ELEC4410

Control Systems Design

Lecture 3, Part 2: Introduction to Affine Parametrisation

School of Electrical Engineering and Computer Science The University of Newcastle

▶ Here we develop a novel way of expressing a control transfer function.

- ▶ Here we develop a novel way of expressing a control transfer function.
- We will see that this novel parametrisation leads to deep insights into control system design and reinforces, from an alternative perspective, ideas that have been previously studied.

- ▶ Here we develop a novel way of expressing a control transfer function.
- We will see that this novel parametrisation leads to deep insights into control system design and reinforces, from an alternative perspective, ideas that have been previously studied.
- The key feature of this parametrisation is that it renders the closed loop sensitivity functions linear (or more correctly, affine) in a design variable.

- ▶ Here we develop a novel way of expressing a control transfer function.
- We will see that this novel parametrisation leads to deep insights into control system design and reinforces, from an alternative perspective, ideas that have been previously studied.
- The key feature of this parametrisation is that it renders the closed loop sensitivity functions linear (or more correctly, affine) in a design variable.
- We thus call this 'Affine Parametrisation'.

The main ideas to be presented include:

Motivation for the affine parametrisation from the idea of open loop inversion.

The main ideas to be presented include:

- Motivation for the affine parametrisation from the idea of open loop inversion.
- Affine parametrisation and Internal Model Control.

The main ideas to be presented include:

- Motivation for the affine parametrisation from the idea of open loop inversion.
- Affine parametrisation and Internal Model Control.
- Affine parametrisation and performance specifications.

Recall that control implicitly and explicitly depends on plant model inversion. This is best seen in the case of open loop control.

- Recall that control implicitly and explicitly depends on plant model inversion. This is best seen in the case of open loop control.
- In open loop control the input, U(s), is generated from the reference signal R(s), by a transfer function Q(s), i.e. U(s) = Q(s)R(s).

- Recall that control implicitly and explicitly depends on plant model inversion. This is best seen in the case of open loop control.
- In open loop control the input, U(s), is generated from the reference signal R(s), by a transfer function Q(s), i.e. U(s) = Q(s)R(s).

This leads to an input-output transfer function of the following form:

$$T_o(s) = G_o(s)Q(s).$$

This simple formula highlights the fundamental importance of inversion, as *T_o(jω)* will be 1 only at those frequencies where *Q(jω)* inverts the model. Note that this is consistent with the prototype solution to the control problem described in earlier lectures.

- This simple formula highlights the fundamental importance of inversion, as *T_o(jω)* will be 1 only at those frequencies where *Q(jω)* inverts the model. Note that this is consistent with the prototype solution to the control problem described in earlier lectures.
- A key point is that $T_o(s) = G_o(s)Q(s)$ is affine in Q(s).

- This simple formula highlights the fundamental importance of inversion, as *T_o(jω)* will be 1 only at those frequencies where *Q(jω)* inverts the model. Note that this is consistent with the prototype solution to the control problem described in earlier lectures.
- A key point is that $T_o(s) = G_o(s)Q(s)$ is affine in Q(s).
- On the other hand, with a conventional feedback controller, C(s), the closed loop transfer function has the form

$$T_o(s) = \frac{G_o(s)C(s)}{1 + G_o(s)C(s)}.$$

- This simple formula highlights the fundamental importance of inversion, as *T_o(jω)* will be 1 only at those frequencies where *Q(jω)* inverts the model. Note that this is consistent with the prototype solution to the control problem described in earlier lectures.
- A key point is that $T_o(s) = G_o(s)Q(s)$ is affine in Q(s).
- On the other hand, with a conventional feedback controller, C(s), the closed loop transfer function has the form

$$T_o(s) = \frac{G_o(s)C(s)}{1 + G_o(s)C(s)}.$$

• The above expression is nonlinear in C(s).

Comparing the two previous equations, we see that the former affine relationship holds if we simply parameterise C(s) in the following fashion:

$$Q(s) = \frac{C(s)}{1 + G_o(s)C(s)}.$$

Comparing the two previous equations, we see that the former affine relationship holds if we simply parameterise C(s) in the following fashion:

$$Q(s) = \frac{C(s)}{1 + G_o(s)C(s)}.$$

> This is the essence of affine parametrisation.

Affine Parametrisation. The Stable Case

We can invert the relationship given on the previous slide to express C(s) in terms of Q(s) and G₀(s):

$$C(s) = \frac{Q(s)}{1 - Q(s)G_o(s)}.$$

Affine Parametrisation. The Stable Case

We can invert the relationship given on the previous slide to express C(s) in terms of Q(s) and G₀(s):

$$C(s) = \frac{Q(s)}{1 - Q(s)G_o(s)}.$$

We will then work with Q(s) as the design variable rather than the original C(s).

Affine Parametrisation. The Stable Case

We can invert the relationship given on the previous slide to express C(s) in terms of Q(s) and G₀(s):

$$C(s) = \frac{Q(s)}{1 - Q(s)G_o(s)}.$$

- We will then work with Q(s) as the design variable rather than the original C(s).
- Note that the relationship between C(s) and Q(s) is one-to-one and thus there is no loss of generality in working with Q(s).

Youla's parametrisation of all stabilising controllers for stable plants

This particular form of the controller, i.e. $C(s) = \frac{Q(s)}{1-Q(s)G_o(s)}$, can be drawn schematically as:

Actually a very hard question to answer is:

Given a stable transfer function $G_o(s)$, describe all controllers, C(s), that stabilise this nominal plant.

Actually a very hard question to answer is:

Given a stable transfer function $G_o(s)$, describe all controllers, C(s), that stabilise this nominal plant.

However, it turns out that, in the Q(s) form this question has a very simple answer, namely all that is required is that Q(s) be stable.

Lemma. (Affine parametrisation for stable systems). Consider a plant having a stable nominal model $G_o(s)$ controlled in a one d.o.f. feedback architecture with a proper controller. Then the nominal loop is internally stable if and only if Q(s) is any stable proper transfer function when the controller transfer function C(s) is parameterised as:

$$C(s)=\frac{Q(s)}{1-Q(s)G_o(s)}.$$

Proof. We note that the four sensitivity functions can be written as

 $T_o(s) = Q(s)G_o(s)$ $S_o(s) = 1 - Q(s)G_o(s)$ $S_{io}(s) = (1 - Q(s)G_o(s)) G_o(s)$ $S_{uo}(s) = Q(s)$

We are for the moment only considering the case when $G_o(s)$ is stable. Then, we see that all of the above transfer functions are stable if and only if Q(s) is stable.

Nominal Design

For the nominal design case (i.e. no modelling errors) we recall that:

$$T_{o}(s) = Q(s)G_{o}(s)$$

$$S_{o}(s) = 1 - Q(s)G_{o}(s)$$

$$S_{io}(s) = (1 - Q(s)G_{o}(s)) G_{o}(s)$$

$$S_{uo}(s) = Q(s).$$

Nominal Design

For the nominal design case (i.e. no modelling errors) we recall that:

$$T_o(s) = Q(s)G_o(s)$$

$$S_o(s) = 1 - Q(s)G_o(s)$$

$$S_{io}(s) = (1 - Q(s)G_o(s)) G_o(s)$$

$$S_{uo}(s) = Q(s).$$

All of these equations are affine in Q(s).

Nominal Design

For the nominal design case (i.e. no modelling errors) we recall that:

$$T_o(s) = Q(s)G_o(s)$$

$$S_o(s) = 1 - Q(s)G_o(s)$$

$$S_{io}(s) = (1 - Q(s)G_o(s)) G_o(s)$$

$$S_{uo}(s) = Q(s).$$

- All of these equations are affine in Q(s).
- This makes design particularly straightforward.

Specifically, if we look at $T_o(s)$,

 $T_o(s) = Q(s)G_o(s)$

Specifically, if we look at $T_o(s)$,

 $T_o(s) = Q(s)G_o(s)$

We recall that a reasonable design goal is to have $T_o(s)$ near 1 since this implies that the system output exactly follows the reference signal.

Specifically, if we look at $T_o(s)$,

 $T_o(s) = Q(s)G_o(s)$

- We recall that a reasonable design goal is to have $T_o(s)$ near 1 since this implies that the system output exactly follows the reference signal.
- > Thus a prototype controller would seem to be to simply choose:

 $Q(s) = (G_o(s))^{-1}$.

Specifically, if we look at $T_o(s)$,

 $T_o(s) = Q(s)G_o(s)$

- We recall that a reasonable design goal is to have $T_o(s)$ near 1 since this implies that the system output exactly follows the reference signal.
- Thus a prototype controller would seem to be to simply choose:

 $Q(s) = (G_o(s))^{-1}$.

• Unfortunately, $(G_o(s))^{-1}$ is most likely to be improper in practice.

Hence we introduce a filter $F_Q(s)$ to keep Q(s) proper.

- Hence we introduce a filter $F_Q(s)$ to keep Q(s) proper.
- > It thus seems that a reasonable choice for Q(s) might be:

 $Q(s) = F_Q(s) (G_o(s))^{-1}$

where $(G_o(s))^{-1}$ is the exact inverse of $G_o(s)$.

- Hence we introduce a filter $F_Q(s)$ to keep Q(s) proper.
- It thus seems that a reasonable choice for Q(s) might be:

 $Q(s) = F_Q(s) (G_o(s))^{-1}$

where $(G_o(s))^{-1}$ is the exact inverse of $G_o(s)$.

Not unexpectedly, we see that inversion plays a central role in this prototype solution.

- Hence we introduce a filter $F_Q(s)$ to keep Q(s) proper.
- It thus seems that a reasonable choice for Q(s) might be:

 $Q(s) = F_Q(s) (G_o(s))^{-1}$

where $(G_o(s))^{-1}$ is the exact inverse of $G_o(s)$.

- Not unexpectedly, we see that inversion plays a central role in this prototype solution.
- NOTE: In this case:

$$T_o(s) = Q(s)G_o(s) = F_Q(s)(G_o(s))^{-1}G_o(s) = F_Q(s).$$

Design Considerations

- Although the design proposed above is a useful starting point it will usually have to be refined to accommodate more detailed design considerations.
- In particular, we will investigate the following issues:
 - 1. Non-minimum phase zeros
 - 2. Model relative degree
 - 3. Disturbance rejection
 - 4. Control effort
 - 5. Robustness

Recall that, provided G_o(s) is stable, then Q(s) only needs to be stable to ensure closed loop stability.

- Recall that, provided G_o(s) is stable, then Q(s) only needs to be stable to ensure closed loop stability.
- ► This implies that, if G_o(s) contains NMP zeros, then they cannot be included in (G_o(s))⁻¹.

- Recall that, provided G_o(s) is stable, then Q(s) only needs to be stable to ensure closed loop stability.
- This implies that, if G_o(s) contains NMP zeros, then they cannot be included in (G_o(s))⁻¹.
- One might therefore think of replacing the previous equation by:

 $Q(s) = F_Q(s) \left(G_o(s)\right)^i$

where $(G_o(s))^i$ is a stable approximation to $(G_o(s))^{-1}$.

For example, if one factors $G_o(s)$ as:

$$G_o(s) = \frac{B_{os}(s)B_{ou}(s)}{A_o(s)}$$

where $B_{os}(s)$ and $B_{ou}(s)$ are the stable and unstable factors in the numerator, respectively, with $B_{ou}(0) = 1$.

For example, if one factors $G_o(s)$ as:

$$G_o(s) = \frac{B_{os}(s)B_{ou}(s)}{A_o(s)}$$

where $B_{os}(s)$ and $B_{ou}(s)$ are the stable and unstable factors in the numerator, respectively, with $B_{ou}(0) = 1$.

A suitable choice for $(G_o(s))^i$ would be

$$(G_o(s))^i = \frac{A_o(s)}{B_{os}(s)}.$$

2. Model Relative Degree

• To have a proper controller it is necessary that Q(s) be proper.

2. Model Relative Degree

- To have a proper controller it is necessary that Q(s) be proper.
- ▶ Thus it is necessary that the shaping filter, $F_Q(s)$, have a relative degree at least equal to the relative degree of $(G_o(s))^i$.

2. Model Relative Degree

- To have a proper controller it is necessary that Q(s) be proper.
- Thus it is necessary that the shaping filter, $F_Q(s)$, have a relative degree at least equal to the relative degree of $(G_o(s))^i$.
- Conceptually, this can be achieved by including factors of the form $(\tau s + 1)^{n_d}$ where $\tau \in \mathbb{R}^+$ in the denominator.

Recall, again, the following expressions for the closed loop sensitivity functions in terms of Q(s):

 $T_o(s) = Q(s)G_o(s)$ $S_o(s) = 1 - Q(s)G_o(s)$ $S_{io}(s) = (1 - Q(s)G_o(s)) G_o(s)$ $S_{uo}(s) = Q(s).$

Recall, again, the following expressions for the closed loop sensitivity functions in terms of Q(s):

$$\begin{split} T_{o}(s) &= Q(s)G_{o}(s) \\ S_{o}(s) &= 1 - Q(s)G_{o}(s) \\ S_{io}(s) &= (1 - Q(s)G_{o}(s)) \ G_{o}(s) \\ S_{uo}(s) &= Q(s). \end{split}$$

It would seem that to achieve perfect disturbance rejection at frequency ω_i simply requires that QG_o be 1 at ω_i.

Recall, again, the following expressions for the closed loop sensitivity functions in terms of Q(s):

$$\begin{split} T_{o}(s) &= Q(s)G_{o}(s) \\ S_{o}(s) &= 1 - Q(s)G_{o}(s) \\ S_{io}(s) &= (1 - Q(s)G_{o}(s)) \ G_{o}(s) \\ S_{uo}(s) &= Q(s). \end{split}$$

- It would seem that to achieve perfect disturbance rejection at frequency ω_i simply requires that QG_o be 1 at ω_i .
- For example, rejection of a d.c. disturbance requires $Q(0)G_o(0) = 1$.

Once we have found one value of Q(s) (say we call it Q_a(s)) that satisfies G_o(0)Q_a(0) = 1, then all possible controllers giving constant disturbance rejection can be described.

- Once we have found one value of Q(s) (say we call it Q_a(s)) that satisfies G_o(0)Q_a(0) = 1, then all possible controllers giving constant disturbance rejection can be described.
- Consider a stable model G_o(s) with input and/or output disturbance at zero frequency. Then, a one d.o.f. control loop, giving zero steady state tracking error, is stable if and only if the controller C(s) can be expressed in the affine form where Q(s) satisfies:

$$Q(s) = s\bar{Q}(s) + (G_o(s))^{-1} Q_a(s)$$

and $\overline{Q}(s)$ is any stable transfer function, and $Q_a(s)$ is any stable transfer function which satisfies $Q_a(0) = 1$.

- Once we have found one value of Q(s) (say we call it Q_a(s)) that satisfies G_o(0)Q_a(0) = 1, then all possible controllers giving constant disturbance rejection can be described.
- Consider a stable model G_o(s) with input and/or output disturbance at zero frequency. Then, a one d.o.f. control loop, giving zero steady state tracking error, is stable if and only if the controller C(s) can be expressed in the affine form where Q(s) satisfies:

$$Q(s) = s\bar{Q}(s) + (G_o(s))^{-1} Q_a(s)$$

and $\overline{Q}(s)$ is any stable transfer function, and $Q_a(s)$ is any stable transfer function which satisfies $Q_a(0) = 1$.

The above idea can be readily extended to cover rejection of disturbances at any frequency ω_i.

• We see that if we achieve $S_0 = 0$ at a given frequency, i.e. $QG_0 = 1$, then we have infinite gain in the controller *C* at the same frequency, i.e.

$$C(s) = \frac{Q(s)}{1 - Q(s)G_o(s)}.$$

We see that if we achieve $S_0 = 0$ at a given frequency, i.e. $QG_0 = 1$, then we have infinite gain in the controller *C* at the same frequency, i.e.

$$C(s) = \frac{Q(s)}{1 - Q(s)G_o(s)}.$$

For example, say the plant is minimum phase, then we could choose $(G_o(s))^i = (G_o(s))^{-1}$.

We see that if we achieve $S_0 = 0$ at a given frequency, i.e. $QG_0 = 1$, then we have infinite gain in the controller *C* at the same frequency, i.e.

$$C(s) = \frac{Q(s)}{1 - Q(s)G_o(s)}.$$

- For example, say the plant is minimum phase, then we could choose $(G_o(s))^i = (G_o(s))^{-1}$.
- This gives the controller,

$$C(s) = \frac{F_Q(s) \left(G_o(s)\right)^i}{1 - F_Q(s)}.$$

By way of illustration, say that we choose

$$F_Q(s) = \frac{1}{(\tau s + 1)^r}$$

then, the high frequency gain of the controller, K_{hfc} , and the high frequency gain of the model, K_{hfg} , are related by:

$$K_{hfc} = \frac{1}{\tau^r K_{hfg}}$$

By way of illustration, say that we choose

$$F_Q(s) = \frac{1}{(\tau s + 1)^r}$$

then, the high frequency gain of the controller, K_{hfc} , and the high frequency gain of the model, K_{hfg} , are related by:

$$K_{hfc} = \frac{1}{\tau^r K_{hfg}}$$

Thus, as we make F_Q(s) faster, i.e. τ becomes smaller, we see that K_{hfc} increases. This, in turn, implies that the control energy will increase.

By way of illustration, say that we choose

$$F_Q(s) = \frac{1}{(\tau s + 1)^r}$$

then, the high frequency gain of the controller, K_{hfc} , and the high frequency gain of the model, K_{hfg} , are related by:

$$K_{hfc} = \frac{1}{\tau^r K_{hfg}}$$

- Thus, as we make F_Q(s) faster, i.e. τ becomes smaller, we see that K_{hfc} increases. This, in turn, implies that the control energy will increase.
- This consequence can be appreciated from the fact that, under the assumption $G_o(s)$ is minimum phase and stable, we have

$$S_{uo}(s) = Q(s) = \frac{(G_o(s))^{-1}}{(\tau s + 1)^r}$$

Finally, we turn to the issue of robustness in choosing Q(s).

- Finally, we turn to the issue of robustness in choosing Q(s).
- We recall that a fundamental result is that, in order to ensure robustness, the closed loop bandwidth should be such that the frequency response $|T_o(j\omega)|$ rolls off before the effects of modelling errors become significant.

- Finally, we turn to the issue of robustness in choosing Q(s).
- We recall that a fundamental result is that, in order to ensure robustness, the closed loop bandwidth should be such that the frequency response $|T_o(j\omega)|$ rolls off before the effects of modelling errors become significant.
- Thus, in the framework of the affine parametrisation under discussion here, the robustness requirement can be satisfied if F_Q(s) reduces the gain of T_o(jω) at high frequencies.

- Finally, we turn to the issue of robustness in choosing Q(s).
- We recall that a fundamental result is that, in order to ensure robustness, the closed loop bandwidth should be such that the frequency response $|T_o(j\omega)|$ rolls off before the effects of modelling errors become significant.
- Thus, in the framework of the affine parametrisation under discussion here, the robustness requirement can be satisfied if F_Q(s) reduces the gain of T_o(jω) at high frequencies.
- > This is usually achieved by including appropriate poles in $F_Q(s)$.

▶ We have seen that a prototype choice for Q(s) is simply the inverse of the open loop plant transfer function G_o(s).

- We have seen that a prototype choice for Q(s) is simply the inverse of the open loop plant transfer function G₀(s).
- However, this ideal solution needs to be modified in practice to account for the following:

- We have seen that a prototype choice for Q(s) is simply the inverse of the open loop plant transfer function G₀(s).
- However, this ideal solution needs to be modified in practice to account for the following:
 - Non-minimum phase zeros. Internal stability precludes the cancellation of these zeros. They must therefore appear in T_o(s). This implies that the gain of Q(s) must be reduced at these frequencies for robustness reasons.

- We have seen that a prototype choice for Q(s) is simply the inverse of the open loop plant transfer function G₀(s).
- However, this ideal solution needs to be modified in practice to account for the following:
 - Non-minimum phase zeros. Internal stability precludes the cancellation of these zeros. They must therefore appear in T_o(s). This implies that the gain of Q(s) must be reduced at these frequencies for robustness reasons.
 - Relative degree. Excess poles in the model must necessarily appear as a lower bound for the relative degree of T_o(s), since Q(s) must be proper to ensure that the controller C(s) is proper.

(cont.)

- ▶ (cont.)
 - **Disturbance trade-offs**. Whenever we roll $T_o(s)$ off to satisfy measurement noise rejection, we necessarily increase sensitivity to output disturbances at that frequency. Also, slow open loop poles must either appear as poles of $S_{io}(s)$ or as zeros of $S_o(s)$, and in either case there is a performance penalty.

- (cont.)
 - **Disturbance trade-offs**. Whenever we roll $T_o(s)$ off to satisfy measurement noise rejection, we necessarily increase sensitivity to output disturbances at that frequency. Also, slow open loop poles must either appear as poles of $S_{io}(s)$ or as zeros of $S_o(s)$, and in either case there is a performance penalty.
 - Control energy. All plants are typically low pass. Hence, any attempt to make Q(s) close to the model inverse necessarily gives a high pass transfer function from D_o(s) to U(s). This will lead to large input signals and may lead to controller saturation.

- (cont.)
 - **Disturbance trade-offs**. Whenever we roll $T_o(s)$ off to satisfy measurement noise rejection, we necessarily increase sensitivity to output disturbances at that frequency. Also, slow open loop poles must either appear as poles of $S_{io}(s)$ or as zeros of $S_o(s)$, and in either case there is a performance penalty.
 - Control energy. All plants are typically low pass. Hence, any attempt to make Q(s) close to the model inverse necessarily gives a high pass transfer function from D_o(s) to U(s). This will lead to large input signals and may lead to controller saturation.
 - Robustness. Modeling errors usually become significant at high frequencies, and hence to retain robustness it is necessary to attenuate T_o, and hence Q, at these frequencies.

Summary of results for stable systems

C(s) = Q(s) (1 − Q(s)G_o(s))⁻¹, where the design is carried out by designing the transfer function Q(s).

Summary of results for stable systems

- C(s) = Q(s) (1 − Q(s)G_o(s))⁻¹, where the design is carried out by designing the transfer function Q(s).
- Nominal sensitivities:

 $T_o(s) = Q(s)G_o(s)$ $S_o(s) = 1 - Q(s)G_o(s)$ $S_{io}(s) = (1 - Q(s)G_o(s)) G_o(s)$ $S_{uo}(s) = Q(s)$

Design Methodology

Determine the design specifications. (e.g. What do you want the B.W. of T_o(s) to be?)

- Determine the design specifications. (e.g. What do you want the B.W. of T_o(s) to be?)
- Invert the nominal model G_o(s). (Do you need to take an approximate inverse?)

- Determine the design specifications. (e.g. What do you want the B.W. of T_o(s) to be?)
- Invert the nominal model G_o(s). (Do you need to take an approximate inverse?)
- Recall Q(s) = F_Q(s)G_o⁻ⁱ. Determine the relative degree of F_Q(s) to ensure Q(s) is proper.

- Determine the design specifications. (e.g. What do you want the B.W. of T_o(s) to be?)
- Invert the nominal model G_o(s). (Do you need to take an approximate inverse?)
- Recall Q(s) = F_Q(s)G_o⁻ⁱ. Determine the relative degree of F_Q(s) to ensure Q(s) is proper.
- Specify the parameters of $F_Q(s)$ to satisfy the design specification.

- Determine the design specifications. (e.g. What do you want the B.W. of T_o(s) to be?)
- Invert the nominal model G_o(s). (Do you need to take an approximate inverse?)
- Recall Q(s) = F_Q(s)G_o⁻ⁱ. Determine the relative degree of F_Q(s) to ensure Q(s) is proper.
- Specify the parameters of $F_Q(s)$ to satisfy the design specification.
- Design Q(s).

- Determine the design specifications. (e.g. What do you want the B.W. of T_o(s) to be?)
- Invert the nominal model G_o(s). (Do you need to take an approximate inverse?)
- Recall Q(s) = F_Q(s)G_o⁻ⁱ. Determine the relative degree of F_Q(s) to ensure Q(s) is proper.
- Specify the parameters of $F_Q(s)$ to satisfy the design specification.
- Design Q(s).
- Convert to C(s) if required.

Observe the following advantages of the affine parametrisation:

- Observe the following advantages of the affine parametrisation:
 - Nominal stability is explicit.

- Observe the following advantages of the affine parametrisation:
 - Nominal stability is explicit.
 - The known quantity G_o and the quantity sought by the control engineer (Q) occur in the highly insightful relation
 T_o(s) = Q(s)G_o(s) (multiplicative in the frequency domain); whether a designer chooses to work in this quantity from the beginning or prefers to start with a synthesis technique and then convert, the simple multiplicative relation Q(s)G_o(s) provides deep insights into the trade-offs of a particular problem and provides a very direct means of pushing the design by shaping Q.

- Observe the following advantages of the affine parametrisation:
 - Nominal stability is explicit.
 - The known quantity G_o and the quantity sought by the control engineer (Q) occur in the highly insightful relation
 T_o(s) = Q(s)G_o(s) (multiplicative in the frequency domain); whether a designer chooses to work in this quantity from the beginning or prefers to start with a synthesis technique and then convert, the simple multiplicative relation Q(s)G_o(s) provides deep insights into the trade-offs of a particular problem and provides a very direct means of pushing the design by shaping Q.
 - The sensitivities are affine in Q, which is a great advantage for synthesis techniques relying on numerical minimisation of a criterion.

The following points are important to avoid some common misconceptions:

- The following points are important to avoid some common misconceptions:
 - The associated trade-offs are not a consequence of the affine parametrisation: they are general and hold for any linear time invariant controller including PID, pole placement, LQR, H_∞, etc.

- The following points are important to avoid some common misconceptions:
 - The associated trade-offs are not a consequence of the affine parametrisation: they are general and hold for any linear time invariant controller including PID, pole placement, LQR, H_∞, etc.
 - Affine parametrisation makes the general trade-offs more visible and provides a direct means for the control engineer to make trade-off decisions; this should not be confused with synthesis techniques that make particular choices in the affine parametrisation to synthesise a controller.

- The following points are important to avoid some common misconceptions:
 - The associated trade-offs are not a consequence of the affine parametrisation: they are general and hold for any linear time invariant controller including PID, pole placement, LQR, H_∞, etc.
 - Affine parametrisation makes the general trade-offs more visible and provides a direct means for the control engineer to make trade-off decisions; this should not be confused with synthesis techniques that make particular choices in the affine parametrisation to synthesise a controller.
 - The fact that Q must approximate the inverse of the model at frequencies where the sensitivity is meant to be small is perfectly general and highlights the fundamental importance of inversion in control.

