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Here we develop a novel way of expressing a control transfer function.
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Outline

Here we develop a novel way of expressing a control transfer function.

We will see that this novel parametrisation leads to deep insights into

control system design and reinforces, from an alternative perspective,

ideas that have been previously studied.

The key feature of this parametrisation is that it renders the closed

loop sensitivity functions linear (or more correctly, affine) in a design

variable.

We thus call this ‘Affine Parametrisation’.
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The main ideas to be presented include:

Motivation for the affine parametrisation from the idea of open loop

inversion.
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Outline

The main ideas to be presented include:

Motivation for the affine parametrisation from the idea of open loop

inversion.

Affine parametrisation and Internal Model Control.

Affine parametrisation and performance specifications.
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Open Loop Inversion Revisited

Recall that control implicitly and explicitly depends on plant model

inversion. This is best seen in the case of open loop control.
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Open Loop Inversion Revisited

Recall that control implicitly and explicitly depends on plant model

inversion. This is best seen in the case of open loop control.

In open loop control the input, U(s), is generated from the reference

signal R(s), by a transfer function Q(s), i.e. U(s) = Q(s)R(s).

Y(s)R(s) U(s)
Go(s)Q(s)
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Open Loop Inversion Revisited

Recall that control implicitly and explicitly depends on plant model

inversion. This is best seen in the case of open loop control.

In open loop control the input, U(s), is generated from the reference

signal R(s), by a transfer function Q(s), i.e. U(s) = Q(s)R(s).

Y(s)R(s) U(s)
Go(s)Q(s)

This leads to an input-output transfer function of the following form:

To(s) = Go(s)Q(s).
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Open Loop Inversion Revisited

This simple formula highlights the fundamental importance of

inversion, as To(jω) will be 1 only at those frequencies where Q(jω)
inverts the model. Note that this is consistent with the prototype

solution to the control problem described in earlier lectures.
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This simple formula highlights the fundamental importance of

inversion, as To(jω) will be 1 only at those frequencies where Q(jω)
inverts the model. Note that this is consistent with the prototype

solution to the control problem described in earlier lectures.

A key point is that To(s) = Go(s)Q(s) is affine in Q(s).

On the other hand, with a conventional feedback controller, C(s), the

closed loop transfer function has the form

To(s) =
Go(s)C(s)

1 + Go(s)C(s)
.
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Open Loop Inversion Revisited

This simple formula highlights the fundamental importance of

inversion, as To(jω) will be 1 only at those frequencies where Q(jω)
inverts the model. Note that this is consistent with the prototype

solution to the control problem described in earlier lectures.

A key point is that To(s) = Go(s)Q(s) is affine in Q(s).

On the other hand, with a conventional feedback controller, C(s), the

closed loop transfer function has the form

To(s) =
Go(s)C(s)

1 + Go(s)C(s)
.

The above expression is nonlinear in C(s).

Lecture 3, Part 2: Affine Parametrisation – p. 5/29



The University of Newcastle

Open Loop Inversion Revisited

Comparing the two previous equations, we see that the former affine

relationship holds if we simply parameterise C(s) in the following

fashion:

Q(s) =
C(s)

1 + Go(s)C(s)
.
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Open Loop Inversion Revisited

Comparing the two previous equations, we see that the former affine

relationship holds if we simply parameterise C(s) in the following

fashion:

Q(s) =
C(s)

1 + Go(s)C(s)
.

This is the essence of affine parametrisation.
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Affine Parametrisation. The Stable Case

We can invert the relationship given on the previous slide to express

C(s) in terms of Q(s) and Go(s):

C(s) =
Q(s)

1 − Q(s)Go(s)
.
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Affine Parametrisation. The Stable Case

We can invert the relationship given on the previous slide to express

C(s) in terms of Q(s) and Go(s):

C(s) =
Q(s)

1 − Q(s)Go(s)
.

We will then work with Q(s) as the design variable rather than the

original C(s).

Note that the relationship between C(s) and Q(s) is one-to-one and

thus there is no loss of generality in working with Q(s).
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Youla’s parametrisation of all stabilising con-
trollers for stable plants

This particular form of the controller, i.e. C(s) = Q(s)
1−Q(s)Go (s) , can be drawn

schematically as:
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Stability

Actually a very hard question to answer is:

Given a stable transfer function Go(s), describe all controllers, C(s),
that stabilise this nominal plant.
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Stability

Actually a very hard question to answer is:

Given a stable transfer function Go(s), describe all controllers, C(s),
that stabilise this nominal plant.

However, it turns out that, in the Q(s) form this question has a very

simple answer, namely all that is required is that Q(s) be stable.
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Stability

Lemma. (Affine parametrisation for stable systems). Consider a plant

having a stable nominal model Go(s) controlled in a one d.o.f. feedback

architecture with a proper controller. Then the nominal loop is internally

stable if and only if Q(s) is any stable proper transfer function when the

controller transfer function C(s) is parameterised as:

C(s) =
Q(s)

1 − Q(s)Go(s)
.
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Stability

Proof. We note that the four sensitivity functions can be written as

To(s) = Q(s)Go(s)

So(s) = 1 − Q(s)Go(s)

Sio(s) = (1 − Q(s)Go(s)) Go(s)

Suo(s) = Q(s)

We are for the moment only considering the case when Go(s) is stable.

Then, we see that all of the above transfer functions are stable if and only

if Q(s) is stable.
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Nominal Design

For the nominal design case (i.e. no modelling errors) we recall that:

To(s) = Q(s)Go(s)

So(s) = 1 − Q(s)Go(s)

Sio(s) = (1 − Q(s)Go(s)) Go(s)

Suo(s) = Q(s).
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Nominal Design

For the nominal design case (i.e. no modelling errors) we recall that:

To(s) = Q(s)Go(s)

So(s) = 1 − Q(s)Go(s)

Sio(s) = (1 − Q(s)Go(s)) Go(s)

Suo(s) = Q(s).

All of these equations are affine in Q(s).

This makes design particularly straightforward.
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Prototype Control Solution

Specifically, if we look at To(s),

To(s) = Q(s)Go(s)
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We recall that a reasonable design goal is to have To(s) near 1 since

this implies that the system output exactly follows the reference signal.
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Prototype Control Solution

Specifically, if we look at To(s),

To(s) = Q(s)Go(s)

We recall that a reasonable design goal is to have To(s) near 1 since

this implies that the system output exactly follows the reference signal.

Thus a prototype controller would seem to be to simply choose:

Q(s) = (Go(s))−1 .
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Prototype Control Solution

Specifically, if we look at To(s),

To(s) = Q(s)Go(s)

We recall that a reasonable design goal is to have To(s) near 1 since

this implies that the system output exactly follows the reference signal.

Thus a prototype controller would seem to be to simply choose:

Q(s) = (Go(s))−1 .

Unfortunately, (Go(s))−1 is most likely to be improper in practice.
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Design Considerations

Hence we introduce a filter FQ (s) to keep Q(s) proper.
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Design Considerations

Hence we introduce a filter FQ (s) to keep Q(s) proper.

It thus seems that a reasonable choice for Q(s) might be:

Q(s) = FQ (s) (Go(s))−1

where (Go(s))−1 is the exact inverse of Go(s).
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It thus seems that a reasonable choice for Q(s) might be:

Q(s) = FQ (s) (Go(s))−1

where (Go(s))−1 is the exact inverse of Go(s).

Not unexpectedly, we see that inversion plays a central role in this

prototype solution.
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Design Considerations

Hence we introduce a filter FQ (s) to keep Q(s) proper.

It thus seems that a reasonable choice for Q(s) might be:

Q(s) = FQ (s) (Go(s))−1

where (Go(s))−1 is the exact inverse of Go(s).

Not unexpectedly, we see that inversion plays a central role in this

prototype solution.

NOTE: In this case:

To(s) = Q(s)Go(s) = FQ (s) (Go(s))−1 Go(s) = FQ (s).
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Design Considerations

Although the design proposed above is a useful starting point it will

usually have to be refined to accommodate more detailed design

considerations.

In particular, we will investigate the following issues:

1. Non-minimum phase zeros

2. Model relative degree

3. Disturbance rejection

4. Control effort

5. Robustness
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1. Non-minimum Phase Zeros

Recall that, provided Go(s) is stable, then Q(s) only needs to be stable

to ensure closed loop stability.
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1. Non-minimum Phase Zeros

Recall that, provided Go(s) is stable, then Q(s) only needs to be stable

to ensure closed loop stability.

This implies that, if Go(s) contains NMP zeros, then they cannot be

included in (Go(s))−1.
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1. Non-minimum Phase Zeros

Recall that, provided Go(s) is stable, then Q(s) only needs to be stable

to ensure closed loop stability.

This implies that, if Go(s) contains NMP zeros, then they cannot be

included in (Go(s))−1.

One might therefore think of replacing the previous equation by:

Q(s) = FQ (s) (Go(s))i

where (Go(s))i is a stable approximation to (Go(s))−1.

Lecture 3, Part 2: Affine Parametrisation – p. 16/29



The University of Newcastle

1. Non-minimum Phase Zeros

For example, if one factors Go(s) as:

Go(s) =
Bos(s)Bou(s)

Ao(s)

where Bos(s) and Bou(s) are the stable and unstable factors in the

numerator, respectively, with Bou(0) = 1.
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1. Non-minimum Phase Zeros

For example, if one factors Go(s) as:

Go(s) =
Bos(s)Bou(s)

Ao(s)

where Bos(s) and Bou(s) are the stable and unstable factors in the

numerator, respectively, with Bou(0) = 1.

A suitable choice for (Go(s))i would be

(Go(s))i
=

Ao(s)

Bos(s)
.
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2. Model Relative Degree

To have a proper controller it is necessary that Q(s) be proper.
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2. Model Relative Degree

To have a proper controller it is necessary that Q(s) be proper.

Thus it is necessary that the shaping filter, FQ (s), have a relative

degree at least equal to the relative degree of (Go(s))i .
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2. Model Relative Degree

To have a proper controller it is necessary that Q(s) be proper.

Thus it is necessary that the shaping filter, FQ (s), have a relative

degree at least equal to the relative degree of (Go(s))i .

Conceptually, this can be achieved by including factors of the form

(τs + 1)nd where τ ∈ R+ in the denominator.
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3. Disturbance Rejection

Recall, again, the following expressions for the closed loop sensitivity

functions in terms of Q(s):

To(s) = Q(s)Go(s)

So(s) = 1 − Q(s)Go(s)

Sio(s) = (1 − Q(s)Go(s)) Go(s)

Suo(s) = Q(s).
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3. Disturbance Rejection

Recall, again, the following expressions for the closed loop sensitivity

functions in terms of Q(s):

To(s) = Q(s)Go(s)

So(s) = 1 − Q(s)Go(s)

Sio(s) = (1 − Q(s)Go(s)) Go(s)

Suo(s) = Q(s).

It would seem that to achieve perfect disturbance rejection at

frequency ωi simply requires that QGo be 1 at ωi .
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3. Disturbance Rejection

Recall, again, the following expressions for the closed loop sensitivity

functions in terms of Q(s):

To(s) = Q(s)Go(s)

So(s) = 1 − Q(s)Go(s)

Sio(s) = (1 − Q(s)Go(s)) Go(s)

Suo(s) = Q(s).

It would seem that to achieve perfect disturbance rejection at

frequency ωi simply requires that QGo be 1 at ωi .

For example, rejection of a d.c. disturbance requires Q(0)Go(0) = 1.
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3. Disturbance Rejection

Once we have found one value of Q(s) (say we call it Qa(s)) that

satisfies Go(0)Qa(0) = 1, then all possible controllers giving constant

disturbance rejection can be described.
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3. Disturbance Rejection

Once we have found one value of Q(s) (say we call it Qa(s)) that

satisfies Go(0)Qa(0) = 1, then all possible controllers giving constant

disturbance rejection can be described.

Consider a stable model Go(s) with input and/or output disturbance at

zero frequency. Then, a one d.o.f. control loop, giving zero steady

state tracking error, is stable if and only if the controller C(s) can be

expressed in the affine form where Q(s) satisfies:

Q(s) = sQ̄(s) + (Go(s))−1 Qa(s)

and Q̄(s) is any stable transfer function, and Qa(s) is any stable

transfer function which satisfies Qa(0) = 1.
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3. Disturbance Rejection

Once we have found one value of Q(s) (say we call it Qa(s)) that

satisfies Go(0)Qa(0) = 1, then all possible controllers giving constant

disturbance rejection can be described.

Consider a stable model Go(s) with input and/or output disturbance at

zero frequency. Then, a one d.o.f. control loop, giving zero steady

state tracking error, is stable if and only if the controller C(s) can be

expressed in the affine form where Q(s) satisfies:

Q(s) = sQ̄(s) + (Go(s))−1 Qa(s)

and Q̄(s) is any stable transfer function, and Qa(s) is any stable

transfer function which satisfies Qa(0) = 1.

The above idea can be readily extended to cover rejection of

disturbances at any frequency ωi .
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4. Control Effort

We see that if we achieve S0 = 0 at a given frequency, i.e. QG0 = 1,

then we have infinite gain in the controller C at the same frequency, i.e.

C(s) =
Q(s)

1 − Q(s)Go(s)
.
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4. Control Effort

We see that if we achieve S0 = 0 at a given frequency, i.e. QG0 = 1,

then we have infinite gain in the controller C at the same frequency, i.e.

C(s) =
Q(s)

1 − Q(s)Go(s)
.

For example, say the plant is minimum phase, then we could choose

(Go(s))i
= (Go(s))−1.
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4. Control Effort

We see that if we achieve S0 = 0 at a given frequency, i.e. QG0 = 1,

then we have infinite gain in the controller C at the same frequency, i.e.

C(s) =
Q(s)

1 − Q(s)Go(s)
.

For example, say the plant is minimum phase, then we could choose

(Go(s))i
= (Go(s))−1.

This gives the controller,

C(s) =
FQ (s) (Go(s))i

1 − FQ (s)
.
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4. Control Effort

By way of illustration, say that we choose

FQ (s) =
1

(τs + 1)r

then, the high frequency gain of the controller, Khfc , and the high

frequency gain of the model, Khfg, are related by:

Khfc =
1

τ
rKhfg
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4. Control Effort

By way of illustration, say that we choose

FQ (s) =
1

(τs + 1)r

then, the high frequency gain of the controller, Khfc , and the high

frequency gain of the model, Khfg, are related by:

Khfc =
1

τ
rKhfg

Thus, as we make FQ (s) faster, i.e. τ becomes smaller, we see that

Khfc increases. This, in turn, implies that the control energy will

increase.
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4. Control Effort

By way of illustration, say that we choose

FQ (s) =
1

(τs + 1)r

then, the high frequency gain of the controller, Khfc , and the high

frequency gain of the model, Khfg, are related by:

Khfc =
1

τ
rKhfg

Thus, as we make FQ (s) faster, i.e. τ becomes smaller, we see that

Khfc increases. This, in turn, implies that the control energy will

increase.

This consequence can be appreciated from the fact that, under the

assumption Go(s) is minimum phase and stable, we have

Suo(s) = Q(s) =
(Go(s))−1

(τs + 1)r
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5. Robustness

Finally, we turn to the issue of robustness in choosing Q(s).
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5. Robustness

Finally, we turn to the issue of robustness in choosing Q(s).

We recall that a fundamental result is that, in order to ensure

robustness, the closed loop bandwidth should be such that the

frequency response |To(jω)| rolls off before the effects of modelling

errors become significant.
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5. Robustness

Finally, we turn to the issue of robustness in choosing Q(s).

We recall that a fundamental result is that, in order to ensure

robustness, the closed loop bandwidth should be such that the

frequency response |To(jω)| rolls off before the effects of modelling

errors become significant.

Thus, in the framework of the affine parametrisation under discussion

here, the robustness requirement can be satisfied if FQ (s) reduces the

gain of To(jω) at high frequencies.
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5. Robustness

Finally, we turn to the issue of robustness in choosing Q(s).

We recall that a fundamental result is that, in order to ensure

robustness, the closed loop bandwidth should be such that the

frequency response |To(jω)| rolls off before the effects of modelling

errors become significant.

Thus, in the framework of the affine parametrisation under discussion

here, the robustness requirement can be satisfied if FQ (s) reduces the

gain of To(jω) at high frequencies.

This is usually achieved by including appropriate poles in FQ (s).
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Choice of Q. Summary for the case of Stable
Open Loop Poles

We have seen that a prototype choice for Q(s) is simply the inverse of

the open loop plant transfer function Go(s).
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Choice of Q. Summary for the case of Stable
Open Loop Poles

We have seen that a prototype choice for Q(s) is simply the inverse of

the open loop plant transfer function Go(s).

However, this ideal solution needs to be modified in practice to

account for the following:
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Choice of Q. Summary for the case of Stable
Open Loop Poles

We have seen that a prototype choice for Q(s) is simply the inverse of

the open loop plant transfer function Go(s).

However, this ideal solution needs to be modified in practice to

account for the following:

Non-minimum phase zeros. Internal stability precludes the

cancellation of these zeros. They must therefore appear in To(s).
This implies that the gain of Q(s) must be reduced at these

frequencies for robustness reasons.
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Choice of Q. Summary for the case of Stable
Open Loop Poles

We have seen that a prototype choice for Q(s) is simply the inverse of

the open loop plant transfer function Go(s).

However, this ideal solution needs to be modified in practice to

account for the following:

Non-minimum phase zeros. Internal stability precludes the

cancellation of these zeros. They must therefore appear in To(s).
This implies that the gain of Q(s) must be reduced at these

frequencies for robustness reasons.

Relative degree. Excess poles in the model must necessarily

appear as a lower bound for the relative degree of To(s), since

Q(s) must be proper to ensure that the controller C(s) is proper.
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Open Loop Poles

(cont.)

Lecture 3, Part 2: Affine Parametrisation – p. 25/29



The University of Newcastle

Choice of Q. Summary for the case of Stable
Open Loop Poles

(cont.)

Disturbance trade-offs. Whenever we roll To(s) off to satisfy

measurement noise rejection, we necessarily increase sensitivity to

output disturbances at that frequency. Also, slow open loop poles

must either appear as poles of Sio(s) or as zeros of So(s), and in

either case there is a performance penalty.
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Choice of Q. Summary for the case of Stable
Open Loop Poles

(cont.)

Disturbance trade-offs. Whenever we roll To(s) off to satisfy

measurement noise rejection, we necessarily increase sensitivity to

output disturbances at that frequency. Also, slow open loop poles

must either appear as poles of Sio(s) or as zeros of So(s), and in

either case there is a performance penalty.

Control energy. All plants are typically low pass. Hence, any

attempt to make Q(s) close to the model inverse necessarily gives

a high pass transfer function from Do(s) to U(s). This will lead to

large input signals and may lead to controller saturation.
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Choice of Q. Summary for the case of Stable
Open Loop Poles

(cont.)

Disturbance trade-offs. Whenever we roll To(s) off to satisfy

measurement noise rejection, we necessarily increase sensitivity to

output disturbances at that frequency. Also, slow open loop poles

must either appear as poles of Sio(s) or as zeros of So(s), and in

either case there is a performance penalty.

Control energy. All plants are typically low pass. Hence, any

attempt to make Q(s) close to the model inverse necessarily gives

a high pass transfer function from Do(s) to U(s). This will lead to

large input signals and may lead to controller saturation.

Robustness. Modeling errors usually become significant at high

frequencies, and hence to retain robustness it is necessary to

attenuate To , and hence Q , at these frequencies.
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Summary of results for stable systems

C(s) = Q(s) (1 − Q(s)Go(s))−1, where the design is carried out by

designing the transfer function Q(s).
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Summary of results for stable systems

C(s) = Q(s) (1 − Q(s)Go(s))−1, where the design is carried out by

designing the transfer function Q(s).

Nominal sensitivities:

To(s) = Q(s)Go(s)

So(s) = 1 − Q(s)Go(s)

Sio(s) = (1 − Q(s)Go(s)) Go(s)

Suo(s) = Q(s)
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Design Methodology

Determine the design specifications. (e.g. What do you want the B.W.

of To(s) to be?)
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of To(s) to be?)

Invert the nominal model Go(s). (Do you need to take an approximate

inverse?)
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Design Methodology

Determine the design specifications. (e.g. What do you want the B.W.

of To(s) to be?)

Invert the nominal model Go(s). (Do you need to take an approximate

inverse?)

Recall Q(s) = FQ (s)G−i
o . Determine the relative degree of FQ (s) to

ensure Q(s) is proper.
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of To(s) to be?)

Invert the nominal model Go(s). (Do you need to take an approximate

inverse?)

Recall Q(s) = FQ (s)G−i
o . Determine the relative degree of FQ (s) to

ensure Q(s) is proper.

Specify the parameters of FQ (s) to satisfy the design specification.
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Design Methodology

Determine the design specifications. (e.g. What do you want the B.W.

of To(s) to be?)

Invert the nominal model Go(s). (Do you need to take an approximate

inverse?)

Recall Q(s) = FQ (s)G−i
o . Determine the relative degree of FQ (s) to

ensure Q(s) is proper.

Specify the parameters of FQ (s) to satisfy the design specification.

Design Q(s).
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Design Methodology

Determine the design specifications. (e.g. What do you want the B.W.

of To(s) to be?)

Invert the nominal model Go(s). (Do you need to take an approximate

inverse?)

Recall Q(s) = FQ (s)G−i
o . Determine the relative degree of FQ (s) to

ensure Q(s) is proper.

Specify the parameters of FQ (s) to satisfy the design specification.

Design Q(s).

Convert to C(s) if required.
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Summary of results for stable systems

Observe the following advantages of the affine parametrisation:
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Observe the following advantages of the affine parametrisation:

Nominal stability is explicit.
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Summary of results for stable systems

Observe the following advantages of the affine parametrisation:

Nominal stability is explicit.

The known quantity Go and the quantity sought by the control

engineer (Q) occur in the highly insightful relation

To(s) = Q(s)Go(s) (multiplicative in the frequency domain);

whether a designer chooses to work in this quantity from the

beginning or prefers to start with a synthesis technique and then

convert, the simple multiplicative relation Q(s)Go(s) provides deep

insights into the trade-offs of a particular problem and provides a

very direct means of pushing the design by shaping Q .
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Summary of results for stable systems

Observe the following advantages of the affine parametrisation:

Nominal stability is explicit.

The known quantity Go and the quantity sought by the control

engineer (Q) occur in the highly insightful relation

To(s) = Q(s)Go(s) (multiplicative in the frequency domain);

whether a designer chooses to work in this quantity from the

beginning or prefers to start with a synthesis technique and then

convert, the simple multiplicative relation Q(s)Go(s) provides deep

insights into the trade-offs of a particular problem and provides a

very direct means of pushing the design by shaping Q .

The sensitivities are affine in Q , which is a great advantage for

synthesis techniques relying on numerical minimisation of a

criterion.
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Summary of results for stable systems

The following points are important to avoid some common

misconceptions:
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Summary of results for stable systems

The following points are important to avoid some common

misconceptions:

The associated trade-offs are not a consequence of the affine

parametrisation: they are general and hold for any linear time

invariant controller including PID, pole placement, LQR, H∞, etc.
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Summary of results for stable systems

The following points are important to avoid some common

misconceptions:

The associated trade-offs are not a consequence of the affine

parametrisation: they are general and hold for any linear time

invariant controller including PID, pole placement, LQR, H∞, etc.

Affine parametrisation makes the general trade-offs more visible

and provides a direct means for the control engineer to make

trade-off decisions; this should not be confused with synthesis

techniques that make particular choices in the affine

parametrisation to synthesise a controller.
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Summary of results for stable systems

The following points are important to avoid some common

misconceptions:

The associated trade-offs are not a consequence of the affine

parametrisation: they are general and hold for any linear time

invariant controller including PID, pole placement, LQR, H∞, etc.

Affine parametrisation makes the general trade-offs more visible

and provides a direct means for the control engineer to make

trade-off decisions; this should not be confused with synthesis

techniques that make particular choices in the affine

parametrisation to synthesise a controller.

The fact that Q must approximate the inverse of the model at

frequencies where the sensitivity is meant to be small is perfectly

general and highlights the fundamental importance of inversion in

control.
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