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A Taxonomy of Systems

Consider a simple problem in robotics, i.e. control of the position of a

robot arm using a motor located at the arm joint.
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A Taxonomy of Systems

Consider a simple problem in robotics, i.e. control of the position of a

robot arm using a motor located at the arm joint.
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Mathematically, this system is nothing else than a pendulum controlled

by torque.
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A Taxonomy of Systems

Assume:

friction at the joint is negligible,

the arm is rigid, and

all the mass of the arm is concentrated on its free end,

then angle with respect to the vertical θ is given by the differential

equation

ml2θ̈(t) + mgl sin θ(t) = u(t) .
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A Taxonomy of Systems

The single robot arm model given by the differential equation

ml2θ̈(t) + mgl sin θ(t) = u(t) .

is an example of a system that is:

dynamic

causal

finite-dimensional

continuous-time

nonlinear

time-invariant

Lecture 2: Mathematical Description of Systems – p. 5/33



The University of Newcastle

A Taxonomy of Systems

Dynamic /Static?

Dynamic means that the variables θ and θ̇ ´ dθ(t)/dt , which define

the state of the arm at a given instant of time t , have a non

instantaneous dependency on the control torque u. A dynamic system

is said to possess memory, i.e. it output depends also on previous

inputs.
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A Taxonomy of Systems

Dynamic /Static?

Dynamic means that the variables θ and θ̇ ´ dθ(t)/dt , which define

the state of the arm at a given instant of time t , have a non

instantaneous dependency on the control torque u. A dynamic system

is said to possess memory, i.e. it output depends also on previous

inputs.

A system that is not dynamic is called static. In a static system the

output has an instantaneous dependency on the evolution of the input.

Static systems are also called memoryless.
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A Taxonomy of Systems

Causal?

Causal means that the output of the system at a given instant of time

only depends on present and past values of the input, and not on

future values.
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A Taxonomy of Systems

Causal?

Causal means that the output of the system at a given instant of time

only depends on present and past values of the input, and not on

future values.

In a causal system the output cannot anticipate or predict future values

of the input.
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only depends on present and past values of the input, and not on

future values.

In a causal system the output cannot anticipate or predict future values

of the input.

All real physical systems are causal.
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A Taxonomy of Systems

Causal?

Causal means that the output of the system at a given instant of time

only depends on present and past values of the input, and not on

future values.

In a causal system the output cannot anticipate or predict future values

of the input.

All real physical systems are causal.

The current output of a causal dynamic system always depends on

past values of the input. But how far back in time do these past values

still have an effect on the output?
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A Taxonomy of Systems

Causal?

Causal means that the output of the system at a given instant of time

only depends on present and past values of the input, and not on

future values.

In a causal system the output cannot anticipate or predict future values

of the input.

All real physical systems are causal.

The current output of a causal dynamic system always depends on

past values of the input. But how far back in time do these past values

still have an effect on the output?

Strictly, we would need to go back in time up to t = −∞, which is

not very practical. This difficulty is resolved with the concept of

state.
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A Taxonomy of Systems

State?

The state x(t0) of a system at the time instant t0 is the information that

together with the input u(t) for t ≥ t0 univocally determines the output

y(t) for all t ≥ t0.

Lecture 2: Mathematical Description of Systems – p. 8/33



The University of Newcastle

A Taxonomy of Systems

State?

The state x(t0) of a system at the time instant t0 is the information that

together with the input u(t) for t ≥ t0 univocally determines the output

y(t) for all t ≥ t0.

The state x(t0) summarises all the system history from t = −∞ to t0,

e.g. with the knowledge of the angle θ and the angular velocity θ̇ at

time t0, we can predict the response of the robot arm to torque inputs

u for all time t ≥ t0.
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A Taxonomy of Systems

State?

The state x(t0) of a system at the time instant t0 is the information that

together with the input u(t) for t ≥ t0 univocally determines the output

y(t) for all t ≥ t0.

The state x(t0) summarises all the system history from t = −∞ to t0,

e.g. with the knowledge of the angle θ and the angular velocity θ̇ at

time t0, we can predict the response of the robot arm to torque inputs

u for all time t ≥ t0.

The input at t ≥ t0 and the initial conditions x(t0) determine the

evolution of the system for t ≥ t0, which we could represent as

y(t), t ≥ t0 ⇚













x(t0)

u(t), t ≥ t0
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A Taxonomy of Systems

Finite-dimensional?

Means that the state x(t) at any given instant of time t can be

completely characterised by a finite number of parameters.
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A Taxonomy of Systems

Finite-dimensional?

Means that the state x(t) at any given instant of time t can be

completely characterised by a finite number of parameters.

In the case of the robot arm, two parameters: angle θ and angular

velocity θ̇.
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A Taxonomy of Systems

Continuous-time?

Means that the independent variable, time t , takes values in a

continuum, the set of real numbers R.
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A Taxonomy of Systems

Continuous-time?

Means that the independent variable, time t , takes values in a

continuum, the set of real numbers R.

In contrast, a system defined by a difference equation, like

x[k + 1] = Ax[k ] + Bu[x] ,

the independent variable k can, for example, take values only in the

set of integers N, k = · · · − 1, 0, 1, 2 . . . .
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Linear Systems

A system is said to be linear if it satisfies the superposition principle,

that is, if given two pairs of initial conditions and inputs,

yi(t), t ≥ t0 ⇚













xi(t0)

ui(t), t ≥ t0
for i = 1, 2 ,
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Linear Systems

A system is said to be linear if it satisfies the superposition principle,

that is, if given two pairs of initial conditions and inputs,

yi(t), t ≥ t0 ⇚













xi(t0)

ui(t), t ≥ t0
for i = 1, 2 ,

then we have that

y1(t) + y2(t), t ≥ t0 ⇚













x1(t0) + x2(t0)

u1(t) + u2(t), t ≥ t0
(additivity)

αyi(t), t ≥ t0 ⇚













αxi(t0)

αui(t), t ≥ t0
α ∈ R (homogeneity)
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Linear Systems

The combination of the properties of additivity and that of

homogeneity yields the property of superposition.
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Linear Systems

The combination of the properties of additivity and that of

homogeneity yields the property of superposition.

A system that does not satisfy the property of superposition is

nonlinear.
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Linear Systems

The combination of the properties of additivity and that of

homogeneity yields the property of superposition.

A system that does not satisfy the property of superposition is

nonlinear.

By the property of additivity we can consider the response of the

system to initial conditions independently from that due to inputs.

y(t) = yl(t) + yf (t), t ≥ t0 ⇚



























yl(t), t ≥ t0 ⇚













x(t0)

u(t) = 0, t ≥ t0

yf (t), t ≥ t0 ⇚













x(t0) = 0

u(t), t ≥ t0
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Linear Systems

The response of a linear system is the superposition of its

free response (that to initial conditions only, without external

input) and its forced response (that to an external input, with

zero initial conditions).
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Linear Time-Invariant Systems

A system is time-invariant if for each pair of initial conditions and inputs

y(t), t ≥ t0 ⇚













x(t0)

u(t), t ≥ t0

and each T ∈ R, we have that

y(t − T ), t ≥ t0 + T ⇚













x(t0 + T )

u(t − T ), t ≥ t0 + T .
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Linear Time-Invariant Systems

A system is time-invariant if for each pair of initial conditions and inputs

y(t), t ≥ t0 ⇚













x(t0)

u(t), t ≥ t0

and each T ∈ R, we have that

y(t − T ), t ≥ t0 + T ⇚













x(t0 + T )

u(t − T ), t ≥ t0 + T .

In other words, the system gives the same response, but shifted in

time, that if we apply to it the same input shifted in time, while keeping

the same initial conditions.
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Linear Time-Invariant Systems

A system is time-invariant if for each pair of initial conditions and inputs

y(t), t ≥ t0 ⇚













x(t0)

u(t), t ≥ t0

and each T ∈ R, we have that

y(t − T ), t ≥ t0 + T ⇚













x(t0 + T )

u(t − T ), t ≥ t0 + T .

In other words, the system gives the same response, but shifted in

time, that if we apply to it the same input shifted in time, while keeping

the same initial conditions.

A system without this property is called time-varying.
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Linear Time-Invariant Systems

Input-Output Representation

From the superposition principle, we can obtain the representation of a

linear system by the convolution integral

y(t) =
∫ ∞

−∞

g(t , τ)u(τ) dτ , (1)

where g(t , τ) is the impulse response of the system, that is, the output

produced by a unitary impulse δ(t) applied at the input at the time

instant τ.
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Linear Time-Invariant Systems

Input-Output Representation

From the superposition principle, we can obtain the representation of a

linear system by the convolution integral

y(t) =
∫ ∞

−∞

g(t , τ)u(τ) dτ , (2)

where g(t , τ) is the impulse response of the system, that is, the output

produced by a unitary impulse δ(t) applied at the input at the time

instant τ.

Causality implies that

causality⇔ g(t , τ) = 0 for t < τ,

and on assuming zero initial conditions, Equation (1) then yields

y(t) =
∫ t

t0

g(t , τ)u(τ) dτ .
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Linear Time-Invariant Systems

Input-Output Representation

When the system has p inputs and q outputs, then we use the impulse

response matrix G(t , τ) ∈ Rq×p .
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Linear Time-Invariant Systems

Input-Output Representation

When the system has p inputs and q outputs, then we use the impulse

response matrix G(t , τ) ∈ Rq×p .

If the system is time-invariant, then for any T we have that

g(t , τ) = g(t + T , τ + T ) = g(t − τ, 0) ,

and we can redefine g(t − τ, 0) simply as g(t − τ). Thus the

input-output representation of the system reduces to

y(t) =
∫ t

0
g(t − τ)u(τ) dτ =

∫ t

0
g(τ)u(t − τ) dτ .
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Linear Time-Invariant Systems

Input-Output Representation

When the system has p inputs and q outputs, then we use the impulse

response matrix G(t , τ) ∈ Rq×p .

If the system is time-invariant, then for any T we have that

g(t , τ) = g(t + T , τ + T ) = g(t − τ, 0) ,

and we can redefine g(t − τ, 0) simply as g(t − τ). Thus the

input-output representation of the system reduces to

y(t) =
∫ t

0
g(t − τ)u(τ) dτ =

∫ t

0
g(τ)u(t − τ) dτ .

The condition of causality for a linear time-invariant system can be

alternatively stated as g(t) = 0 for t < 0.
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Linear Time-Invariant Systems

State Space Representation

Every linear finite-dimensional system can be described by state

space equations

ẋ(t) = A (t)x(t) + B(t)u(t)

y(t) = C(t)x(t) + D(t)u(t) .
(3)
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Linear Time-Invariant Systems

State Space Representation

Every linear finite-dimensional system can be described by state

space equations

ẋ(t) = A (t)x(t) + B(t)u(t)

y(t) = C(t)x(t) + D(t)u(t) .
(4)

For a system with order n, the state vector is a vector of dimensions

n × 1, that is, it stacks n state variables, x(t) ∈ Rn, for every t . If the

system has p inputs and q outputs, then u(t) ∈ Rp and y(t) ∈ Rq.
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Linear Time-Invariant Systems

State Space Representation

Every linear finite-dimensional system can be described by state

space equations

ẋ(t) = A (t)x(t) + B(t)u(t)

y(t) = C(t)x(t) + D(t)u(t) .
(5)

For a system with order n, the state vector is a vector of dimensions

n × 1, that is, it stacks n state variables, x(t) ∈ Rn, for every t . If the

system has p inputs and q outputs, then u(t) ∈ Rp and y(t) ∈ Rq.

The matrices A , B , C , D are usually called

A ∈ Rn×n : evolution matrix

B ∈ Rn×p : input matrix

C ∈ Rq×n : output matrix

D ∈ Rq×p : direct feedthrough matrix
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Linear Time-Invariant Systems

State Space Representation

When, in addition, the system is time-invariant, then the state space

representation (3) reduces to

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t) .
(6)
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Linear Time-Invariant Systems

State Space Representation

When, in addition, the system is time-invariant, then the state space

representation (3) reduces to

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t) .
(8)

By applying the Laplace transform to (6) we obtain

sx̂(s) − x(0) = Ax̂(s) + Bû(s)

ŷ(s) = Cx̂(s) + Dû(s) ,

from which follow

x̂(s) = (sI − A )−1x(0) + (sI − A )−1Bû(s)

ŷ(s) = C(sI − A )−1x(0) + [C(sI − A )−1B + D]û(s) .
(9)

Lecture 2: Mathematical Description of Systems – p. 18/33



The University of Newcastle

Linear Time-Invariant Systems

State Space Representation

The algebraic equations (7) allow us to compute x̂(s) and ŷ(s) from

x(0) and û(s). Then the inverse Laplace transform will give x(t) and

y(t). By letting x(0) = 0 we see that the transfer function of the system

is

Ĝ(s) = C(sI − A )−1B + D
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Linear Time-Invariant Systems

State Space Representation

The algebraic equations (7) allow us to compute x̂(s) and ŷ(s) from

x(0) and û(s). Then the inverse Laplace transform will give x(t) and

y(t). By letting x(0) = 0 we see that the transfer function of the system

is

Ĝ(s) = C(sI − A )−1B + D

In MATLAB the functions tf2ss and ss2tf allow us to convert from

and to one representation to the other.
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Linear Time-Invariant Systems

State Space Representation

The algebraic equations (7) allow us to compute x̂(s) and ŷ(s) from

x(0) and û(s). Then the inverse Laplace transform will give x(t) and

y(t). By letting x(0) = 0 we see that the transfer function of the system

is

Ĝ(s) = C(sI − A )−1B + D

In MATLAB the functions tf2ss and ss2tf allow us to convert from

and to one representation to the other.

See also the functions ss,tf,ssdata and tfdata, for system

representations in MATLAB.
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Linearisation

Most physical systems are nonlinear. An important class of them can

be represented by state space equations in the form

ẋ(t) = f (x(t), u(t), x(t0), t) , x(t0) = x0

y(t) = h(x(t), u(t), x(t0), t) ,
(10)

where f and h are nonlinear vector fields, that is, in scalar terms, the

i-component of ẋ(t) in (10) is written as

ẋi(t) = fi(x1(t), . . . , xn(t); u1(t), . . . , um(t); x1(t0), . . . , xn(t0); t) xi(t0) = xi0 .
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Linearisation

Most physical systems are nonlinear. An important class of them can

be represented by state space equations in the form

ẋ(t) = f (x(t), u(t), x(t0), t) , x(t0) = x0

y(t) = h(x(t), u(t), x(t0), t) ,
(11)

where f and h are nonlinear vector fields, that is, in scalar terms, the

i-component of ẋ(t) in (10) is written as

ẋi(t) = fi(x1(t), . . . , xn(t); u1(t), . . . , um(t); x1(t0), . . . , xn(t0); t) xi(t0) = xi0 .

A linear state space equation is a useful tool to describe systems like

(10) in an approximate way.
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Linearisation

Most physical systems are nonlinear. An important class of them can

be represented by state space equations in the form

ẋ(t) = f (x(t), u(t), x(t0), t) , x(t0) = x0

y(t) = h(x(t), u(t), x(t0), t) ,
(12)

where f and h are nonlinear vector fields, that is, in scalar terms, the

i-component of ẋ(t) in (10) is written as

ẋi(t) = fi(x1(t), . . . , xn(t); u1(t), . . . , um(t); x1(t0), . . . , xn(t0); t) xi(t0) = xi0 .

A linear state space equation is a useful tool to describe systems like

(10) in an approximate way.

The process of obtaining a linear model from a nonlinear one is called

linearisation.
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Linearisation

The linearisation is performed around a nominal point or trajectory,

defined by nominal values x̃(t), x̃0 and ũ(t) that satisfy (10),

x̃(t), t ≥ t0 ⇚













x̃(t0)

ũ(t), t ≥ t0
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Linearisation

The linearisation is performed around a nominal point or trajectory,

defined by nominal values x̃(t), x̃0 and ũ(t) that satisfy (10),

x̃(t), t ≥ t0 ⇚













x̃(t0)

ũ(t), t ≥ t0

We are interested in the behaviour of the nonlinear differential

equation (10) for an input and initial state which are “close” to the

nominal values, that is, u(t) = ũ(t) + uδ(t) and x0 = x̃0 + x0δ for uδ(t)
and x0δ sufficiently small for all t ≥ t0.
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Linearisation

The linearisation is performed around a nominal point or trajectory,

defined by nominal values x̃(t), x̃0 and ũ(t) that satisfy (10),

x̃(t), t ≥ t0 ⇚













x̃(t0)

ũ(t), t ≥ t0

We are interested in the behaviour of the nonlinear differential

equation (10) for an input and initial state which are “close” to the

nominal values, that is, u(t) = ũ(t) + uδ(t) and x0 = x̃0 + x0δ for uδ(t)
and x0δ sufficiently small for all t ≥ t0.

x0

x̃0

x(t)

x̃(t)

xδ (t)
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Linearisation

Suppose that the solution stays close to the nominal trajectory, and

write x(t) = x̃(t) + xδ(t) for each t ≥ t0.
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Linearisation

Suppose that the solution stays close to the nominal trajectory, and

write x(t) = x̃(t) + xδ(t) for each t ≥ t0.

In terms of the nonlinear state space equation (10) we have

˙̃x(t)+ ˙̃xδ(t) = f (x̃(t)+xδ(t), ũ(t)+uδ(t), t), x̃(t0)+xδ(t0) = x̃0+x0δ (15)
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write x(t) = x̃(t) + xδ(t) for each t ≥ t0.

In terms of the nonlinear state space equation (10) we have

˙̃x(t)+ ˙̃xδ(t) = f (x̃(t)+xδ(t), ũ(t)+uδ(t), t), x̃(t0)+xδ(t0) = x̃0+x0δ (17)

Assuming differentiability, we can expand the right hand side of (13) in

Taylor series around x̃(t) and ũ(t), keeping only the first order terms.

Note that the expansion is performed in terms of x and u, and not for

the independent variable t .
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Linearisation

Suppose that the solution stays close to the nominal trajectory, and

write x(t) = x̃(t) + xδ(t) for each t ≥ t0.

In terms of the nonlinear state space equation (10) we have

˙̃x(t)+ ˙̃xδ(t) = f (x̃(t)+xδ(t), ũ(t)+uδ(t), t), x̃(t0)+xδ(t0) = x̃0+x0δ (19)

Assuming differentiability, we can expand the right hand side of (13) in

Taylor series around x̃(t) and ũ(t), keeping only the first order terms.

Note that the expansion is performed in terms of x and u, and not for

the independent variable t .

We make the operation more explicit for the i-component, which yields

fi(x̃ + xδ, ũ + uδ, t) ≈ fi(x̃, ũ, t) +
∂fi
∂x1

(x̃, ũ, t)xδ1 + · · · +
∂fi
∂xn

(x̃, ũ, t)xδn

+

∂fi
∂u1

(x̃, ũ, t)uδ1 + · · · +
∂fi
∂um

(x̃, ũ, t)uδm (20)
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Linearisation

By repeating this operation for each i = 1, . . . , n, and returning to the

vectorial notation, we have

˙̃x(t) + ˙̃xδ(t) ≈ f (x̃(t), ũ(t)) +
∂f

∂x
(x̃, ũ, t)xδ +

∂f

∂u
(x̃, ũ, t)uδ

where ∂f
∂x represents the Jacobian, or Jacobian Matrix, of the vector

field f with respect to x,

∂f

∂x
,

































∂f1
∂x1

∂f1
∂x2

. . .
∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

. . .
∂f2
∂xn

. . . . . . . . . . . .

∂fn
∂x1

∂fn
∂x2

. . .
∂fn
∂xn
































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Linearisation

Since ˙̃x(t) = f (x̃(t), ũ(t), t) , x̃(t0) = x̃0 , the relation between xδ(t)
and uδ(t) (the incremental model) is approximately described by a

linear, time-varying state equation of the form

ẋδ(t) = A (t)xδ(t) + B(t)uδ(t), xδ(t0) = x0 − x̃0

where

A (t) =
∂f

∂x
(x̃(t), ũ(t), t) , B(t) =

∂f

∂u
(x̃(t), ũ(t), t) .
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Linearisation

Since ˙̃x(t) = f (x̃(t), ũ(t), t) , x̃(t0) = x̃0 , the relation between xδ(t)
and uδ(t) (the incremental model) is approximately described by a

linear, time-varying state equation of the form

ẋδ(t) = A (t)xδ(t) + B(t)uδ(t), xδ(t0) = x0 − x̃0

where

A (t) =
∂f

∂x
(x̃(t), ũ(t), t) , B(t) =

∂f

∂u
(x̃(t), ũ(t), t) .

In the same way we can expand the output equation

y(t) = h(x(t), u(t), t), from which we obtain the linear approximation

yδ(t) = C(t)xδ(t) + D(t)uδ(t),

where yδ(t) = y(t) − ỹ(t), with ỹ(t) = h(x̃(t), ũ(t), t) and

C(t) =
∂h

∂x
(x̃(t), ũ(t), t) , D(t) =

∂h

∂u
(x̃(t), ũ(t), t) .
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Linearisation

Note that the state equations obtained by linearisation will in

general be time-varying, even when the original vector fields

f and h were time-invariant, because the Jacobian matrices

are evaluated along trajectories, and not stationary points.
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Discrete-Time Systems

Most of the state space concepts for linear continuous-time systems

can be directly translated to discrete-time systems, described by linear

difference equations. In this case the time variable t only takes values

on a denumerable set, like the integers.
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Discrete-Time Systems

Most of the state space concepts for linear continuous-time systems

can be directly translated to discrete-time systems, described by linear

difference equations. In this case the time variable t only takes values

on a denumerable set, like the integers.

When the discrete-time system is obtained from sampling a

continuous-time system, we will only consider regular sampling, where

t = kT , k = 0, 1, 2, . . . , and T is the sampling period. In this case we

denote the discrete-time variables (sequences) as u[k ] , u(kT ), etc.
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Most of the state space concepts for linear continuous-time systems

can be directly translated to discrete-time systems, described by linear

difference equations. In this case the time variable t only takes values

on a denumerable set, like the integers.

When the discrete-time system is obtained from sampling a

continuous-time system, we will only consider regular sampling, where

t = kT , k = 0, 1, 2, . . . , and T is the sampling period. In this case we

denote the discrete-time variables (sequences) as u[k ] , u(kT ), etc.

The concepts of finite dimensionality, causality, linearity and the

superposition principle for responses to initial conditions and inputs

are exactly the same as those in the continuous-time case.
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Discrete-Time Systems

Most of the state space concepts for linear continuous-time systems

can be directly translated to discrete-time systems, described by linear

difference equations. In this case the time variable t only takes values

on a denumerable set, like the integers.

When the discrete-time system is obtained from sampling a

continuous-time system, we will only consider regular sampling, where

t = kT , k = 0, 1, 2, . . . , and T is the sampling period. In this case we

denote the discrete-time variables (sequences) as u[k ] , u(kT ), etc.

The concepts of finite dimensionality, causality, linearity and the

superposition principle for responses to initial conditions and inputs

are exactly the same as those in the continuous-time case.

One difference though: pure delays in discrete-time do not give rise to

an infinite-dimensional system, as is the case of continuous-time

systems, if the delay is a multiple of the sampling period T .
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Discrete-Time Systems

Input-Output Representation

We define the impulse sequence δ[k ] as

δ[k − m] =













1 if k = m

0 if k , m

where k and m are integers.
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Discrete-Time Systems

Input-Output Representation

We define the impulse sequence δ[k ] as

δ[k − m] =













1 if k = m

0 if k , m

where k and m are integers.

Note how in the discrete-time case impulses are easy to implement

physically, in contrast to the continuous-time case.
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Discrete-Time Systems

Input-Output Representation

We define the impulse sequence δ[k ] as

δ[k − m] =













1 if k = m

0 if k , m

where k and m are integers.

Note how in the discrete-time case impulses are easy to implement

physically, in contrast to the continuous-time case.

In a discrete-time linear system every input sequence u[k ] can be

represented by means of the series

u[k ] =
∞
∑

m=−∞

u[m]δ[k − m] .
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Discrete-Time Systems

Input-Output Representation

If g[k , m] denotes the output of a discrete time system to an impulse

sequence applied at the instant m, then we have that

δ[k − m] → g[k , m]

δ[k , m]u[m] → g[k , m]u[m] (by homogeneity)
∑

m

δ[k , m]u[m] →
∑

m

g[k , m]u[m] (by additivity) .
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Discrete-Time Systems

Input-Output Representation

If g[k , m] denotes the output of a discrete time system to an impulse

sequence applied at the instant m, then we have that

δ[k − m] → g[k , m]

δ[k , m]u[m] → g[k , m]u[m] (by homogeneity)
∑

m

δ[k , m]u[m] →
∑

m

g[k , m]u[m] (by additivity) .

Thus the output y[k ] obtained from the input u[k ] can be written by

means of the series

y[k ] =
∞
∑

m=−∞

g[k , m]u[m] . (22)
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Discrete-Time Systems

Input-Output Representation

If the system is causal there wouldn’t be output signal before the input

is applied, hence

causality⇔ g[k , m] = 0 for k < m.
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Discrete-Time Systems

Input-Output Representation

If the system is causal there wouldn’t be output signal before the input

is applied, hence

causality⇔ g[k , m] = 0 for k < m.

For causal discrete-time systems the representation (21) reduces to

y[k ] =
k
∑

m=k0

g[k , m]u[m] ,

and, if in addition we have time-invariance, the property of invariance

with respect to shifts in time holds, and thus we arrive to the system

representation by the discrete convolution

y[k ] =
k
∑

m=0

g[k − m]u[m] =
k
∑

m=0

g[m]u[k − m] .
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Discrete-Time Systems

State Space Representation

Every discrete-time, finite dimensional, linear system can be

represented by state space difference equations, as in

x[k + 1] = A [k ]x[k ] + B[k ]u[k ]

y[k ] = C[k ]x[k ] + D[k ]u[k ] ,

and in the time-invariant case

x[k + 1] = Ax[k ] + Bu[k ]

y[k ] = Cx[k ] + Du[k ] .
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Discrete-Time Systems

State Space Representation

In this case, it corresponds to talk about discrete transfer functions,

Ĝ(z) = Z[g[k ]]. The relation between discrete transfer function

representation and state space representation is identical to the

continuous-time case,

Ĝ(z) = C(zI − A )−1B + D ,

and the same MATLAB functions can be used.
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A Few General Facts to Remember

A transfer matrix is rational if and only if the corresponding system is

linear, time-invariant and finite-dimensional.
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A Few General Facts to Remember

A transfer matrix is rational if and only if the corresponding system is

linear, time-invariant and finite-dimensional.

Input-output representations usually assume zero initial conditions.
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A Few General Facts to Remember

A transfer matrix is rational if and only if the corresponding system is

linear, time-invariant and finite-dimensional.

Input-output representations usually assume zero initial conditions.

Infinite-dimensional systems cannot be represented by state space

equations (they would require an infinite number of them).
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equations (they would require an infinite number of them).

By linearisation, one can describe the behaviour of a nonlinear system

approximately by means of an incremental linear state space model.
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Input-output representations usually assume zero initial conditions.

Infinite-dimensional systems cannot be represented by state space

equations (they would require an infinite number of them).

By linearisation, one can describe the behaviour of a nonlinear system

approximately by means of an incremental linear state space model.

Linearisation is performed around a known nominal trajectory, and the

incremental models obtained will, in general, be time-varying.
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A Few General Facts to Remember

A transfer matrix is rational if and only if the corresponding system is

linear, time-invariant and finite-dimensional.

Input-output representations usually assume zero initial conditions.

Infinite-dimensional systems cannot be represented by state space

equations (they would require an infinite number of them).

By linearisation, one can describe the behaviour of a nonlinear system

approximately by means of an incremental linear state space model.

Linearisation is performed around a known nominal trajectory, and the

incremental models obtained will, in general, be time-varying.

Discrete-time systems have representations equivalent to those of

continuous-time systems by convolution series, transfer functions in

the discreteZ transform, and state space difference equations.

Lecture 2: Mathematical Description of Systems – p. 32/33



The University of Newcastle

A Few General Facts to Remember

A transfer matrix is rational if and only if the corresponding system is

linear, time-invariant and finite-dimensional.

Input-output representations usually assume zero initial conditions.

Infinite-dimensional systems cannot be represented by state space

equations (they would require an infinite number of them).

By linearisation, one can describe the behaviour of a nonlinear system

approximately by means of an incremental linear state space model.

Linearisation is performed around a known nominal trajectory, and the

incremental models obtained will, in general, be time-varying.

Discrete-time systems have representations equivalent to those of

continuous-time systems by convolution series, transfer functions in

the discreteZ transform, and state space difference equations.

In contrast to the continuous time case, pure delays do not necessarily

give rise to an infinite-dimensional discrete-time system.
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A Few General Facts to Remember

Type of system Internal representation External representation

infinite dim. linear y(t) =
∫ t

t0
G(t , τ)u(τ)dτ

finite dim., linear ẋ = A (t)x + B(t)u y(t) =
∫ t

t0
G(t , τ)u(τ)dτ

y = C(t)x + D(t)u

infinite dim. LTI y(t) =
∫ t

t0
G(t , τ)u(τ)dτ

ŷ(s) = Ĝ(s)û(s)

finite dim., LTI ẋ = Ax + Bu y(t) =
∫ t

t0
G(t , τ)u(τ)dτ

y = Cx + Du ŷ(s) = Ĝ(s)û(s)
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