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MIMO Systems

Up to now we have assumed that a control problem can be

reduced to controlling a single “control variable” with a

single “manipulated variable”. The two are assumed to be

related via some simple (linear) dynamics, for example, a

transfer function

Y(s) = G(s)U(s), where Y, G, U : C 7→ C.
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MIMO Systems

Up to now we have assumed that a control problem can be

reduced to controlling a single “control variable” with a

single “manipulated variable”. The two are assumed to be

related via some simple (linear) dynamics, for example, a

transfer function

Y(s) = G(s)U(s), where Y, G, U : C 7→ C.

However, in most cases, a system has more than one

manipulated variable and more than one control input, and

the interactions between these are such that the model

cannot be further reduced.

A system in which the input and the output are vectors,

rather than scalars, is a system with Multiple Inputs and

Multiple Outputs (a MIMO system), sometimes also called a

multivariable system.
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Example: Control of an Aircraft

Wilbur Wright said in 1901:

Men know how to construct airplanes. Men also know how to

build engines. Inability to balance and steer still confronts

students on the flying problem. When this one feature has been

worked out, the age of flying will have arrived, for all other

difficulties are of minor importance.
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Example: Control of an Aircraft

Wilbur Wright said in 1901:

Men know how to construct airplanes. Men also know how to

build engines. Inability to balance and steer still confronts

students on the flying problem. When this one feature has been

worked out, the age of flying will have arrived, for all other

difficulties are of minor importance.

The Wright Brothers

solved the control problem

and flew the Kitty Hawk

on december 17, 1903.

Lecture 7: Introduction to MIMO Systems – p. 4/35



The University of Newcastle

Example: Control of an Aircraft

The Wright Brothers had to solve a MIMO control problem!
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Example: Copper Heap Bioleaching

Heap bioleaching is a process used to extract copper and other

metals from large amounts of heaped ore with low grade

content, based on the action of chemolithotrophic bacteria.

Lecture 7: Introduction to MIMO Systems – p. 6/35



The University of Newcastle

Example: Copper Heap Bioleaching

Heap bioleaching is a complex MIMO process with many

interacting variables, among many others:

Raffinate concentration Bacteria population

Temperature and pH gradient Oxygen flow

Copper for industrial use

Pump
Raffinate drip lines

Raffinate pond

Copper extraction plant

Impervious liner

PLS pond
2 Metallic Cu extraction

1 Ore leaching

3 Fe oxidation

Raffinate

AirBlower
Heap of crushed copper sulfide ore

Forced aireation lines

PLS
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Transfer Matrices

When a MIMO system can be represented by a LTI model,

we can use an external representation that extends the idea

of a transfer function: a transfer matrix function
















Y1(s)

Y2(s)

...

Yq(s)

















=

















G11(s) G12(s) · · · G1p

G21(s) G22(s) · · · G2p

...
...

. . .
...

Gq1(s) Gq2(s) · · · Gqp

































U1(s)

U2(s)

...

Up(s)
















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Transfer Matrices

When a MIMO system can be represented by a LTI model,

we can use an external representation that extends the idea

of a transfer function: a transfer matrix function
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U1(s)

U2(s)

...

Up(s)

















We can still write

Y(s) = G(s)U(s),

but now Y ∈ C
q, U ∈ C

p, and G ∈ C
q×p. Besides gain and

phase in G(s), for MIMO systems also directions play a

fundamental role.
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Example: Four Tank Apparatus

The Four Tank Apparatus is a laboratory system useful to study

MIMO systems.

It is a system with

two inputs (the flows u1 and

u2 provided by the pumps)

and two outputs (the levels y1

and y2 of the two lower tanks).
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Example: Four Tank Apparatus

The Four Tank Apparatus is a laboratory system useful to study

MIMO systems.

It is a system with

two inputs (the flows u1 and

u2 provided by the pumps)

and two outputs (the levels y1

and y2 of the two lower tanks).

At a suitable operating point,

the system can be described

by the transfer matrix

G(s) =





3.7γ1

62s+1

3.7(1−γ2)

(23s+1)(62s+1)

4.7(1−γ1)

(30s+1)(90s+1)

4.7γ2

90s+1




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Poles of a MIMO System

The poles of a multivariable system are the poles of the

elements of the transfer matrix.

Example. Take the transfer matrix of the four tank apparatus,

G(s) =





3.7γ1

62s+1

3.7(1−γ2)

(23s+1)(62s+1)

4.7(1−γ1)

(30s+1)(90s+1)

4.7γ2

90s+1



 .

Then the poles of G(s) lie at

p1 = −1/62, p2 = −1/23, p3 = −1/30, p4 = −1/90.
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Poles of a MIMO System

The poles of a multivariable system are the poles of the

elements of the transfer matrix.

Example. Take the transfer matrix of the four tank apparatus,

G(s) =





3.7γ1

62s+1

3.7(1−γ2)

(23s+1)(62s+1)

4.7(1−γ1)

(30s+1)(90s+1)

4.7γ2

90s+1



 .

Then the poles of G(s) lie at

p1 = −1/62, p2 = −1/23, p3 = −1/30, p4 = −1/90.

It is less straightforward to tell the multiplicity of the poles.

One way to do it, if the system is square, is via the

computation of the determinant of G(s).
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Poles of a MIMO System

The multiplicity of the poles of a MIMO system, if it has the

same number of inputs and outputs, can be found from the

determinant of the transfer matrix.

Example. Consider again the four tank apparatus. Then

det G(s) = det





3.7γ1

62s+1

3.7(1−γ2)

(23s+1)(62s+1)

4.7(1−γ1)

(30s+1)(90s+1)

4.7γ2

90s+1





=
3.7

(62s + 1)

4.7

(90s + 1)

(

γ1γ2 −
(1 − γ1)(1 − γ2)

(30s + 1)(23s + 1)

)

=
3.7 × 4.7

(62s + 1)(90s + 1)

(

γ1γ2(30s + 1)(23s + 1) − (1 − γ2)(1 − γ1)

(30s + 1)(23s + 1)

)

We see that all the poles of G(s) have multiplicity 1.
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Poles of a MIMO System

The multiplicity of the poles of a MIMO system, if it has the

same number of inputs and outputs, can be found from the

determinant of the transfer matrix.

Example. Consider again the four tank apparatus. Then

det G(s) = det





3.7γ1

62s+1

3.7(1−γ2)

(23s+1)(62s+1)

4.7(1−γ1)

(30s+1)(90s+1)

4.7γ2

90s+1





=
3.7

(62s + 1)

4.7

(90s + 1)

(

γ1γ2 −
(1 − γ1)(1 − γ2)

(30s + 1)(23s + 1)

)

=
3.7 × 4.7

(62s + 1)(90s + 1)

(

γ1γ2(30s + 1)(23s + 1) − (1 − γ2)(1 − γ1)

(30s + 1)(23s + 1)

)

We see that all the poles of G(s) have multiplicity 1.

If the system is not square, then the multiplicity of the poles of

G(s) can be found from a minimal state space

representation.
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Poles of a MIMO System

Example. Consider the transfer matrix

G(s) =





4
(s+1)(s+2)

−1
(s+1)

2
(s+1)

−1
2(s+1)(s+2)





We can see that it has poles at p1 = −1 and p2 = −2. To find

their multiplicity we compute the determinant of G(s),

det G(s) =
−4

2(s + 1)2(s + 2)2
+

2

(s + 1)2

=
2

(s + 1)2

(

1 −
1

(s + 2)2

)

=
2

[

(s + 2)2 − 1
]

(s + 1)2(s + 2)2

=
2(s + 3)(s + 1)

(s + 1)2(s + 2)2
= .
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
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Poles of a MIMO System

Example. Consider the transfer matrix

G(s) =





4
(s+1)(s+2)

−1
(s+1)

2
(s+1)

−1
2(s+1)(s+2)





We can see that it has poles at p1 = −1 and p2 = −2. To find

their multiplicity we compute the determinant of G(s),

det G(s) =
−4

2(s + 1)2(s + 2)2
+

2

(s + 1)2

=
2

(s + 1)2

(

1 −
1

(s + 2)2

)

=
2

[

(s + 2)2 − 1
]

(s + 1)2(s + 2)2

=
2(s + 3)

(s + 1)(s + 2)2
.

Thus there is one pole at s = −1 and two poles at s = −2.
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Zeros of a MIMO system

There are many definitions of zeros for MIMO systems. The most

useful one that of a transmission zero, which can be (loosely)

defined as a pole of the inverse plant (for square plants).

Example. Consider again the transfer matrix of the previous

Example

G(s) =





4
(s+1)(s+2)

−1
(s+1)

2
(s+1)

−1
2(s+1)(s+2)





Because det[G(s)−1] = det[G(s)]−1, we can obtain the zeros of

G(s) as the zeros of det[G(s)]. From the previous Example

det G(s) =
2(s + 3)

(s + 1)(s + 2)2
.

Thus G(s) has a zero at s = −3. Again, more sophisticated

methods should be used if the transfer matrix is not square.
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Stability of MIMO Systems

Stability for MIMO systems is as for SISO systems.

A continuous-time multivariable system is stable if and only if

all its poles lie in the left half plane.

InstabilityStability

0

jω

σ

s-plane

(a) Continuous-time
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Stability of MIMO Systems

Stability for MIMO systems is as for SISO systems.

A continuous-time multivariable system is stable if and only if

all its poles lie in the left half plane.

A discrete-time multivariable system is stable if and only if all

its poles lie inside the unit circle.

InstabilityStability

0

jω

σ

s-plane

(c) Continuous-time

Instability

Stability

z-plane

σ

jω

(d) Discrete-time
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Minimum Phase MIMO Systems

As for a SISO system, a MIMO system is said to be minimum phase

if it has no zeros outside the stability region. Otherwise, it is called

nonminimum phase.

A continuous-time multivariable system is minimum phase if

all its zeros lie in the left half plane.
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Minimum Phase MIMO Systems

As for a SISO system, a MIMO system is said to be minimum phase

if it has no zeros outside the stability region. Otherwise, it is called

nonminimum phase.

A continuous-time multivariable system is minimum phase if

all its zeros lie in the left half plane.

A discrete-time multivariable system is minimum phase if all its

zeros lie inside the unit circle.

Example. Consider again the four tank apparatus system. It is

not difficult to show that the system has two multivariable zeros

that satisfy det[G(s)] = 0 at the roots of

(23s + 1)(30s + 1) − η = 0, where η =
(1 − γ1)(1 − γ2)

γ1γ2

.

The system is nonminimum phase if η > 1 ⇔ (γ1 + γ2) < 1.
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Interaction and Decoupling

One of the most challenging aspects of the control of MIMO

systems is the interaction between different inputs and

outputs.

In general, each input will have an effect on every output of

the system (outputs are coupled). Take for example a 2 × 2

system





Y1(s)

Y2(s)



 =





G11(s) G12(s)

G21(s) G22(s)









U1(s)

U2(s)





=





G11(s)U1(s) + G12(s)U2(s)

G12(s)U1(s) + G22(s)U2(s)




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Interaction and Decoupling

One of the most challenging aspects of the control of MIMO

systems is the interaction between different inputs and

outputs.

In general, each input will have an effect on every output of

the system (outputs are coupled). Take for example a 2 × 2

system





Y1(s)

Y2(s)



 =





G11(s) G12(s)

G21(s) G22(s)









U1(s)

U2(s)





=





G11(s)U1(s) + G12(s)U2(s)

G12(s)U1(s) + G22(s)U2(s)





When the MIMO system is such that each input only affects

one particular output, different from the outputs affected by

other inputs, the system is decoupled or noninteracting.
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Interaction and Decoupling

Because of coupling, in MIMO systems signals can interact in

unexpected ways.

G12(s)

G11(s)
u1

u2

G22(s)

G21(s)
y2

y1
i

i

c

c

c

c

-

-

- ?

-

-

-

6

-

-

In this 2 × 2 transfer matrix, the

system will be decoupled only if

G12(s) = 0 = G21(s) — i.e., the

transfer matrix is diagonal.
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Interaction and Decoupling

Because of coupling, in MIMO systems signals can interact in

unexpected ways.

G12(s)

G11(s)
u1

u2

G22(s)

G21(s)
y2

y1
i

i

c

c

c

c

-

-

- ?

-

-

-

6

-

-

In this 2 × 2 transfer matrix, the

system will be decoupled only if

G12(s) = 0 = G21(s) — i.e., the

transfer matrix is diagonal.

Otherwise, there is coupling,

and the manipulation of any in-

put may affect all outputs. Sup-

pose for example that we close

a single loop between y2 and

u2.
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Interaction and Decoupling

Because of coupling, in MIMO systems signals can interact in

unexpected ways.

G12(s)

G11(s)
u1

u2

G22(s)

G21(s)
y2

y1

K(s)

i

i

c

c

c

c

-

-

?

6

¾

6
-

- -

- -

-

In this 2 × 2 transfer matrix, the

system will be decoupled only if

G12(s) = 0 = G21(s) — i.e., the

transfer matrix is diagonal.

Otherwise, there is coupling,

and the manipulation of any in-

put may affect all outputs. Sup-

pose for example that we close

a single loop between y2 and

u2.
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Interaction and Decoupling

Because of coupling, in MIMO systems signals can interact in

unexpected ways.

G12(s)

G11(s)
u1

u2

G22(s)

G21(s)
y2

y1

K(s)

i

i

c

c

c

c

-

-

?

6

¾

6
-

- -

- -

-

In this 2 × 2 transfer matrix, the

system will be decoupled only if

G12(s) = 0 = G21(s) — i.e., the

transfer matrix is diagonal.

Otherwise, there is coupling,

and the manipulation of any in-

put may affect all outputs. Sup-

pose for example that we close

a single loop between y2 and

u2.

Both outputs will be affected!
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Interaction and Decoupling

If G(s) is a diagonal matrix, the MIMO system is totally

decoupled. The MIMO control design problem then reduces to

several SISO control design problems.

For example, we could

b b

b b

b b

b b

- -

- -

- -

- -

.

.

.

Gnn(s)

G33(s)

G22(s)

G11(s)
y1

y2

y3

yn

u1

u2

u3

un

Diagonal MIMO System

implement IMC for

each loop separately.

Ki(s) =
Qi(s)

1 − Qi(s)Gii(s)
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If G(s) is a diagonal matrix, the MIMO system is totally

decoupled. The MIMO control design problem then reduces to

several SISO control design problems.

For example, we could

b b

b b

b b

b b-

-

-

--

-

-

-

- -

- -

- -

- -

Kn(s)

K3(s)

K2(s)

K1(s)

.

.

.

Gnn(s)

G33(s)

G22(s)

G11(s)
y1

y2

y3

yn

u1

u2

u3

un

.

.

.
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implement IMC for

each loop separately.

Ki(s) =
Qi(s)

1 − Qi(s)Gii(s)
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Diagonal Dominance

Non-diagonal plants cannot, in general, be approached as

a multiple SISO problem, because of coupling. However, in

some cases a plant is sufficiently diagonal, which still makes it

easier to control.
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Diagonal Dominance

Non-diagonal plants cannot, in general, be approached as

a multiple SISO problem, because of coupling. However, in

some cases a plant is sufficiently diagonal, which still makes it

easier to control.

Loosely, a diagonally dominant plant has a transfer matrix in

which the transfer functions on the diagonal are greater in

magnitude than the off-diagonal elements.
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Diagonal Dominance

Take the four tank apparatus with γ1 = γ2 = γ. We see that the

higher the value of γ, the more the leading diagonal dominates.
Bode Magnitude Diagram
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Diagonal Dominance

Take the four tank apparatus with γ1 = γ2 = γ. We see that the

higher the value of γ, the more the leading diagonal dominates.
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Diagonal Dominance

A plant can sometimes be made to be diagonally dominant, at

least at some critical frequencies.

One possibility is to achieve decoupling at DC by making

G(0) diagonal using a static pre-compensator at the input of

the plant P = G−1(0), so that PG(0) = I.

c c

Precompensator Plant

--- G(s)G−1(0)
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Diagonal Dominance

A plant can sometimes be made to be diagonally dominant, at

least at some critical frequencies.

One possibility is to achieve decoupling at DC by making

G(0) diagonal using a static pre-compensator at the input of

the plant P = G−1(0), so that PG(0) = I.

c c

Precompensator Plant

--- G(s)G−1(0)

For the four tank example, the pre-compensator is

P =





3.7γ 3.7(1 − γ)

4.7(1 − γ) 4.7γ





−1

=
1

3.7 × 4.7(2γ − 1)





4.7γ 3.7(γ − 1)

4.7(γ − 1) 3.7γ




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Diagonal Dominance

The figure below shows the Bode magnitudes of the four tank

apparatus, with and without precompensation for DC

decoupling, for γ = 0.75.
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Decentralised Control and the RGA

If a plant transfer matrix is diagonally dominant, it may be

possible to design a good controller by considering each

input-output pair as a separate loop. This approach is sometimes

called decentralised control.

An important issue in decentralised control design is the

appropriate selection of input-output pairs (Note that they

will not in general be arranged so that G(s) is diagonal).
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Decentralised Control and the RGA

If a plant transfer matrix is diagonally dominant, it may be

possible to design a good controller by considering each

input-output pair as a separate loop. This approach is sometimes

called decentralised control.

An important issue in decentralised control design is the

appropriate selection of input-output pairs (Note that they

will not in general be arranged so that G(s) is diagonal).

One way of choosing the pairing is via the relative gain array

(RGA) Λ, given by

Λ = G(0) . ∗ G−1(0)T

where .∗ denotes element-wise multiplication.
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Decentralised Control and the RGA

If a plant transfer matrix is diagonally dominant, it may be

possible to design a good controller by considering each

input-output pair as a separate loop. This approach is sometimes

called decentralised control.

An important issue in decentralised control design is the

appropriate selection of input-output pairs (Note that they

will not in general be arranged so that G(s) is diagonal).

One way of choosing the pairing is via the relative gain array

(RGA) Λ, given by

Λ = G(0) . ∗ G−1(0)T

where .∗ denotes element-wise multiplication.

Each row and column in the RGA always sums to 1, and the

values are independent of units (e.g., A or mA, m or mm).
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Decentralised Control and the RGA

The rule-of-thumb is to pair inputs and outputs such that the diag-

onal elements of the RGA are large and positive.
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Decentralised Control and the RGA

The rule-of-thumb is to pair inputs and outputs such that the diag-

onal elements of the RGA are large and positive.

Example. For the four tank apparatus

G(0) =
[

3.7γ1 3.7(1−γ2)

4.7(1−γ1) 4.7γ2

]

, G−1(0)T =

[

4.7γ2 4.7(γ1−1)

3.7(γ2−1) 3.7γ1

]

3.7×4.7(γ1+γ2−1)
,

so

Λ =
[

λ 1−λ

1−λ λ

]

, with λ =
γ1γ2

γ1 + γ2 − 1
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Decentralised Control and the RGA

The rule-of-thumb is to pair inputs and outputs such that the diag-

onal elements of the RGA are large and positive.

Example. For the four tank apparatus

G(0) =
[

3.7γ1 3.7(1−γ2)

4.7(1−γ1) 4.7γ2

]

, G−1(0)T =

[

4.7γ2 4.7(γ1−1)

3.7(γ2−1) 3.7γ1

]

3.7×4.7(γ1+γ2−1)
,

so

Λ =
[

λ 1−λ

1−λ λ

]

, with λ =
γ1γ2

γ1 + γ2 − 1

If γ1 = γ2 = γ, and γ = 1, the RGA rule suggests the pairing

(u1, y1) and (u2, y2). On the other hand, if γ = 0, the pairing

suggested is the opposite, (u1, y2), (u2, y1).
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MIMO Sensitivity Functions

Consider a closed-loop system

h h h

h

- - - ?

6 ¾

?+

+

+
b

b

bb

b ..- - -
?

r

do

G(s)
+ + y+

−
K(s)

+u

di

n
ym

The difference with SISO systems is that G(s) and K(s) are

now transfer matrices, so we must be more careful with their

algebraic manipulation (matrix products do not commute).
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MIMO Sensitivity Functions

Consider a closed-loop system

h h h

h

- - - ?

6 ¾

?+

+

+
b

b

bb

b ..- - -
?

r

do

G(s)
+ + y+

−
K(s)

+u

di

n
ym

The difference with SISO systems is that G(s) and K(s) are

now transfer matrices, so we must be more careful with their

algebraic manipulation (matrix products do not commute).

As for SISO systems, we define

S = (I + GK)−1 : The (nominal) Sensitivity

T = (I + GK)−1GK : The (nominal) Complementary Sensitivity

Sensitivities are very useful to specify and analyse

performance and robustness of feedback control systems.
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Performance and Robustness

Many of the measures of performance and robustness of

MIMO systems can be expressed in terms of the gains of the

sensitivities.
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Performance and Robustness

Many of the measures of performance and robustness of

MIMO systems can be expressed in terms of the gains of the

sensitivities.

However, it is certainly difficult to specify desired

performance for n × n scalar transfer functions, if say we

have a n-input n-output plant.
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Performance and Robustness

Many of the measures of performance and robustness of

MIMO systems can be expressed in terms of the gains of the

sensitivities.

However, it is certainly difficult to specify desired

performance for n × n scalar transfer functions, if say we

have a n-input n-output plant.

We often obtain more useful results if we consider the

principal gains rather than the gains of each element in the

transfer function matrix.
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Performance and Robustness

Many of the measures of performance and robustness of

MIMO systems can be expressed in terms of the gains of the

sensitivities.

However, it is certainly difficult to specify desired

performance for n × n scalar transfer functions, if say we

have a n-input n-output plant.

We often obtain more useful results if we consider the

principal gains rather than the gains of each element in the

transfer function matrix.

The principal gains are the singular values of the complex

transfer function matrix.

σi(jω) =

√

eig [G(jω)GH(jω)]

where (.)H denotes the conjugate transpose.
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Performance and Robustness

The figure shows the principal gains for the four tank example for

γ = 0.95 and γ = 0.5.
Principal Gains for the Four Tank Apparatus

Frequency (rad/sec)

S
in

gu
la

r 
V

al
ue

s 
(d

B
)

10
−3

10
−2

10
−1

10
0

−35

−30

−25

−20

−15

−10

−5

0

5

10

15
γ=0.95
 
γ=0.5
 

Lecture 7: Introduction to MIMO Systems – p. 27/35



The University of Newcastle

Performance and Robustness

If we have a result for a SISO (single-input single-output) system

requiring an upper bound on a certain gain, then it is likely to

generalise to a MIMO (multivariable) system as requiring an

upper bound on the corresponding maximum principal gain.

σmax(jω) = max
i

σi(jω)

For the SISO case good tracking in some bandwidth 0 ≤ ω ≤ B

requires T ≈ 1. This in turn requires S ≈ 0 in the corresponding

bandwidth.

For the MIMO case this becomes the requirement σmax(S) ≈ 0

within that range of frequencies. This is equivalent to the

requirement that

T ≈ I, for ω ∈ [0, B]

In MATLAB the principal gains can be computed with the

function sigma.
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MIMO Control Design

The generalisation of IMC design methodology for square MIMO

systems is straightforward. The parameterisation of all controllers

that yield a stable closed-loop system for a stable plant with

nominal model G0(s) is given by

K(s) = [I − Q(s)G0(s)]−1Q(s) = Q(s)[I − G0(s)Q(s)]−1,

where Q(s) is any stable proper transfer matrix.
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MIMO Control Design

The generalisation of IMC design methodology for square MIMO

systems is straightforward. The parameterisation of all controllers

that yield a stable closed-loop system for a stable plant with

nominal model G0(s) is given by

K(s) = [I − Q(s)G0(s)]−1Q(s) = Q(s)[I − G0(s)Q(s)]−1,

where Q(s) is any stable proper transfer matrix.

Example. Consider again the 2-input, 2-output plant

represented by

G(s) =





4
(s+1)(s+2)

−1
(s+1)

2
(s+1)

−1
2(s+1)(s+2)




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MIMO Control Design

Example (continuation).

As seen before, this plant is stable and minimum phase, with

poles at s = −2, −2, −1 and a zero at s = −3. Because the

only zero is in the left half plane, the plant is relatively easy to

control.

To implement an IMC design, note that

G−1(s) =
(s + 2)2

2(s + 3)





−1
s+2

1

−2 4
s+2



 ,
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MIMO Control Design

Example (continuation).

As seen before, this plant is stable and minimum phase, with

poles at s = −2, −2, −1 and a zero at s = −3. Because the

only zero is in the left half plane, the plant is relatively easy to

control.

To implement an IMC design, note that

G−1(s) =
(s + 2)2

2(s + 3)





−1
s+2

1

−2 4
s+2



 ,

So a sensible choice for Q(s) might be

Q(s) =
(s + 2)2

2(s + 3)(λs + 1)





−1
s+2

1

−2 4
s+2



 , for some λ > 0.
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MIMO Control Design

Example (continuation). We implement in Simulink this IMC

design for λ = 1, including step references and input

disturbances.
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MIMO Control Design

Example (continuation). The plots show the response of the

closed-loop system to input step references and disturbances.
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MIMO Control Design

Example (continuation). The plots show the response of the

closed-loop system to input step references and disturbances.
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MIMO Control Design

Example (continuation). The plots show the response of the

closed-loop system to input step references and disturbances.
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MIMO Control Design

Example (continuation). The plots show the response of the

closed-loop system to input step references and disturbances.
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Difficulties of MIMO IMC Design

However, in general the choice of a suitable matrix Q(s) for a

MIMO IMC design becomes much more complicated than in

SISO systems.

In particular, the key attributes in the synthesis of Q(s)

relative-degree (i.e., zeros at infinity)

inverse stability (i.e., NMP zeros)

exhibit significant complexity in MIMO systems and require

additional tools to account for directionality issues.
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Difficulties of MIMO IMC Design

However, in general the choice of a suitable matrix Q(s) for a

MIMO IMC design becomes much more complicated than in

SISO systems.

In particular, the key attributes in the synthesis of Q(s)

relative-degree (i.e., zeros at infinity)

inverse stability (i.e., NMP zeros)

exhibit significant complexity in MIMO systems and require

additional tools to account for directionality issues.

In addition, the computations associated with IMC design

can get very arduous for other than low dimension, square

MIMO systems.
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Difficulties of MIMO IMC Design

However, in general the choice of a suitable matrix Q(s) for a

MIMO IMC design becomes much more complicated than in

SISO systems.

In particular, the key attributes in the synthesis of Q(s)

relative-degree (i.e., zeros at infinity)

inverse stability (i.e., NMP zeros)

exhibit significant complexity in MIMO systems and require

additional tools to account for directionality issues.

In addition, the computations associated with IMC design

can get very arduous for other than low dimension, square

MIMO systems.

How can we deal with possibly difficult, nonsquare, large

scale MIMO systems?
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Difficulties of MIMO IMC Design

However, in general the choice of a suitable matrix Q(s) for a

MIMO IMC design becomes much more complicated than in

SISO systems.

In particular, the key attributes in the synthesis of Q(s)

relative-degree (i.e., zeros at infinity)

inverse stability (i.e., NMP zeros)

exhibit significant complexity in MIMO systems and require

additional tools to account for directionality issues.

In addition, the computations associated with IMC design

can get very arduous for other than low dimension, square

MIMO systems.

How can we deal with possibly difficult, nonsquare, large

scale MIMO systems?

Use state space control design!
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Summary

SISO transfer functions generalise to MIMO as transfer matrix

functions, with the associated (although more subtle)

concepts of poles and zeros. Transfer matrix manipulations

are more complex, since matrix products do not commute.
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Summary

SISO transfer functions generalise to MIMO as transfer matrix

functions, with the associated (although more subtle)

concepts of poles and zeros. Transfer matrix manipulations

are more complex, since matrix products do not commute.

Many control problems require multiple inputs to be

manipulated simultaneously in an orchestrated manner. A

key difficulty in achieving an appropriate orchestration of the

inputs is the multivariable directionality, or coupling.
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Summary

SISO transfer functions generalise to MIMO as transfer matrix

functions, with the associated (although more subtle)

concepts of poles and zeros. Transfer matrix manipulations

are more complex, since matrix products do not commute.

Many control problems require multiple inputs to be

manipulated simultaneously in an orchestrated manner. A

key difficulty in achieving an appropriate orchestration of the

inputs is the multivariable directionality, or coupling.

Decentralised control might be an option when the plant is

diagonally dominant. A practical rule to pair inputs and

outputs is based on the Relative Gain Array.
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Summary

The concepts of stability, sensitivity functions, performance

and robustness, generalise directly to MIMO systems.
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Summary

The concepts of stability, sensitivity functions, performance

and robustness, generalise directly to MIMO systems.

IMC design for MIMO systems is essentially the same as for

SISO systems. Yet, the synthesis process is more subtle, and

the required computations may get much more involved.
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Summary

The concepts of stability, sensitivity functions, performance

and robustness, generalise directly to MIMO systems.

IMC design for MIMO systems is essentially the same as for

SISO systems. Yet, the synthesis process is more subtle, and

the required computations may get much more involved.

We will come back to MIMO systems with State Space

System Theory and Control Design.
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