular value decomposition of a
matrix A, with A not necessarily square.

[U,S,V] = svd(A)

produces a diagonal matrixS, of the same size asA and with nonnegative diagonal elements in
decreasing order, and unitary matricesU andV such thatA=U*S*V’ (note the transpose sign).
This is the singular value decomposition ofA and the diagonal entries ofS are called the singular
values ofA.

• Matrix exponential function: These are some very fascinating functions. Thematrix exponen-
tial function is defined by

exp.A/ =
+∞∑
k=0

Ak

k!

14 Chapter 2. Scalars, arrays, matrices and strings

where the powerAk is to be evaluated in thematrix productsense. Recall that your ordinary
exponential function is defined by

ex =
+∞∑
k=0

xk

k!

which converges for allx (even when they are complex). It is not that difficult to see that the
corresponding matrix expression also converges, and the result is thematrix exponential. The
matrix exponential can be computed in Matlab with theexpm function. It’s usage is as simple as:

Y = expm(A);

Matrix exponentials show up in the solution of systems of differential equations.

Matlab has aplethoraof commands that do almost anything that you would ever want to do to a
matrix. And we have only discussed a subset of the operations that are permitted with matrices. A list
of matrix commands can be found in Appendix A, Sections A.2, A.4, A.6 and A.8 and A.5.

3

Flow Control

So far, we have spent most of our time discussing the data structures available in Matlab, and how they
can be manipulated, as well as inputted and outputted. Now we continue this discussion by discussing
how Matlab deals withflow control.

3.1 For loops

In Matlab, a for-loop has the following syntax:

for v = matrix
statement1;
statement2;
....

end

The columns ofmatrix are stored one at a time in the variablev , and then the statements up to the
end statement are executed. If you wish to loop over the rows of the matrix then you simply transpose it
and plug it in. It is recommended that the commands between thefor statement and theend statement
are indented by two spaces so that the reader of your code can visually see that these statements are
enclosed in a loop.

In many cases, we use arrays for matrices, and then the for-loop reduces to the usual for-loop we
know in languages like Fortran and C. In particular using expressions of the formfor v=1:10 will
effectively make the loop variable be a scalar that goes from1 to 10 in steps of 1. Using an expression
of the formstart:step:stop will allow you to loop a scalar from valuestart all the way to value
stop with stepsizestep . For instance the Hilbert matrix is defined by the equation:

Aij = 1
i + j + 1

If we didn’t have thehilb command, then we would use for-loops to initialize it, like this:

N = 10;
A = zeros(N,N);
for i = 1:N

for j = 1:N
A(i,j) = 1/(i+j-1);

end
end

15

16 Chapter 3. Flow Control

a == b True whena equalsb
a > b True whena is greater thanb
a < b True whena is smaller thanb
a <= b True whena is smaller or equal tob
a >= b True whena is greater or equal tob
a ˜= b True whena is not equal tob
a & b True when both boolean expressionsa andb are true
a | b True when at least one ofa or b is true.
a xor b True only when only one ofa or b is true.
˜a True whena is false.

Table 3.1: Some boolean expressions in Matlab.

3.2 While loops

In Matlab while loops follow the following format:

while variable
statement1;
statement2;
....
statementn;

end

wherevariable is almost always aboolean expressionof some sort. In Matlab you can compose
boolean expressions as shown in Table 3.1.

Here is an example of a Matlab program that uses the while loop:

n = 1;
while prod(1:n) < 1.e100

n = n + 1;
end
disp(n);

This program will display the first integer for whichn! is a 100-digit number. Theprod function takes
an array (or matrix) as argument and returns the product of it’s elements. In this case,prod(1:n) is
the factorialn!.

Matlab does not have repeat-until loops.

3.3 If and Break statements

The simplest way to set-up anif branch is like this:

if variable
statement1;
....
statementn;

end

3.3. If and Break statements 17

The statements are executed only if the real part of thevariable has all non-zero elements1. Other-
wise, the program continues with executing the statements right after theend statement. The variable
is usually the result of a boolean expression. The most general way to do if-branching is like this:

if variable
statement1;
......
statementn;

elseif variable2
statement21;
......
statement2n;

[....as many elseif statements as you want...]
else

statementm1;
......
statementmn;

end

In this case, ifvariable is true, then the statements right after it will be executed until the firstelse
or elseif (whichever comes first), and then control will be passed over to the statements after theend .
If variable is not true, then we checkvariable2 . Now, if that one is true, we do the statements
following thereafter until the nextelse or elseif and when we get there again we jump toend .
Recursively, upon consecutive failures we check the nextelseif . If all the elseif variables turn out
to be false, then we execute the statements after theelse . Note that theelseif s and/or theelse can
be omitted all together.

Here is a general example that illustrates the last two methods of flow control.

% Classic 3n+1 problem from number theory:
%
while 1

n = input(’Enter n, negative n quits. ’);
if n <= 0

break
end
while n > 1

if rem(n,2) == 0 % if n is even
n = n/2; % then divide by two

else
n = 3*n+1;

end
end

end

This example involves a fascinating problem from number theory. Take any positive integer. If it
is even, divide it by 2; if it is odd, multiply it by 3 and add 1. Repeat this process until your integer
becomes a 1. The fascinating unsolved problem is: Is there any integer for which the process does not
terminate? The conjecture is that such integers do not exist. However nobody has managed to prove it
yet.

Therem command returns the remainder of a Euclidean division of two integers. (in this casen and
2.)

1Note that in the most general case,variable could be a complex number. Theif statement will only look into its real
part.

18 Chapter 3. Flow Control

4

Functions

Matlab has been written so that it can be extended by the users. The simplest way to do that is to write
functions in Matlab code. We will illustrate this with an example: suppose you want to create a
function calledstat which will take an array and return it’s mean and standard deviation. To do that
you must create a file calledstat.m . Then in that file, say the following:

function [mean, stdev] = stat(x)
% stat -- mean and standard deviation of an array
% The stat command returns the mean and standard deviation of
% the elements of an array. Typical syntax is like this:
% [mean,dev] = stat(x);
m=length(x);
mean=sum(x)/m;
y=x-mean;
stdev=sqrt(sum(y.ˆ2)/m);

The first line of the file should have the keywordfunction and then the syntax of the function that is
being implemented. Notice the following things about the function syntax:

• The function name,stat , in the first line is the same as the name of the file,stat.m , but without
the.m .

• Functions can have an arbitrary number of arguments. In this case there is only one such argument:
x . The arguments are being passed byvalue: The variable that the calling code passes to the
function iscopiedand the copy is being given to the function. This means that if the function
internally changes the value of x, the change willnot reflect on the variable that you use as
argument on your main calling code. Only the copy will be changed, and that copy will be
discarded as soon as the function completes it’s call.

• Of course it is not desirable to only pass things by value. The function has to communicate some
information back to the calling code. In Matlab, the variables on the right hand side, listed in
brackets, are returned by the function to the user. This means that any changes made to those
variables while inside the function will reflect on the corresponding variables on the calling code.
So, if one were to call the function with:

a = 1:20;
m = 0;
s = 0;
[m,s] = stat(a);

then the values of the variablesmands would change after the call tostat .

19

20 Chapter 4. Functions

• All other variables used in the function, likey andm, are local variables and are discarded when
the function completes it’s call.

• The lines with a%following the function definition are comments. However, these comments are
what will be spit out if you typehelp stat .

>> help stat
stat -- mean and standard deviation of an array

The stat command returns the mean and standard deviation of
the elements of an array. Typical syntax is like this:
[mean,dev] = stat(x);

>>

You usually want to make the first comment line be a summary of what the function does because
in some instances only the first line will get to be displayed, so it should be complete. Then in the
lines afterwards, you can explain how the function is meant to be used.

A problem with Matlab function definitions is that you are forced to put every function in a separate
file, and are even restricted in what you can call that file. Another thing that could cause you problems
is name collision: What if the name you choose for one of your functions happens to be the name of
an obscure built-in Matlab function? Then, your function will be completely ignored and Matlab will
call up the built-in version instead. To find out if this is the case use thewhich command to see what
Matlab has to say about your function.

Notice that function files and script files both have the.m extension. An m-file that does not begin
with function is considered a script.

Many of the examples we saw earlier would be very useful if they were implemented as functions.
For instance, if you commonly use Matlab to manipulate data that come out in.x; y/ pairs you can make
our earlier example into a function like this:

function [x,y] = load_xy(filename)
% load_xy -- Will allow you to load data stored in (x,y) format
% Usage:
% Load your data by saying
% [x,y] = load_xy(filename)
% where ’filename’ is the name of the file where the data is stored
% and ’x’ and ’y’ are the vectors where you want the data loaded into
fd = fopen(filename);
A = fscanf(fd,’%g %g\n’,[2,inf]);
x = A(1,:);
y = A(2,:);
fclose(fd);

You would have to put this in a file calledload xy.m of course. Suppose that after making some
manipulations you want Matlab to save your data on file again. One way to do it is like this:

function save_xy(filename,x,y)
% save_xy -- Will let your save data in (x,y) format.
% Usage:
% If x and y are vectors of equal length, then save them in (x,y)
% format in a file called ’filename’ by saying
% save_xy(filename,x,y)
fd = fopen(filename,’w’);
A(1,:) = x;
A(2,:) = y;

21

fprintf(fd,’%g %g\n’,A);
fclose(fd);

Notice that it is not necessary to use afor loop to fprintf or fscanf the data one by one. This
is explained in detail in the on-line help pages for these two commands. In many other cases Matlab
provides ways to eliminate the use offor -loops and when you make use of them, your programs will
generally run faster. A typical example isarray promotion. Take a very simple function

function y = f(x)

which takes a numberx and returns another numbery . Typical such functions aresin, cos, tan
and you can always write your own. Now, if instead of a number you plug in an array or a matrix, then
the function will be applied on every element of your array or matrix and an array of the same size will
be returned. This is the reason why you don’t have to specify in the function definition whetherx andy
are simple numbers, or arrays in the first place! To Matlab everything is a matrix as far as functions are
concerned. Ordinary numbers are seen as 1× 1 matrices rather than numbers. You should keep that in
mind when writing functions: sometimes you may want to multiply yourx andy with the .* operator
instead of the* to handle array promotion properly. Likewise with division. Expect to be surprised and
be careful with array promotion.

Let’s look at an example more closely. Suppose you write a function like this:

function x = foo(y,z)
x = y+z;

Then, you can do the following on the Matlab prompt:

>> disp(foo(2,3))
5

>> a = 1:1:10;
>> b = 1:2:20;
>> disp(foo(a,b))

2 5 8 11 14 17 20 23 26 29

What you willnot be allowed to do is this:

>> a = 1:1:10
>> b = 1:1:20
>> disp(foo(a,b))
??? Error using ==> +
Matrix dimensions must agree.

Error in ==> /home/lf/mscc/matlab/notes/foo.m
On line 2 ==> x = y+z;

The argumentsa andb can not be added because they don’t have the same size. Notice by the way that
we used addition as our example on purpose. We challenge you to try* versus.* and see the effects!

One use of functions is to build complex algorithms progressively from simpler ones. Another use
is to automate certain commonly-used tasks as we did in the example of loading and saving.x; y/ pairs.
Functions do not solve all of the worlds problems, but they can help you a lot and you should use them
when you have the feeling that your Matlab program is getting too long and complicated and needs to
be broken down to simpler components.

A good way to learn how to write functions is by copying from existing functions. To see the contents
of an m-file, say,hilb.m , do type hilb .

22 Chapter 4. Functions

>> type hilb

function H = hilb(n)
%HILB Hilbert matrix.
% HILB(N) is the N by N matrix with elements 1/(i+j-1),
% which is a famous example of a badly conditioned matrix.
% See INVHILB for the exact inverse.
%
% This is also a good example of efficient Matlab programming
% style where conventional FOR or DO loops are replaced by
% vectorized statements. This approach is faster, but uses
% more storage.

% C. Moler, 6-22-91.
% Copyright (c) 1984-96 by The MathWorks, Inc.
% $Revision: 5.4 $ $Date: 1996/08/15 21:52:09 $

% I, J and E are matrices whose (i,j)-th element
% is i, j and 1 respectively.

J = 1:n;
J = J(ones(n,1),:);
I = J’;
E = ones(n,n);
H = E./(I+J-1);

To include this code in the file you’re editing you can either cut-and-paste it from the Matlab-window or
you can insert the filehilb.m directly. For the latter you need to locate the file first with the command

>> which hilb

Finally, we urge you to try to keep the function files readable. Functions written today may be
difficult to understand in a few days if the layout and variable names are illogical. For reasons of
readability it is sometimes useful to split commands like

A=myfunction(a,b,c,d,e,f,g,h,i,j,a2,b2,c2,d2,e2,f2,g2,h2,i2,j2)

into several parts. This can be done in Matlab with three or more dots at the end of a line:

A=myfunction(a, b, c, d, e, f, g, h, i, j, ...
a2,b2,c2,d2,e2,f2,g2,h2,i2,j2)

5

Examples

The idiosyncrasies of Matlab are often best clarified by examples. Here are several examples, some of
which you may find useful. For interactive examples usedemo.

2-D plotting and a root-finder. Enter Matlab and type at the prompt:

>> x=linspace(0,20,25);
>> y=sin(x)+exp(-x/10);
>> plot(x,y,’ro’,x,y,’g’);
>> title(’A simple function’);

This makes a plot of sin.x/ + e−x=10 on the interval [0;25]. Try also plot(x,y,’ro’) and
plot(x,y,’g’) . A smoother plot can be made withfplot(’sin(x)+exp(-x/10)’,[0
25]) . From the plot you see that sin.x/+ e−x=10 has a zero nearx= 10. Type

>> hold on;
>> plot(x,zeros(size(x)),’b’);
>> zoom on;

Now you can use the mouse in the figure window to zoom in on this zero. When you grow tired of that,
double click the left mouse button to reset zooming and typezoom off to switch zooming mode off.
As long ashold is on all subsequent plots are added to the existing figure. You want to typehold
off . Matlab has a few functions for minimization and finding zeros of functions. With

>> xz=fzero(’sin(x)+exp(-x/10)’,[9 10])

xz =

9.8091

the zero is located in a flash. Note thatfzero ’s first argument is a string.

3-D plotting. The following is a rather straightforward implementation of a 3-D plot of the function
z.x; y/ := x2− y2.

x=-3:.5:3;
y=-2:.5:2;
[X,Y] = meshgrid(x,y);
Z = X.ˆ2 - Y.ˆ2;
mesh(X,Y,Z);
axis([min(x) max(x) min(y) max(y) min(min(Z))-1 max(max(Z))+1])
xlabel(’x-axis’);
ylabel(’y-axis’);
zlabel(’z-axis’);

23

24 Chapter 5. Examples

3D-plotting and number of function arguments.

function [xx,yy,zz] = torus(r,n,a)
%TORUS Generate a torus
% torus(r,n,a) generates a plot of a torus with central
% radius a and lateral radius r. n controls the number
% of facets on the surface. These input variables are optional
% with defaults r = 0.5, n = 20, a = 1.
%
% [x,y,z] = torus(r,n,a) generates three (n+1)-by-(2n+1)
% matrices so that surf(x,y,z) will produce the torus.
%
% See also SPHERE, CYLINDER

%%% Kermit Sigmon, 11-22-93
if nargin < 3, a = 1; end
if nargin < 2, n = 20; end
if nargin < 1, r = 0.5; end
theta = pi*(0:2*n)/n;
phi = 2*pi*(0:n)’/n;
x = (a + r*cos(phi))*cos(theta);
y = (a + r*cos(phi))*sin(theta);
z = r*sin(phi)*ones(size(theta));
if nargout == 0

surf(x,y,z)
ar = (a + r)/sqrt(2);
axis([-ar,ar,-ar,ar,-ar,ar])

else
xx = x; yy = y; zz = z;

end

This example illustrates that functions need not have a fixed number of input arguments and output
arguments. All of the following are allowed:

[x,y,z]=torus; % construct torus but make no plot
[x,y]=torus; % same as previous, but z is discarded
torus; % make a plot instead
torus(0.6); % make a plot with r=0.6 and default n and a
x=torus(0.7, 25); % etcetera

Type at the prompt

>> torus

and you’ll will be served a colorful 3-D plot of a torus. Properties of the plot may be modified afterwards.
For example, type

>> shading interp
>> colormap(copper)
>> axis off

and the torus will look more and more like a donut.

25

The Routh-Hurwitz test. This is a famous result about stability of polynomials. A polynomial
pnsn+ pn−1sn−1+ · · · + p0 is calledstableif all its zeros have negative real part. Recall that in Matlab
it is customary to represent a polynomial as an array of its coefficients

p = [pn pn−1 · · · p0] :

Now to test if a polynomialp is stable you might be compelled to compute its zeros with

>> roots(p)

A simple glance at its zeros indeed tells ifp is stable or not, but checking stability of polynomials
through computation of its zeros is like killing a bug with a shotgun. About hundred years ago the
mathematicians Routh and Hurwitz devised easier techniques to test for stability of polynomials. In
hindsight their results essentially boil down to the following.

Lemma 5.0.1 (Routh-Hurwitz test). A polynomial pnsn+ pn−1sn−1+ · · · + p0 (with n> 0; pn 6= 0)
is stable if and only if pn and pn−1 are nonzero and have the same sign, and the polynomial

q.s/ := p.s/− pn

pn−1
.pn−1s

n+ pn−3sn−2+ sn−4 pn−5+ · · · /

is stable.

The relevance of this result is thatq has degreen− 1, i.e., 1 less than that opp, and so stability is
quickly established recursively. A Matlab implementation of this idea is:

function stabtrue=rhtest(p)
%RHTEST The Routh-Hurwitz stability test for polynomials.
% Usage: stabtrue=rhtest(p)
% Out: stabtrue=1 if p is a Hurwitz stable polynomial,
% otherwise stabtrue=0.
ind=find(abs(p) > 0);
p(1:ind(1)-1)=[]; % Get rid of leading zeros
degree=length(p)-1;
for n=degree:-1:1 % Reduce the degree to 1

if p(1) == 0 | sign(p(1)) ˜= sign(p(2))
stabtrue=0;
return

end
eta=p(1)/p(2);
q=p;
q(1:2:n)=p(1:2:n)-eta*p(2:2:n+1);
% Now q(1)=0, i.e., q is of degree less than n
q(1)=[]; % Remove q(1) from q
p=q;

end
stabtrue=1;

This function is much faster thanroots , on the negative side, however,rhtest may be ill conditioned
if p has zeros close to the imaginary axis.

26 Chapter 5. Examples

A

Appendix: index of functions, commands and
operations

This appendix contains lists of the functions, commands and operations that come with any distributation
of Matlab. The lists were extracted from the on-line help of Matlab, version 4.2 for Unix. The commands
are grouped by subject.

An installation of Matlab has next to the standard set of functions and such, also severaltoolboxes.
Toolboxes are packages of m-files that concentrate on a particular set of math or engineering problems.
Including all the toolboxes in this appendix would have been too much. Typehelp to see what toolboxes
there are on your machine. The toolboxes that at present can be acquired from The Mathworks1 are listed

Chemometrics Communications
Control System Financial Toolbox
Frequency Domain System IdentificationFuzzy Logic
Higher-Order Spectral Analysis Image Processing
LMI Control Mapping
Model Predictive Control ¼-Analysis and Synthesis
NAG Neural Network
Optimization Partial Differential Equation
QFT Control Design Robust Control
Signal Processing Spline
Statistics System Identification
Symbolic/Extended Symbolic Math Wavelet

Table A.1: The toolboxes.

in Table A.1. The list continues to grow.
Matlab is still very much in development and even if the standard commands listed below are up to

date “now”, they need not be in future releases. This is usually not a big problem but be aware of it and
always consult the on-line help.

A.1 General purpose commands

Extracted fromhelp general .

1Seehttp://www.mathworks.com/

27

28 Appendix A. Appendix: index of functions, commands and operations

MANAGING COMMANDS AND FUNCTIONS

help On-line documentation

doc Load hypertext documentation

what Directory listing of M-, MAT- and MEX-files

type List M-file

lookfor Keyword search through the HELP entries

which Locate functions and files

demo Run demos

path Control MATLAB’s search path

MANAGING VARIABLES AND THE WORKSPACE

who List current variables

whos List current variables, long form

load Retrieve variables from disk

save Save workspace variables to disk

clear Clear variables and functions from memory

pack Consolidate workspace memory

size Size of matrix

length Length of vector

disp Display matrix or text

WORKING WITH FILES AND THE OPERATING SYSTEM

cd Change current working directory

dir Directory listing

delete Delete file

getenv Get environment value

! Execute operating system command

unix Execute operating system command & return result

diary Save text of MATLAB session

CONTROLLING THE COMMAND WINDOW

cedit Set command line edit/recall facility parameters

clc Clear command window

home Send cursor home

format Set output format

echo Echo commands inside script files

more Control paged output in command window

STARTING AND QUITTING FROM MATLAB

quit Terminate MATLAB

startup M-file executed when MATLAB is invoked

matlabrc Master startup M-file

A.2. Operators and special characters 29

GENERAL INFORMATION

info Information about MATLAB and The MathWorks, Inc

subscribe Become subscribing user of MATLAB

hostid MATLAB server host identification number

whatsnew Information about new features not yet documented

ver MATLAB, SIMULINK, and TOOLBOX version information

A.2 Operators and special characters

Extracted fromhelp ops .

OPERATORS AND SPECIAL CHARACTERS

+ Plus seehelp arith

- Minus ”

* Matrix multiplication ”

.* Array multiplication ”

ˆ Matrix power ”

.ˆ Array power ”

\ Backslash or left division seehelp slash

/ Slash or right division ”

./ Array division ”

kron Kronecker tensor product seehelp kron

: Colon seehelp colon

() Parentheses seehelp paren

[] Brackets ”

. Decimal point seehelp punct

.. Parent directory ”

... Continuation ”

, Comma ”

; Semicolon ”

% Comment ”

! Exclamation point ”

’ Transpose and quote ”

= Assignment ”

== Equality seehelp relop

< > Relational operators ”

& Logical AND ”

| Logical OR ”

˜ Logical NOT ”

xor Logical EXCLUSIVE OR seehelp xor

30 Appendix A. Appendix: index of functions, commands and operations

LOGICAL CHARACTERISTICS

exist Check if variables or functions are defined

any True if any element of vector is true

all True if all elements of vector are true

find Find indices of non-zero elements

isnan True for Not-A-Number

isinf True for infinite elements

finite True for finite elements

isempty True for empty matrix

isreal True for real matrix

issparse True for sparse matrix

isstr True for text string

isglobal True for global variables

A.3 Programming language constructs

Extracted fromhelp lang .

MATLAB AS A PROGRAMMING LANGUAGE

script About MATLAB scripts and M-files

function Add new function

eval Execute string with MATLAB expression

feval Execute function specified by string

global Define global variable

nargchk Validate number of input arguments

lasterr Last error message

CONTROL FLOW

if Conditionally execute statements

else Used with IF

elseif Used with IF

end Terminate the scope of FOR, WHILE and IF statements

for Repeat statements a specific number of times

while Repeat statements an indefinite number of times

break Terminate execution of loop

return Return to invoking function

error Display message and abort function

INTERACTIVE INPUT

input Prompt for user input

keyboard Invoke keyboard as if it were a Script-file

menu Generate menu of choices for user input

pause Wait for user response

uimenu Create user interface menu

uicontrol Create user interface control

A.4. Elementary matrices and matrix manipulation 31

DEBUGGING COMMANDS

dbstop Set breakpoint

dbclear Remove breakpoint

dbcont Resume execution

dbdown Change local workspace context

dbstack List who called whom

dbstatus List all breakpoints

dbstep Execute one or more lines

dbtype List M-file with line numbers

dbup Change local workspace context

dbquit Quit debug mode

mexdebug Debug MEX-files

A.4 Elementary matrices and matrix manipulation

Extracted fromhelp elmat .

ELEMENTARY MATRICES

zeros Zeros matrix

ones Ones matrix

eye Identity matrix

rand Uniformly distributed random numbers

randn Normally distributed random numbers

linspace Linearly spaced vector

logspace Logarithmically spaced vector

meshgrid X and Y arrays for 3-D plots

: Regularly spaced vector

SPECIAL VARIABLES AND CONSTANTS

ans Most recent answer

eps Floating point relative accuracy

realmax Largest floating point number

realmin Smallest positive floating point number

pi 3.1415926535897.....

i, j Imaginary unit

inf Infinity

NaN Not-a-Number

flops Count of floating point operations

nargin Number of function input arguments

nargout Number of function output arguments

computer Computer type

isieee True for computers with IEEE arithmetic

isstudent True for the Student Edition

why Succinct answer

version MATLAB version number

32 Appendix A. Appendix: index of functions, commands and operations

TIME AND DATES

clock Wall clock

cputime Elapsed CPU time

date Calendar

etime Elapsed time function

tic, toc Stopwatch timer functions

MATRIX MANIPULATION

diag Create or extract diagonals

fliplr Flip matrix in the left/right direction

flipud Flip matrix in the up/down direction

reshape Change size

rot90 Rotate matrix 90 degrees

tril Extract lower triangular part

triu Extract upper triangular part

: Index into matrix, rearrange matrix

A.5 Specialized matrices

Extracted fromhelp specmat .

SPECIALIZED MATRICES

compan Companion matrix

gallery Several small test matrices

hadamard Hadamard matrix

hankel Hankel matrix

hilb Hilbert matrix

invhilb Inverse Hilbert matrix

kron Kronecker tensor product

magic Magic square

pascal Pascal matrix

rosser Classic symmetric eigenvalue test problem

toeplitz Toeplitz matrix

vander Vandermonde matrix

wilkinson Wilkinson’s eigenvalue test matrix

A.6 Elementary math functions

Extracted fromhelp elfun .

A.6. Elementary math functions 33

TRIGONOMETRIC FUNCTIONS

sin Sine

sinh Hyperbolic sine

asin Inverse sine

asinh Inverse hyperbolic sine

cos Cosine

cosh Hyperbolic cosine

acos Inverse cosine

acosh Inverse hyperbolic cosine

tan Tangent

tanh Hyperbolic tangent

atan Inverse tangent

atan2 Four quadrant inverse tangent

atanh Inverse hyperbolic tangent

sec Secant

sech Hyperbolic secant

asec Inverse secant

asech Inverse hyperbolic secant

csc Cosecant

csch Hyperbolic cosecant

acsc Inverse cosecant

acsch Inverse hyperbolic cosecant

cot Cotangent

coth Hyperbolic cotangent

acot Inverse cotangent

acoth Inverse hyperbolic cotangent

EXPONENTIAL FUCNTIONS

exp Exponential

log Natural logarithm

log10 Common logarithm

sqrt Square root

COMPLEX FUNCTIONS

abs Absolute value

angle Phase angle

conj Complex conjugate

imag Complex imaginary part

real Complex real part

34 Appendix A. Appendix: index of functions, commands and operations

NUMERIC

fix Round towards zero

floor Round towards minus infinity

ceil Round towards plus infinity

round Round towards nearest integer

rem Remainder after division

sign Signum function

A.7 Specialized math functions

Extracted fromhelp specfun .

SPECIALIZED MATH FUNCTIONS

besselj Bessel function of the first kind

bessely Bessel function of the second kind

besseli Modified Bessel function of the first kind

besselk Modified Bessel function of the second kind

beta Beta function

betainc Incomplete beta function

betaln Logarithm of beta function

ellipj Jacobi elliptic functions

ellipke Complete elliptic integral

erf Error function

erfc Complementary error function

erfcx Scaled complementary error function

erfinv Inverse error function

expint Exponential integral function

gamma Gamma function

gcd Greatest common divisor

gammainc Incomplete gamma function

lcm Least common multiple

legendre Associated Legendre function

gammaln Logarithm of gamma function

log2 Dissect floating point numbers

pow2 Scale floating point numbers

rat Rational approximation

rats Rational output

cart2sph Transform from Cartesian to spherical coordinates

cart2pol Transform from Cartesian to polar coordinates

pol2cart Transform from polar to Cartesian coordinates

sph2cart Transform from spherical to Cartesian coordinates

A.8 Matrix functions - numerical linear algebra

Extracted fromhelp matfun .

A.9. Data analysis and Fourier transforms 35

MATRIX ANALYSIS

cond Matrix condition number

norm Matrix or vector norm

rcond LINPACK reciprocal condition estimator

rank Number of linearly independent rows or columns

det Determinant

trace Sum of diagonal elements

null Null space

orth Orthogonalization

rref Reduced row echelon form

LINEAR EQUATIONS

\ and / Linear equation solution; usehelp slash

chol Cholesky factorization

lu Factors from Gaussian elimination

inv Matrix inverse

qr Orthogonal-triangular decomposition

qrdelete Delete a column from the QR factorization

qrinsert Insert a column in the QR factorization

nnls Non-negative least-squares

pinv Pseudoinverse

lscov Least squares in the presence of known covariance

EIGENVALUES AND SINGULAR VALUES

eig Eigenvalues and eigenvectors

poly Characteristic polynomial

polyeig Polynomial eigenvalue problem

hess Hessenberg form

qz Generalized eigenvalues

rsf2csf Real block diagonal form to complex diagonal form

cdf2rdf Complex diagonal form to real block diagonal form

schur Schur decomposition

balance Diagonal scaling to improve eigenvalue accuracy

svd Singular value decomposition

MATRIX FUNCTIONS

expm Matrix exponential

expm1 M-file implementation of expm

expm2 Matrix exponential via Taylor series

expm3 Matrix exponential via eigenvalues and eigenvectors

logm Matrix logarithm

sqrtm Matrix square root

funm Evaluate general matrix function

A.9 Data analysis and Fourier transforms
Extracted fromhelp datafun .

36 Appendix A. Appendix: index of functions, commands and operations

BASIC OPERATIONS

max Largest component

min Smallest component

mean Average or mean value

median Median value

std Standard deviation

sort Sort in ascending order

sum Sum of elements

prod Product of elements

cumsum Cumulative sum of elements

cumprod Cumulative product of elements

trapz Numerical integration using trapezoidal method

FINITE DIFFERENCES

diff Difference function and approximate derivative

gradient Approximate gradient

del2 Five-point discrete Laplacian

VECTOR OPERATIONS

cross Vector cross product

dot Vector dot product

CORRELATION

corrcoef Correlation coefficients

cov Covariance matrix

subspace Angle between subspaces

FILTERING AND CONVOLUTION

filter One-dimensional digital filter

filter2 Two-dimensional digital filter

conv Convolution and polynomial multiplication

conv2 Two-dimensional convolution

deconv Deconvolution and polynomial division

FOURIER TRANSFORMS

fft Discrete Fourier transform

fft2 Two-dimensional discrete Fourier transform

ifft Inverse discrete Fourier transform

ifft2 Two-dimensional inverse discrete Fourier transform

abs Magnitude

angle Phase angle

unwrap Remove phase angle jumps across 360 degree boundaries

fftshift Move zeroth lag to center of spectrum

cplxpair Sort numbers into complex conjugate pairs

nextpow2 Next higher power of 2

A.10. Polynomial and interpolation functions 37

A.10 Polynomial and interpolation functions
Extracted fromhelp polyfun .

POLYNOMIALS

roots Find polynomial roots

poly Construct polynomial with specified roots

polyval Evaluate polynomial

polyvalm Evaluate polynomial with matrix argument

residue Partial-fraction expansion (residues)

polyfit Fit polynomial to data

polyder Differentiate polynomial

conv Multiply polynomials

deconv Divide polynomials

DATA INTERPOLATION

interp1 1-D interpolation (1-D table lookup)

interp2 2-D interpolation (2-D table lookup)

interpft 1-D interpolation using FFT method

griddata Data gridding

SPLINE INTERPOLATION

spline Cubic spline data interpolation

ppval Evaluate piecewise polynomial

A.11 Graphics
Extracted fromhelp plotxy , help plotxyz , help graphics andhelp color .

ELEMENTARY X-Y GRAPHS.

plot Linear plot

loglog Log-log scale plot

semilogx Semi-log scale plot

semilogy Semi-log scale plot

fill Draw filled 2-D polygons

SPECIALIZED X-Y GRAPHS

polar Polar coordinate plot

bar Bar graph

stem Discrete sequence or ”stem” plot

stairs Stairstep plot

errorbar Error bar plot

hist Histogram plot

rose Angle histogram plot

compass Compass plot

feather Feather plot

fplot Plot function

comet Comet-like trajectory

38 Appendix A. Appendix: index of functions, commands and operations

GRAPH ANNOTATION

title Graph title

xlabel X-axis label

ylabel Y-axis label

text Text annotation

gtext Mouse placement of text

grid Grid lines

A.11.1 Three dimensional graphics

LINE AND AREA FILL COMMANDS

plot3 Plot lines and points in 3-D space

fill3 Draw filled 3-D polygons in 3-D space

comet3 3-D comet-like trajectories

CONTOUR AND OTHER2-D PLOTS OF3-D DATA

contour Contour plot

contour3 3-D contour plot

clabel Contour plot elevation labels

contourc Contour plot computation (used by contour)

pcolor Pseudocolor (checkerboard) plot

quiver Quiver plot

SURFACE AND MESH PLOTS

mesh 3-D mesh surface

meshc Combination mesh/contour plot

meshz 3-D Mesh with zero plane

surf 3-D shaded surface

surfc Combination surf/contour plot

surfl 3-D shaded surface with lighting

waterfall Waterfall plot

VOLUME VISUALIZATION

slice Volumetric visualization plots

GRAPH APPEARANCE

view 3-D graph viewpoint specification

viewmtx View transformation matrices

hidden Mesh hidden line removal mode

shading Color shading mode

axis Axis scaling and appearance

caxis Pseudocolor axis scaling

colormap Color look-up table

A.11. Graphics 39

GRAPH ANNOTATION

title Graph title

xlabel X-axis label

ylabel Y-axis label

zlabel Z-axis label for 3-D plots

text Text annotation

gtext Mouse placement of text

grid Grid lines

3-D OBJECTS

cylinder Generate cylinder

sphere Generate sphere

A.11.2 General purpose graphics functions

FIGURE WINDOW CREATION AND CONTROL

figure Create Figure (graph window)

gcf Get handle to current figure

clf Clear current figure

close Close figure

AXIS CREATION AND CONTROL

subplot Create axes in tiled positions

axes Create axes in arbitrary positions

gca Get handle to current axes

cla Clear current axes

axis Control axis scaling and appearance

caxis Control pseudocolor axis scaling

hold Hold current graph

HANDLE GRAPHICS OBJECTS

figure Create figure window

axes Create axes

line Create line

text Create text

patch Create patch

surface Create surface

image Create image

uicontrol Create user interface control

uimenu Create user interface menu

HARDCOPY AND STORAGE

print Print graph or save graph to file

printopt Configure local printer defaults

orient Set paper orientation

capture Screen capture of current figure

40 Appendix A. Appendix: index of functions, commands and operations

MOVIES AND ANIMATION

moviein Initialize movie frame memory

getframe Get movie frame

movie Play recorded movie frames

MISCELLANEOUS

ginput Graphical input from mouse

ishold Return hold state

graymon Set graphics window defaults for gray-scale monitors

rbbox Rubberband box

rotate Rotate an object about a specified direction

terminal Set graphics terminal type

uiputfile Put up dialog box for saving files

uigetfile Put up dialog box which queries for file names

whitebg Set graphics window defaults for white background

zoom Zoom in and out on a 2-D plot

waitforbuttonpress Wait for key/buttonpress over figure

A.11.3 Color control and lighting model functions

COLOR CONTROLS

colormap Color look-up table

caxis Pseudocolor axis scaling

shading Color shading mode

COLOR MAPS

hsv Hue-saturation-value color map

gray Linear gray-scale color map

hot Black-red-yellow-white color map

cool Shades of cyan and magenta color map

bone Gray-scale with a tinge of blue color map

copper Linear copper-tone color map

pink Pastel shades of pink color map

prism Prism color map

jet A variant of HSV

flag Alternating red, white, blue, and black color map

COLOR MAP RELATED FUNCTIONS

colorbar Display color bar (color scale)

hsv2rgb Hue-saturation-value to red-green-blue conversion

rgb2hsv Red-green-blue to hue-saturation-value conversion

contrast Gray scale color map to enhance image contrast

brighten Brighten or darken color map

spinmap Spin color map

rgbplot Plot color map

A.12. Sound processing functions 41

LIGHTING MODELS

surfl 3-D shaded surface with lighting

specular Specular reflectance

diffuse Diffuse reflectance

surfnorm Surface normals

A.12 Sound processing functions

Extracted fromhelp sounds .

GENERAL SOUND FUNCTIONS

sound Convert vector into sound

saxis Sound axis scaling

COMPUTER-SPECIFIC SOUND FUNCTIONS

auwrite Write mu-law encloded audio file

auread Read mu-law encloded audio file

wavwrite Write MS Windows .WAV audio file

wavread Read MS Windows .WAV audio file

mu2lin Mu-law to linear conversion

lin2mu Linear to mu-law conversion

A.13 Character string functions

Extracted fromhelp strfun .

GENERAL

strings About character strings in MATLAB

abs Convert string to numeric values

setstr Convert numeric values to string

isstr True for string

blanks String of blanks

deblank Remove trailing blanks

str2mat Form text matrix from individual strings

eval Execute string with MATLAB expression

STRING COMPARISON

strcmp Compare strings

findstr Find one string within another

upper Convert string to uppercase

lower Convert string to lowercase

isletter True for letters of the alphabet

isspace True for white space characters

strrep Replace a string with another

strtok Find a token in a string

42 Appendix A. Appendix: index of functions, commands and operations

STRING TO NUMBER CONVERSION

num2str Convert number to string

int2str Convert integer to string

str2num Convert string to number

mat2str Convert matrix to string

sprintf Convert number to string under format control

sscanf Convert string to number under format control

HEXADECIMAL TO NUMBER CONVERSION

hex2num Convert hex string to IEEE floating point number

hex2dec Convert hex string to decimal integer

dec2hex Convert decimal integer to hex string

A.14 Low-level file I/O functions
Extracted fromhelp iofun .

FILE OPENING AND CLOSING

fopen Open file

fclose Close file

UNFORMATTED I/O

fread Read binary data from file

fwrite Write binary data to file

FORMATTED I/O

fscanf Read formatted data from file

fprintf Write formatted data to file

fgetl Read line from file, discard newline character

fgets Read line from file, keep newline character

FILE POSITIONING

ferror Inquire file I/O error status

feof Test for end-of-file

fseek Set file position indicator

ftell Get file position indicator

frewind Rewind file

STRING CONVERSION

sprintf Write formatted data to string

sscanf Read string under format control

WK1 FORMAT

wk1const WK1 record definitions

wk1read Read WK1 file/range

wk1write Write out matrix in a WK1 formatted file

wk1wrec Write a WK1 record header

A.14. Low-level file I/O functions 43

CSV FORMAT

csvread Read Comma Separated Value formatted file into a matrix

csvwrite Write out matrix in a CSV formatted file

ASCII DELIMITED FORMAT

dlmread Read ASCII delimited file into a matrix

dlmwrite Write out matrix in ASCII delimited file format

44 Appendix A. Appendix: index of functions, commands and operations

Bibliography

[1] E. Gkioulekas. Programming with matlab. Tutorial, available at
http://www.amath.washington.edu/˜elf/tutorials/ , 1996.

[2] Tim Love. Using matlab 4. available athttp://www.math.washington.edu/˜burke/crs/515/ ,
1996.

[3] The MathWorks Inc.The Student Edition of MATLAB. Prentice Hall, Englewood Cliffs, NJ, 1992.

[4] K. Sigmon. Matlab primer. available atftp://ftp.math.ufl.edu/pub/matlab/ , 1993.

45

