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Outline

Revisit PID design using the affine parametrisation.
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The University of Newcastle

Outline

Revisit PID design using the affine parametrisation.

Control of time delayed plants using the affine parametrisation. (Also

showing the connections with the Smith controller.)

Use of interpolation constraints to remove undesirable open loop

poles.

Reference: Control System Design, Goodwin, Graebe & Salgado.
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PID Synthesis using the Affine Parametrisation

We illustrate the ideas by choosing a simple First Order Model:

Go(s) =
Ko

vos + 1
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Go(s) =
Ko
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We employ the affine synthesis methodology. Since there are no

unstable zeros, the model is exactly invertible.
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PID Synthesis using the Affine Parametrisation

We illustrate the ideas by choosing a simple First Order Model:

Go(s) =
Ko

vos + 1

We employ the affine synthesis methodology. Since there are no

unstable zeros, the model is exactly invertible.

We then choose

G i
o(s) = (Go(s))−1

=

vos + 1

Ko

Lecture 4: Affine Parameterisation. PID Revisited, Time Delays and Undesirable Closed Loop Poles – p. 3/32



The University of Newcastle

PID Synthesis using the Affine Parametrisation

In order for Q(s) to be biproper, FQ (s) must have relative degree 1,

such as

FQ (s) =
1

αs + 1
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PID Synthesis using the Affine Parametrisation

In order for Q(s) to be biproper, FQ (s) must have relative degree 1,

such as

FQ (s) =
1

αs + 1
This implies that our final choice for Q(s) is of the form:

Q(s) = FQ (s)G i
o(s) =

vos + 1

Ko (αs + 1)

and the controller becomes

C(s) =
Q(s)

1 − Q(s)Go(s)
=

vos + 1

Koαs
=

vo

Koα
+

1
Koαs

which is a PI controller.
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PID Synthesis using the Affine Parametrisation

With the PI controller parameters found above the nominal

complementary sensitivity becomes

To(s) = Q(s)Go(s) = FQ (s) =
1

αs + 1
where α becomes a tuning parameter.
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PID Synthesis using the Affine Parametrisation

With the PI controller parameters found above the nominal

complementary sensitivity becomes

To(s) = Q(s)Go(s) = FQ (s) =
1

αs + 1
where α becomes a tuning parameter.

Choosing α smaller makes the loop faster, whereas a larger value for

α slows the loop down.
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PID Synthesis using the Affine Parametrisation

With the PI controller parameters found above the nominal

complementary sensitivity becomes

To(s) = Q(s)Go(s) = FQ (s) =
1

αs + 1
where α becomes a tuning parameter.

Choosing α smaller makes the loop faster, whereas a larger value for

α slows the loop down.

We thus see a direct connection between the design variable α and

the final closed loop performance.
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PID Synthesis using the Affine Parametrisation

With the PI controller parameters found above the nominal

complementary sensitivity becomes

To(s) = Q(s)Go(s) = FQ (s) =
1

αs + 1
where α becomes a tuning parameter.

Choosing α smaller makes the loop faster, whereas a larger value for

α slows the loop down.

We thus see a direct connection between the design variable α and

the final closed loop performance.

This is one of the principal advantages of the affine parametrisation

methodology.
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PID Synthesis using the Affine Parametrisation

Effect of α on output disturbance rejection
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PID Synthesis using the Affine Parametrisation

PI and PID controllers are traditionally tuned in terms of their

parameters.
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PID Synthesis using the Affine Parametrisation

PI and PID controllers are traditionally tuned in terms of their

parameters.

However, systematic design, trade-off decisions and deciding whether

a PI(D) is sufficient or not, is significantly easier in the model-based

affine structure as the PI(D) gains are explicit functions of the desired

closed loop response.
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PI and PID controllers are traditionally tuned in terms of their

parameters.

However, systematic design, trade-off decisions and deciding whether

a PI(D) is sufficient or not, is significantly easier in the model-based

affine structure as the PI(D) gains are explicit functions of the desired

closed loop response.

Inserting a first order model into the affine structure automatically

generates a PI controller.
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PID Synthesis using the Affine Parametrisation

PI and PID controllers are traditionally tuned in terms of their

parameters.

However, systematic design, trade-off decisions and deciding whether

a PI(D) is sufficient or not, is significantly easier in the model-based

affine structure as the PI(D) gains are explicit functions of the desired

closed loop response.

Inserting a first order model into the affine structure automatically

generates a PI controller.

Inserting a second order model into the Q-structure automatically

generates a PID controller.
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PID Synthesis using the Affine Parametrisation

Whether a PI(D) is sufficient for a particular process is directly related

to whether or not a first (second) order model can approximate the

process well up to the frequencies where performance is limited by

other factors such as delays, actuator saturations, sensor noise or

fundamentally unknown dynamics.
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PID Synthesis using the Affine Parametrisation

Whether a PI(D) is sufficient for a particular process is directly related

to whether or not a first (second) order model can approximate the

process well up to the frequencies where performance is limited by

other factors such as delays, actuator saturations, sensor noise or

fundamentally unknown dynamics.

The first and second order models are easily obtained from step

response models.

Using this method, the control engineer works directly in terms of

observable process properties (rise time, gain, etc.) and closed loop

parameters providing an insightful basis for making trade-off decisions.

The PI(D) parameters follow automatically.
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PID Synthesis using the Affine Parametrisation

Whether a PI(D) is sufficient for a particular process is directly related

to whether or not a first (second) order model can approximate the

process well up to the frequencies where performance is limited by

other factors such as delays, actuator saturations, sensor noise or

fundamentally unknown dynamics.

The first and second order models are easily obtained from step

response models.

Using this method, the control engineer works directly in terms of

observable process properties (rise time, gain, etc.) and closed loop

parameters providing an insightful basis for making trade-off decisions.

The PI(D) parameters follow automatically.

The approach does not preempt the design choice of cancelling or

shifting the open-loop poles - both are possible and associated with

different trade-offs.
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Affine Parametrisation for Systems having Time
Delays

The first method we consider is to replace the time delay with it’s Pade

approximation given by:

e−sτo
≈

2 − sτo

2 + sτo
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e−sτo
≈

2 − sτo
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The usual technique for affine parametrisation can then be applied to

design Q(s).
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approximation given by:

e−sτo
≈

2 − sτo

2 + sτo

The usual technique for affine parametrisation can then be applied to

design Q(s).

The Pade approximation usually works well if the time delay is smaller

than the dominant time constant of the plant.
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Affine Parametrisation for Systems having Time
Delays

The first method we consider is to replace the time delay with it’s Pade

approximation given by:

e−sτo
≈

2 − sτo

2 + sτo

The usual technique for affine parametrisation can then be applied to

design Q(s).

The Pade approximation usually works well if the time delay is smaller

than the dominant time constant of the plant.

For the case where the time delay is comparable or larger than the

dominant time constant the Smith controller should be considered.
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Affine Parametrisation for Systems having Time
Delays

We consider here a special class of linear systems, namely those that

be written as

Go(s) = e−sτo Go(s)

where Go(s) is a stable rational transfer function.

Lecture 4: Affine Parameterisation. PID Revisited, Time Delays and Undesirable Closed Loop Poles – p. 10/32



The University of Newcastle

Affine Parametrisation for Systems having Time
Delays

We consider here a special class of linear systems, namely those that

be written as

Go(s) = e−sτo Go(s)

where Go(s) is a stable rational transfer function.

A classical method for dealing with pure time delays as in the above

model, was to use a dead-time compensator.
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Affine Parametrisation for Systems having Time
Delays

We consider here a special class of linear systems, namely those that

be written as

Go(s) = e−sτo Go(s)

where Go(s) is a stable rational transfer function.

A classical method for dealing with pure time delays as in the above

model, was to use a dead-time compensator.

This idea was introduced by Otto Smith in the 1950’s.
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Affine Parametrisation for Systems having Time
Delays

Smith’s controller is based upon two key ideas:
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Affine Parametrisation for Systems having Time
Delays

Smith’s controller is based upon two key ideas:

Affine synthesis and,

the recognition that delay characteristics cannot be inverted.
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Affine Parametrisation for Systems having Time
Delays

Smith’s controller is based upon two key ideas:

Affine synthesis and,

the recognition that delay characteristics cannot be inverted.

The structure of the traditional Smith controller can be obtained from

the scheme shown on the next slide, which is a particular case of the

general scheme for affine parameterisation given earlier.
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Affine Parametrisation for Systems having Time
Delays

Smith’s controller (Q form)

+

+

Di(s)

+

+

Do(s)

+

+

+

Dn(s)

Y (s)
+

−

EQ (s)

Plant
U(s)R(s)

Ym(s)

e−sτḠo(s)

Q(s)

−

Controller

Using earlier results we know the above configuration describes all

stabilising controllers. All we need do is choose Q(s) to be a stable proper

transfer function.
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Affine Parametrisation for Systems having Time
Delays

Youla’s parametrisation of all stabilising controllers for stable plants

−
+

+

+

+

+

+

+

+

−

PlantQ(s)

Di(s)

Go(s)

Ym(s)

R(s) U(s)

Do(s)

Dn(s)

Y (s)

EQ (s)

Controller
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Affine Parametrisation for Systems having Time
Delays

Design of Q(s) for systems with a time delay
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Affine Parametrisation for Systems having Time
Delays

Design of Q(s) for systems with a time delay

Using the structure shown above, the nominal complementary

sensitivity is

To(s) = e−sτGo(s)Q(s)
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Affine Parametrisation for Systems having Time
Delays

Design of Q(s) for systems with a time delay

Using the structure shown above, the nominal complementary

sensitivity is

To(s) = e−sτGo(s)Q(s)

This suggests that Q(s) can be designed considering only the

rational part of the model, Go(s).
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Affine Parametrisation for Systems having Time
Delays

To carry out the design, the procedures and criteria discussed

previously can be used.
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Affine Parametrisation for Systems having Time
Delays

To carry out the design, the procedures and criteria discussed

previously can be used.

In particular, we need an approximate (stable, causal and proper)

inverse for Go(s) = e−sτGo(s).
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Affine Parametrisation for Systems having Time
Delays

To carry out the design, the procedures and criteria discussed

previously can be used.

In particular, we need an approximate (stable, causal and proper)

inverse for Go(s) = e−sτGo(s).

Since the delay has no causal inverse, we seek an approximate

inverse for Go(s).
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Affine Parametrisation for Systems having Time
Delays

To carry out the design, the procedures and criteria discussed

previously can be used.

In particular, we need an approximate (stable, causal and proper)

inverse for Go(s) = e−sτGo(s).

Since the delay has no causal inverse, we seek an approximate

inverse for Go(s).

This can be achieved directly. Alternatively, one can use the idea of

feedback to generate a stable inverse. Thus we might conceive of

evaluating Q(s) by

Q(s) =
C(s)

1 + C(s)Go(s)
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Affine Parametrisation for Systems having Time
Delays

Note that the form of Q(s) suggested in the previous slide is simply a

mechanism for obtaining an approximate inverse for Go(s).
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Affine Parametrisation for Systems having Time
Delays

Note that the form of Q(s) suggested in the previous slide is simply a

mechanism for obtaining an approximate inverse for Go(s).

In particular, if C(s) has high gain, then

Q(s) =
C(s)

1 + C(s)Go(s)
⇒

(

Go(s)
)−1
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Affine Parametrisation for Systems having Time
Delays

Note that the form of Q(s) suggested in the previous slide is simply a

mechanism for obtaining an approximate inverse for Go(s).

In particular, if C(s) has high gain, then

Q(s) =
C(s)

1 + C(s)Go(s)
⇒

(

Go(s)
)−1

If we use the above idea to choose Q(s); i.e. put

Q(s) =
C(s)

1 + C(s)Go(s)

then we can redraw the controller as on the next slide.
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Affine Parametrisation for Systems having Time
Delays

Smith’s controller (traditional form)

−
+

+

Di(s)

+

Do(s)

+

+

Dn(s)

Y (s)
+

Plant
U(s)R(s)

Ym(s)

C(s)

(e−sτ
− 1)Ḡo(s)

−

+

Controller

+

In this form, we see that the design of C(s) can essentially be based on

the nondelayed model. This is precisely the form of the traditional Smith

controller.
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Further Considerations

So far we have assumed that the nominal open loop plant model was

stable.
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Further Considerations

So far we have assumed that the nominal open loop plant model was

stable.

This meant that all we needed to do was to choose Q(s) to ensure

closed loop stability.
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Further Considerations

So far we have assumed that the nominal open loop plant model was

stable.

This meant that all we needed to do was to choose Q(s) to ensure

closed loop stability.

We next examine a methodology, using affine parameterisation, to

remove undesirable closed loop poles.
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Undesirable Closed Loop Poles

The idea of the Q(s) parametrisation remains valid since

Q(s) =
C(s)

1 + Go(s)C(s)
.

can always be solved for Q(s) in terms of any C(s).
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Undesirable Closed Loop Poles

The idea of the Q(s) parametrisation remains valid since

Q(s) =
C(s)

1 + Go(s)C(s)
.

can always be solved for Q(s) in terms of any C(s).

We also recall the following expressions for the sensitivity functions

To(s) = Q(s)Go(s)

So(s) = 1 − Q(s)Go(s)

Sio(s) = (1 − Q(s)Go(s)) Go(s)

Suo(s) = Q(s)
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Undesirable Closed Loop Poles

Up to this point is has been implicitly assumed that all open loop plant

poles were stable and hence could be tolerated in the closed loop

input sensitivity function Sio(s).
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Undesirable Closed Loop Poles

Up to this point is has been implicitly assumed that all open loop plant

poles were stable and hence could be tolerated in the closed loop

input sensitivity function Sio(s).

In practice we need to draw a distinction between stable poles and

desirable poles.
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Undesirable Closed Loop Poles

Up to this point is has been implicitly assumed that all open loop plant

poles were stable and hence could be tolerated in the closed loop

input sensitivity function Sio(s).

In practice we need to draw a distinction between stable poles and

desirable poles.

For example, a lightly damped resonant pair might well be stable but is

probably undesirable.
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Undesirable Closed Loop Poles

Up to this point is has been implicitly assumed that all open loop plant

poles were stable and hence could be tolerated in the closed loop

input sensitivity function Sio(s).

In practice we need to draw a distinction between stable poles and

desirable poles.

For example, a lightly damped resonant pair might well be stable but is

probably undesirable.

Say the open loop plant contains some undesirable (including

unstable) poles. The only way to remove poles from the

complementary sensitivity is to choose Q(s) to contain these poles as

zeros.
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Undesirable Closed Loop Poles

This results in cancellation of these poles from the product Q(s)Go(s)
and hence from So(s) and To(s).
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Undesirable Closed Loop Poles

This results in cancellation of these poles from the product Q(s)Go(s)
and hence from So(s) and To(s).

However, the cancelled poles may still appear as poles of the nominal

input sensitivity Sio(s), depending on the zeros of 1 − Q(s)Go(s), i.e.

the zeros of So(s).
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Undesirable Closed Loop Poles

This results in cancellation of these poles from the product Q(s)Go(s)
and hence from So(s) and To(s).

However, the cancelled poles may still appear as poles of the nominal

input sensitivity Sio(s), depending on the zeros of 1 − Q(s)Go(s), i.e.

the zeros of So(s).

To eliminate these poles from Sio(s) we need to also ensure that the

offending poles are also zeros of (1 − Q(s)Go(s)).
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Undesirable Closed Loop Poles

This results in cancellation of these poles from the product Q(s)Go(s)
and hence from So(s) and To(s).

However, the cancelled poles may still appear as poles of the nominal

input sensitivity Sio(s), depending on the zeros of 1 − Q(s)Go(s), i.e.

the zeros of So(s).

To eliminate these poles from Sio(s) we need to also ensure that the

offending poles are also zeros of (1 − Q(s)Go(s)).

The above statements represent a set of additional constraints on

Q(s) to ensure closed loop stability.
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Undesirable Closed Loop Poles

This results in cancellation of these poles from the product Q(s)Go(s)
and hence from So(s) and To(s).

However, the cancelled poles may still appear as poles of the nominal

input sensitivity Sio(s), depending on the zeros of 1 − Q(s)Go(s), i.e.

the zeros of So(s).

To eliminate these poles from Sio(s) we need to also ensure that the

offending poles are also zeros of (1 − Q(s)Go(s)).

The above statements represent a set of additional constraints on

Q(s) to ensure closed loop stability.

The result is summarised in the following Lemma:
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Undesirable Closed Loop Poles

Lemma. (Interpolation constraints to avoid undesirable poles). Consider a

nominal feedback control loop with one d.o.f. and assume Go(s) contains

undesirable (including unstable) open loop poles. We then have

1. Each of the sensitivity functions To(s), So(s), Sio(s) and Suo(s) will

have no undesirable poles if and only if: when the controller C(s) is

expressed as:

Q(s) =
C(s)

1 + Go(s)C(s)
.

Then Q(s) must satisfy the following (so called) Interpolation

constraints:

(a) Q(s) is proper, stable and has only desirable poles.

(b) Any undesirable poles of Go(s) are zeros of Q(s) with, at least, the

same multiplicity as Go(s).

(c) Any undesirable poles of Go(s) are zeros of 1 − Q(s)Go(s), with at

least the same multiplicity as Go(s).
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Undesirable Closed Loop Poles

Lemma. (cont.)

2. When conditions (b) and (c) are satisfied, then all resultant unstable

pole-zero cancellations in C(s) should be performed analytically prior

to implementation.
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Undesirable Closed Loop Poles

PID Design Revisited

We return to the design of a PI controller for a first order plant.
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Undesirable Closed Loop Poles

PID Design Revisited

We return to the design of a PI controller for a first order plant.

We found that design based on cancelling the open loop poles in

Go(s) gave excellent output disturbance rejection.
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We return to the design of a PI controller for a first order plant.

We found that design based on cancelling the open loop poles in

Go(s) gave excellent output disturbance rejection.

In chemical processes, however, disturbances are frequently better

modelled as occurring at the input to the system.
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Undesirable Closed Loop Poles

PID Design Revisited

We return to the design of a PI controller for a first order plant.

We found that design based on cancelling the open loop poles in

Go(s) gave excellent output disturbance rejection.

In chemical processes, however, disturbances are frequently better

modelled as occurring at the input to the system.

We then recall that, the input disturbance response Yd(s) is given by

Yd(s) = Sio(s)Di(s)

Sio(s) = So(s)Go(s)
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Undesirable Closed Loop Poles

PID Design Revisited

Hence, when any plant pole is cancelled in the controller, it remains

controllable from the input disturbance, and is still observable at the

output.
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Undesirable Closed Loop Poles

PID Design Revisited

Hence, when any plant pole is cancelled in the controller, it remains

controllable from the input disturbance, and is still observable at the

output.

Thus the transient component in the input disturbance response will

have a mode associated with that pole.
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Undesirable Closed Loop Poles

PID Design Revisited

Hence, when any plant pole is cancelled in the controller, it remains

controllable from the input disturbance, and is still observable at the

output.

Thus the transient component in the input disturbance response will

have a mode associated with that pole.

The following slide shows the input disturbance response for the PI

controller designed earlier via the affine parametrisation.
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Undesirable Closed Loop Poles

Input disturbance rejection with plant pole cancellation, for different

values of α.
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Note that changing α changes the magnitude of the response but the

slow transient remains since this is dominated by the open loop plant

as is evident from:

Yd(s) = Sio(s)Di(s)

Sio(s) = So(s)Go(s)
Lecture 4: Affine Parameterisation. PID Revisited, Time Delays and Undesirable Closed Loop Poles – p. 26/32



The University of Newcastle

Undesirable Closed Loop Poles

The origin of this problem is the cancellation of a pole in Go(s) with a

zero in C(s).
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Undesirable Closed Loop Poles

The origin of this problem is the cancellation of a pole in Go(s) with a

zero in C(s).

As shown earlier, the only way to remove the pole from Sio(s) is to

choose FQ (s) in such a way that the offending pole is a zero of

So(s) = 1 − Q(s)Go(s), i.e. we require:

So(−a) = 0 =⇒ To(−a) = FQ (−a) = 1

where a , 1
vo
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Undesirable Closed Loop Poles

Lemma. Consider the plant model and Youla’s parametrisation of all

stabilising controllers for stable plants where Q(s) = (Go(s))−1 FQ (s).
Then a PI controller which does not cancel the plant pole, is obtained as

C(s) = KP +
KI

s

where

KP =
2ψclωclvo − 1

Ko

KI =

voω
2
cl

Ko

and where ψcl and ωcl are chosen to obtain a closed loop characteristic

polynomial given by:

Acl(s) =
( s
ωcl

)2
+ 2ψcl

( s
ωcl

)

+ 1
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Undesirable Closed Loop Poles

The proof of the above result is given in the book Control System

Design (Goodwin et. al.).
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Undesirable Closed Loop Poles

The proof of the above result is given in the book Control System

Design (Goodwin et. al.).

It suffices to say that the key idea is to ensure that the slow open loop

pole at α = 1
vo

is cancelled in the transfer function

So(s) = 1 − Go(s)Q(s); i.e.

So(−a) = 0 =⇒ To(−a) = FQ (−a) = 1

where a , 1
vo
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Undesirable Closed Loop Poles

We repeat the simulation presented earlier where α = 1
vo

remained in

the input disturbance rejection response.

Input disturbance rejection without plant pole cancellation.
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Undesirable Closed Loop Poles

We repeat the simulation presented earlier where α = 1
vo

remained in

the input disturbance rejection response.

Input disturbance rejection without plant pole cancellation.
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We see now that changing the design variable α not only changes the

size of the response but it also changes the nature of the transient.
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Undesirable Closed Loop Poles

In the examples given above we went to some trouble to ensure that

the poles of all closed loop sensitivity functions (especially the input

disturbance sensitivity, Sio(s)) lay in desirable regions of the complex

plane.
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Undesirable Closed Loop Poles

In the examples given above we went to some trouble to ensure that

the poles of all closed loop sensitivity functions (especially the input

disturbance sensitivity, Sio(s)) lay in desirable regions of the complex

plane.

We found that extra interpolation constraints on Q(s) were needed to

eliminate undesirable poles from the input sensitivity Sio(s).
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Undesirable Closed Loop Poles

In the examples given above we went to some trouble to ensure that

the poles of all closed loop sensitivity functions (especially the input

disturbance sensitivity, Sio(s)) lay in desirable regions of the complex

plane.

We found that extra interpolation constraints on Q(s) were needed to

eliminate undesirable poles from the input sensitivity Sio(s).

In the design examples presented to date we have chosen Q(s) to

explicitly account for these interpolation constraints.
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Undesirable Closed Loop Poles

In the examples given above we went to some trouble to ensure that

the poles of all closed loop sensitivity functions (especially the input

disturbance sensitivity, Sio(s)) lay in desirable regions of the complex

plane.

We found that extra interpolation constraints on Q(s) were needed to

eliminate undesirable poles from the input sensitivity Sio(s).

In the design examples presented to date we have chosen Q(s) to

explicitly account for these interpolation constraints.

However, this is a tedious task and one is lead to ask the following

question: Can we reparameterise C(s) in such a way that the

interpolation constraints given in the Lemma are automatically

satisfied?
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Summary of results for systems having time-
delays

The key issue is that delays cannot be inverted.
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Summary of results for systems having time-
delays

The key issue is that delays cannot be inverted.

In that sense, delays are related to NMP plant zeros, which cannot be

stably inverted either.
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Summary of results for systems having time-
delays

The key issue is that delays cannot be inverted.

In that sense, delays are related to NMP plant zeros, which cannot be

stably inverted either.

A delay of magnitude T , causes similar trade-offs as an unstable zero

at s = T/2.
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In that sense, delays are related to NMP plant zeros, which cannot be

stably inverted either.

A delay of magnitude T , causes similar trade-offs as an unstable zero

at s = T/2.

An early controller conceived to deal with the non-invertibility of delays

is the famous Smith-predictor.
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Summary of results for systems having time-
delays

The key issue is that delays cannot be inverted.

In that sense, delays are related to NMP plant zeros, which cannot be

stably inverted either.

A delay of magnitude T , causes similar trade-offs as an unstable zero

at s = T/2.

An early controller conceived to deal with the non-invertibility of delays

is the famous Smith-predictor.

The trade-offs made in the Smith-predictor can be nicely analysed in

the affine structure. Indeed, the structures are very similar. Caution

should be exercised, however, not to confuse the generic controller

representation of the affine parametrisation with the particular

synthesis technique of the Smith-predictor.

Lecture 4: Affine Parameterisation. PID Revisited, Time Delays and Undesirable Closed Loop Poles – p. 32/32


	Outline
	Outline
	Outline
	Outline

	PID Synthesis using the Affine Parametrisation
	PID Synthesis using the Affine Parametrisation
	PID Synthesis using the Affine Parametrisation

	PID Synthesis using the Affine Parametrisation
	PID Synthesis using the Affine Parametrisation

	PID Synthesis using the Affine Parametrisation
	PID Synthesis using the Affine Parametrisation
	PID Synthesis using the Affine Parametrisation
	PID Synthesis using the Affine Parametrisation

	PID Synthesis using the Affine Parametrisation
	PID Synthesis using the Affine Parametrisation
	PID Synthesis using the Affine Parametrisation
	PID Synthesis using the Affine Parametrisation
	PID Synthesis using the Affine Parametrisation

	PID Synthesis using the Affine Parametrisation
	PID Synthesis using the Affine Parametrisation
	PID Synthesis using the Affine Parametrisation
	PID Synthesis using the Affine Parametrisation

	Affine Parametrisation for Systems having Time Delays
	Affine Parametrisation for Systems having Time Delays
	Affine Parametrisation for Systems having Time Delays
	Affine Parametrisation for Systems having Time Delays

	Affine Parametrisation for Systems having Time Delays
	Affine Parametrisation for Systems having Time Delays
	Affine Parametrisation for Systems having Time Delays

	Affine Parametrisation for Systems having Time Delays
	Affine Parametrisation for Systems having Time Delays
	Affine Parametrisation for Systems having Time Delays
	Affine Parametrisation for Systems having Time Delays

	Affine Parametrisation for Systems having Time Delays
	Affine Parametrisation for Systems having Time Delays
	Affine Parametrisation for Systems having Time Delays
	Affine Parametrisation for Systems having Time Delays
	Affine Parametrisation for Systems having Time Delays

	Affine Parametrisation for Systems having Time Delays
	Affine Parametrisation for Systems having Time Delays
	Affine Parametrisation for Systems having Time Delays
	Affine Parametrisation for Systems having Time Delays

	Affine Parametrisation for Systems having Time Delays
	Affine Parametrisation for Systems having Time Delays
	Affine Parametrisation for Systems having Time Delays

	Affine Parametrisation for Systems having Time Delays
	Further Considerations
	Further Considerations
	Further Considerations

	Undesirable Closed Loop Poles
	Undesirable Closed Loop Poles

	Undesirable Closed Loop Poles
	Undesirable Closed Loop Poles
	Undesirable Closed Loop Poles
	Undesirable Closed Loop Poles

	Undesirable Closed Loop Poles
	Undesirable Closed Loop Poles
	Undesirable Closed Loop Poles
	Undesirable Closed Loop Poles
	Undesirable Closed Loop Poles

	Undesirable Closed Loop Poles
	Undesirable Closed Loop Poles
	Undesirable Closed Loop Poles
	Undesirable Closed Loop Poles
	Undesirable Closed Loop Poles
	Undesirable Closed Loop Poles

	Undesirable Closed Loop Poles
	Undesirable Closed Loop Poles
	Undesirable Closed Loop Poles

	Undesirable Closed Loop Poles
	Undesirable Closed Loop Poles
	Undesirable Closed Loop Poles

	Undesirable Closed Loop Poles
	Undesirable Closed Loop Poles
	Undesirable Closed Loop Poles

	Undesirable Closed Loop Poles
	Undesirable Closed Loop Poles

	Undesirable Closed Loop Poles
	Undesirable Closed Loop Poles
	Undesirable Closed Loop Poles
	Undesirable Closed Loop Poles

	Summary of results for systems having time-delays
	Summary of results for systems having time-delays
	Summary of results for systems having time-delays
	Summary of results for systems having time-delays
	Summary of results for systems having time-delays


