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Outline

Sensors & Actuators.

Disturbances.

Model deficiencies.

Structural issues.

Reference: Control System Design, Goodwin, Graebe & Salgado.
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Sensors

Sensors are a crucial part of any control system design.

They are the eyes of the controller.

Any error, or significant defect, in the measurement system will have a

significant impact on performance.
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Sensors

The effect of measurement noise in the nominal loop is given by

Ym(s) = −To(s)Dm(s)

Um(s) = −Suo(s)Dm(s)
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Sensors

The effect of measurement noise in the nominal loop is given by

Ym(s) = −To(s)Dm(s)

Um(s) = −Suo(s)Dm(s)

Recall that To(s) is typically near 1 over the bandwidth of the system.

Measurement noise is typically dominated by high frequencies.
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Sensors

Conclusion

Measurement noise usually sets an upper limit on the bandwidth of

the loop.
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If sensors provide the eyes of control, then actuators provide the

muscle.
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Actuators

If sensors provide the eyes of control, then actuators provide the

muscle.

Actuators are also a source of limitations in control performance

We will examine two aspects of actuator limitations:

maximal movement

minimal movement
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Maximal Actuator Movement

Recall that in a one d.o.f. loop, the controller output is given by:

U(s) = Suo(s)(R(s) − Do(s)) where Suo(s) ,
To(s)

Go(s)
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Maximal Actuator Movement

Recall that in a one d.o.f. loop, the controller output is given by:

U(s) = Suo(s)(R(s) − Do(s)) where Suo(s) ,
To(s)

Go(s)

If the loop bandwidth is much larger than that of the open loop model

Go(s), then the transfer function Suo(s) will significantly enhance the

high frequency components in R(s) and Do(s).
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Maximal Actuator Movement (Example)

Consider a plant and associated closed loop given by:

Go(s) =
10

(s + 10)(s + 1)
and To(s) =

100

s2
+ 12s + 100
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Maximal Actuator Movement (Example)

Consider a plant and associated closed loop given by:

Go(s) =
10

(s + 10)(s + 1)
and To(s) =

100

s2
+ 12s + 100

Note that the plant and the closed loop bandwidths have a ratio of

approximately 10:1.
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Maximal Actuator Movement (Example)

Consider a plant and associated closed loop given by:

Go(s) =
10

(s + 10)(s + 1)
and To(s) =

100

s2
+ 12s + 100

Note that the plant and the closed loop bandwidths have a ratio of

approximately 10:1.

This will be reflected in large control sensitivity, |Su0(jω)|, at high

frequencies.

Lecture 6: Design Limitations in Control – p. 8/42



The University of Newcastle

Maximal Actuator Movement (Example)

Consider a plant and associated closed loop given by:

Go(s) =
10

(s + 10)(s + 1)
and To(s) =

100

s2
+ 12s + 100

Note that the plant and the closed loop bandwidths have a ratio of

approximately 10:1.

This will be reflected in large control sensitivity, |Su0(jω)|, at high

frequencies.

This will yield a large initial control response in the presence of high

frequency reference signals or disturbances.
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Maximal Actuator Movement (Example cont.)
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The L.H. plot shows that the control sensitivity grows significantly at

high frequencies.
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Maximal Actuator Movement (Example cont.)
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The L.H. plot shows that the control sensitivity grows significantly at

high frequencies.

The input signal resulting from a unit step disturbance is shown on the

right hand plot.
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Maximal Actuator Movement (Example cont.)
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The L.H. plot shows that the control sensitivity grows significantly at

high frequencies.

The input signal resulting from a unit step disturbance is shown on the

right hand plot.

Note that the initial value of the input is approximately ten times the

size of the steady state input needed to cancel the input.
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Maximal Actuator Movement

Actuators also frequently exhibit a limit on the maximum speed with

which they can change position. This is usually termed a slew rate

limit.
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limiting by noting that the input is given by

U(s) = Suo(s)[R(s) − Do(s)].
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Maximal Actuator Movement

Actuators also frequently exhibit a limit on the maximum speed with

which they can change position. This is usually termed a slew rate

limit.

We can gain a qualitative understanding of the effect of slew rate

limiting by noting that the input is given by

U(s) = Suo(s)[R(s) − Do(s)].

Hence, the rate of change of the input is given by

sU(s) = Suo(s)[sR(s) − sDo(s)] =
To(s)

Go(s)
[sR(s) − sDo(s)].
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Maximal Actuator Movement

Actuators also frequently exhibit a limit on the maximum speed with

which they can change position. This is usually termed a slew rate

limit.

We can gain a qualitative understanding of the effect of slew rate

limiting by noting that the input is given by

U(s) = Suo(s)[R(s) − Do(s)].

Hence, the rate of change of the input is given by

sU(s) = Suo(s)[sR(s) − sDo(s)] =
To(s)

Go(s)
[sR(s) − sDo(s)].

Thus, if the bandwidth of the closed loop is much larger than that of

the plant dynamics, then the rate of change of the input signal will be

large for fast changes in r(t) and do(t).
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Maximal Actuator Movement

Conclusion

To avoid actuator saturation or slew rate problems, it will generally

be necessary to place an upper limit on the closed loop bandwidth.
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Minimal Actuator Movement

Minimal actuator movements are frequently associated with frictional

effects; i.e. the actuator sticks.
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When the actuator is in this mode, integrators (both in the plant and

controller) will wind-up until sufficient force is generated to overcome

the static friction component.
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Minimal Actuator Movement

Minimal actuator movements are frequently associated with frictional

effects; i.e. the actuator sticks.

When the actuator is in this mode, integrators (both in the plant and

controller) will wind-up until sufficient force is generated to overcome

the static friction component.

The manifestations of the problem are usually a self sustaining

oscillation produced as the actuator goes through a cycle of sticking,

moving, sticking and so on.

The oscillation frequency is typically at or near the frequency where

the loop phase shift is 180o .
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Disturbances

Another source of performance limitation in real control systems is that

arising from disturbances.
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Y (s) = Sio(s)Di(s) + So(s)Do(s)

Lecture 6: Design Limitations in Control – p. 13/42



The University of Newcastle

Disturbances

Another source of performance limitation in real control systems is that
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Assume that the input and output disturbances have significant energy

only in the frequency bands Bwi and Bwo respectively.
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Disturbances

Another source of performance limitation in real control systems is that

arising from disturbances.

This effect can be evaluated using the appropriate sensitivity functions:

Y (s) = Sio(s)Di(s) + So(s)Do(s)

Assume that the input and output disturbances have significant energy

only in the frequency bands Bwi and Bwo respectively.

Then, it is clearly desirable to have small values for |So(jω)| and

|Sio(jω)| in Bwi and Bwo respectively.

Since G(s) is fixed, this can only be achieved provided that

So(jω) ≈ 0, and hence To(jω) ≈ 1 in the frequency band

encompassing the union of Bwi and Bwo .
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Disturbances

Conclusion

To achieve acceptable performance in the presence of disturbances,

it will generally be necessary to place a lower bound on the closed

loop bandwidth.
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Model Error Limitations

Another key source of performance limitation is due to inadequate

fidelity in the model used as the basis of control system design.
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Model Error Limitations

Another key source of performance limitation is due to inadequate

fidelity in the model used as the basis of control system design.

A key function used to quantify these differences is the error sensitivity

S△(s), given by

S△(s) =
1

1 + To(s)G△(s)

where G△(s) is the multiplicative (or relative) model error.
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Another key source of performance limitation is due to inadequate

fidelity in the model used as the basis of control system design.

A key function used to quantify these differences is the error sensitivity

S△(s), given by

S△(s) =
1

1 + To(s)G△(s)

where G△(s) is the multiplicative (or relative) model error.

Modeling is normally good at low frequencies and deteriorates as the

frequency increases, since then, dynamic features neglected in the

nominal model become significant.
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Model Error Limitations

Another key source of performance limitation is due to inadequate

fidelity in the model used as the basis of control system design.

A key function used to quantify these differences is the error sensitivity

S△(s), given by

S△(s) =
1

1 + To(s)G△(s)

where G△(s) is the multiplicative (or relative) model error.

Modeling is normally good at low frequencies and deteriorates as the

frequency increases, since then, dynamic features neglected in the

nominal model become significant.

This implies that |G∆ (jω)| will become increasingly significant with

rising frequency.
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Model Error Limitations

Conclusion

To achieve acceptable performance in the presence of model errors,

it will generally be desirable to place an upper limit on the closed

loop bandwidth.
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Structural Limitations

The above analysis of limitations has focussed on issues arising from

the sensors, actuators, disturbances and model accuracy.
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The above analysis of limitations has focussed on issues arising from

the sensors, actuators, disturbances and model accuracy.

However, there is another source of errors arising from the nature of

the plant.

Performance in the nominal linear control loop is also subject to

unavoidable constraints which derive from the particular structure of
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The above analysis of limitations has focussed on issues arising from

the sensors, actuators, disturbances and model accuracy.

However, there is another source of errors arising from the nature of

the plant.

Performance in the nominal linear control loop is also subject to

unavoidable constraints which derive from the particular structure of

the nominal model itself.

Structural constraints we discuss include:

Delays

Open loop zeros

Lecture 6: Design Limitations in Control – p. 17/42



The University of Newcastle

Structural Limitations

The above analysis of limitations has focussed on issues arising from

the sensors, actuators, disturbances and model accuracy.

However, there is another source of errors arising from the nature of

the plant.

Performance in the nominal linear control loop is also subject to

unavoidable constraints which derive from the particular structure of

the nominal model itself.

Structural constraints we discuss include:

Delays

Open loop zeros

Open loop poles
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Structural Limitations - Delays

Undoubtedly the most common source of structural limitation in

process control applications is due to process delays.
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Undoubtedly the most common source of structural limitation in

process control applications is due to process delays.

These delays are typically associated with the transportation of

materials from one point to another.

The output sensitivity can, at best, be given by:

S∗o (s) = 1 − e−sτ

where τ is the delay.
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Structural Limitations - Delays

Undoubtedly the most common source of structural limitation in

process control applications is due to process delays.

These delays are typically associated with the transportation of

materials from one point to another.

The output sensitivity can, at best, be given by:

S∗o (s) = 1 − e−sτ

where τ is the delay.

To achieve this ideal result requires use of a Smith Predictor plus an

ideal controller.
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Structural Limitations - Delays

If we were to achieve the idealised result, then the corresponding

nominal complementary sensitivity would be

T∗o (s) = e−sτ
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nominal complementary sensitivity would be
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This has gain 1 at all frequencies.
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Structural Limitations - Delays

If we were to achieve the idealised result, then the corresponding

nominal complementary sensitivity would be

T∗o (s) = e−sτ

This has gain 1 at all frequencies.

Hence high frequency model errors will lead to instability unless the

bandwidth is limited.
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Structural Limitations - Delays

If we were to achieve the idealised result, then the corresponding

nominal complementary sensitivity would be

T∗o (s) = e−sτ

This has gain 1 at all frequencies.

Hence high frequency model errors will lead to instability unless the

bandwidth is limited.

Errors in the delay are particularly troublesome.
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Structural Limitations - Delays

Conclusion

1. Delays limit disturbance rejection by requiring that a delay occur

before the disturbance can be cancelled. This is reflected in the

ideal sensitivity S∗o (s)

2. Delays further limit the achievable bandwidth due to the impact

of model errors.
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Structural Limitations - Delays

An interesting question which arises in this context: Is it worthwhile

using a Smith Predictor in practice?
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The answer is probably yes if the system model (especially the

delay) is accurately known.
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If the delay is poorly known, then robustness considerations limit

the achievable bandwidth even if a Smith Predictor is used.
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Structural Limitations - Delays

An interesting question which arises in this context: Is it worthwhile

using a Smith Predictor in practice?

The answer is probably yes if the system model (especially the

delay) is accurately known.

If the delay is poorly known, then robustness considerations limit

the achievable bandwidth even if a Smith Predictor is used.

We have seen above that delays (where the response does not move

for a given period) represent a very important source of structural

limitations in control design.
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Structural Limitations - Delays

An interesting question which arises in this context: Is it worthwhile

using a Smith Predictor in practice?

The answer is probably yes if the system model (especially the

delay) is accurately known.

If the delay is poorly known, then robustness considerations limit

the achievable bandwidth even if a Smith Predictor is used.

We have seen above that delays (where the response does not move

for a given period) represent a very important source of structural

limitations in control design.

We might then conjecture that non-minimum phase behaviour (where

the response initially goes in the wrong direction) may present even

harder challenges to control system design?
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Structural Limitations - Open Loop Poles and
Zeros

We next study the effect of open loop poles and zeros on achievable

performance.
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Structural Limitations - Open Loop Poles and
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We next study the effect of open loop poles and zeros on achievable

performance.

We shall see that open loop poles and zeros have a dramatic (and

predictable) effect on closed loop performance.
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Structural Limitations - Open Loop Poles and
Zeros

We next study the effect of open loop poles and zeros on achievable

performance.

We shall see that open loop poles and zeros have a dramatic (and

predictable) effect on closed loop performance.

We begin by examining the so-called interpolation constraints which

show how open loop poles and zeros are reflected in the poles and

zeros of the various closed loop sensitivity functions.
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Structural Limitations - Open Loop Poles and
Zeros

Recall that the relevant nominal sensitivity functions for a nominal plant

Go(s) = Bo (s)
Ao (s) and a given unity feedback controller C(s) = P(s)

L(s) are:

To(s) =
Go(s)C(s)

1 + Go(s)C(s)
=

Bo(s)P(s)

Ao(s)L(s) + Bo(s)P(s)

So(s) =
1

1 + Go(s)C(s)
=

Ao(s)L(s)

Ao(s)L(s) + Bo(s)P(s)

Sio(s) =
Go(s)

1 + Go(s)C(s)
=

Bo(s)L(s)

Ao(s)L(s) + Bo(s)P(s)

Suo(s) =
C(s)

1 + Go(s)C(s)
=

Ao(s)P(s)

Ao(s)L(s) + Bo(s)P(s)
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Structural Limitations - Open Loop Poles and
Zeros

Observations:

1. The nominal complementary sensitivity To(s) has a zero at all

uncancelled zeros of Go(s).
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Structural Limitations - Open Loop Poles and
Zeros

Observations:

1. The nominal complementary sensitivity To(s) has a zero at all

uncancelled zeros of Go(s).

2. The nominal sensitivity So(s) is equal to one at all uncancelled zeros

of G0(s). (This follows from (i) using the identity So(s) + To(s) = 1).
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Structural Limitations - Open Loop Poles and
Zeros

Observations:

1. The nominal complementary sensitivity To(s) has a zero at all

uncancelled zeros of Go(s).

2. The nominal sensitivity So(s) is equal to one at all uncancelled zeros

of G0(s). (This follows from (i) using the identity So(s) + To(s) = 1).

3. The nominal sensitivity So(s) has a zero at all uncancelled poles of

Go(s).
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Structural Limitations - Open Loop Poles and
Zeros

Observations:

1. The nominal complementary sensitivity To(s) has a zero at all

uncancelled zeros of Go(s).

2. The nominal sensitivity So(s) is equal to one at all uncancelled zeros

of G0(s). (This follows from (i) using the identity So(s) + To(s) = 1).

3. The nominal sensitivity So(s) has a zero at all uncancelled poles of

Go(s).

4. The nominal complementary sensitivity To(s) is equal to one at all

uncancelled poles of Go(s). (This follows from (3.) and the identity

So(s) + To(s) = 1).
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Structural Limitations - Open Loop Poles and
Zeros (Effect of Open Loop Integrators)

Lemma. We assume that the plant is controlled in a one d.o.f.

configuration and that the open loop plant and controller satisfy:

Ao(s)L(s) = s i(Ao(s)L(s))′ i ≥ 1

lim
s→0

(Ao(s)L(s))′ = c0 , 0

lim
s→0

(Bo(s)P(s)) = c1 , 0

i.e. the plant-controller combination has i poles at the origin. Then, for a

step output disturbance or step set point, the control error, e(t), satisfies

lim
t→∞

e(t) = 0 ∀i ≥ 1

∞∫

0

e(t)dt = 0 ∀i ≥ 2
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Structural Limitations - Open Loop Poles and
Zeros (Effect of Open Loop Integrators)

Lemma. (cont.) Also, for a negative unit ramp output disturbance or a

positive unit ramp reference, the control error, e(t), satisfies

lim
t→∞

e(t) =
c0

c1
for i = 1

lim
t→∞

e(t) = 0 ∀i ≥ 2

∞∫

0

e(t)dt = 0 ∀ i ≥ 3
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Structural Limitations - Open Loop Poles and
Zeros (Effect of Open Loop Integrators)

Example: Equal Area Result

Say Go(s)C(s) contains a double integrator⇒ So(s) has a double zero at

s = 0.

∞∫

0

e(t) = lim
s→0

∞∫

0

e(t)e−stdt

= lim
s→0

E(s)

= So(s)
1
s

(for unit step)

= 0

A

B

t

e(t)

A=B!

The above holds for a one d.o.f. feedback control system. Overshoot can

actually be avoided if the architecture is changed to a

two-degree-of-freedom control system.
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Structural Limitations - Open Loop Poles and
Zeros (Effect of Open Loop Integrators)

Say we want to eliminate the effect of ramp input disturbances in

steady state.
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Structural Limitations - Open Loop Poles and
Zeros (Effect of Open Loop Integrators)

Say we want to eliminate the effect of ramp input disturbances in

steady state.

This can be achieved by placing 2 integrators in the controller.
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Structural Limitations - Open Loop Poles and
Zeros (Effect of Open Loop Integrators)

Say we want to eliminate the effect of ramp input disturbances in

steady state.

This can be achieved by placing 2 integrators in the controller.

However, we then see that the error to a step reference change must

satisfy
∞∫

0

e(t)dt = 0
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Structural Limitations - Open Loop Poles and
Zeros (Effect of Open Loop Integrators)

Say we want to eliminate the effect of ramp input disturbances in

steady state.

This can be achieved by placing 2 integrators in the controller.

However, we then see that the error to a step reference change must

satisfy
∞∫

0

e(t)dt = 0

This, in turn, implies that the error must change sign, i.e. overshoot

must occur.
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Structural Limitations - Open Loop Poles and
Zeros (Effect of Open Loop Integrators)

Say we want to eliminate the effect of ramp input disturbances in

steady state.

This can be achieved by placing 2 integrators in the controller.

However, we then see that the error to a step reference change must

satisfy
∞∫

0

e(t)dt = 0

This, in turn, implies that the error must change sign, i.e. overshoot

must occur.

Thus it is impossible to have zero steady state error to ramp type

disturbances together with no overshoot to a step reference.
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Structural Limitations - Open Loop Poles and
Zeros (Effect of Open Loop Integrators)

In the case of input disturbances, the numerator of Sio(s) is Bo(s)L(s)
rather than Ao(s)L(s) as was the case for So(s). This implies that

integration in the plant does not impact on the steady state compensation

of input disturbances. Thus we need to modify the previous Lemma:
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Structural Limitations - Open Loop Poles and
Zeros (Effect of Open Loop Integrators)

In the case of input disturbances, the numerator of Sio(s) is Bo(s)L(s)
rather than Ao(s)L(s) as was the case for So(s). This implies that

integration in the plant does not impact on the steady state compensation

of input disturbances. Thus we need to modify the previous Lemma:

Lemma. Assume that the controller satisfies:

L(s) = s i(L(s))′ i ≥ 1

lim
s→0

(L(s))′ = li , 0

lim
s→0

(P(s)) = p0 , 0

the controller alone has i poles at the origin. Then, for a step input

disturbance, the control error, e(t), satisfies

lim
t→∞

e(t) = 0 ∀i ≥ 1

∞∫

0

e(t)dt = 0 ∀i ≥ 2
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Structural Limitations - Open Loop Poles and
Zeros (Effect of Open Loop Integrators)

Lemma. (cont.) Also, for a negative unit ramp input disturbance, the

control error, e(t), satisfies

lim
t→∞

e(t) =
li
p0

for i = 1

lim
t→∞

e(t) = 0 ∀i ≥ 2

∞∫

0

e(t)dt = 0 ∀i ≥ 3
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Structural Limitations - Open Loop Poles and
Zeros (More General Effects)

The results above depend upon the zeros of the various sensitivity

functions at the origin.
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Structural Limitations - Open Loop Poles and
Zeros (More General Effects)

The results above depend upon the zeros of the various sensitivity

functions at the origin.

However, it turns out that zeros in the right half plane have an even

more dramatic effect on achievable transient performances of

feedback loops.
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Structural Limitations - Open Loop Poles and
Zeros (More General Effects)

The results above depend upon the zeros of the various sensitivity

functions at the origin.

However, it turns out that zeros in the right half plane have an even

more dramatic effect on achievable transient performances of

feedback loops.

Hence, we shall develop a series of integral constraints that apply to

the transient response of feedback systems having various

combinations of open loop poles and zeros.

Lecture 6: Design Limitations in Control – p. 31/42



The University of Newcastle

Structural Limitations - Open Loop Poles and
Zeros (More General Effects)

Lemma. Consider a feedback control loop having stable closed loop poles

located to the left of −α for some α > 0. Also assume that the controller

has at least one pole at the origin. Then, for an uncancelled plant zero z0

or an uncancelled plant pole η0 to the right of the closed loop poles, i.e.

satisfyingℜ{z0} > −α orℜ{η0} > −α respectively, we have
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Structural Limitations - Open Loop Poles and
Zeros (More General Effects)

Lemma. Consider a feedback control loop having stable closed loop poles

located to the left of −α for some α > 0. Also assume that the controller

has at least one pole at the origin. Then, for an uncancelled plant zero z0

or an uncancelled plant pole η0 to the right of the closed loop poles, i.e.

satisfyingℜ{z0} > −α orℜ{η0} > −α respectively, we have

(i) For a positive unit reference step or a negative unit step output

disturbance, we have

∞∫

0

e(t)e−z0tdt =
1
z0

∞∫

0

e(t)e−η0tdt = 0
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Structural Limitations - Open Loop Poles and
Zeros (More General Effects)

Lemma. (cont.)

(ii) For a positive unit step reference and for z0 in the right half plane, we

have
∞∫

0

y(t)e−z0tdt = 0
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Structural Limitations - Open Loop Poles and
Zeros (More General Effects)

Lemma. (cont.)

(ii) For a positive unit step reference and for z0 in the right half plane, we

have
∞∫

0

y(t)e−z0tdt = 0

(iii) For a negative unit step input disturbance, we have

∞∫

0

e(t)e−z0tdt = 0

∞∫

0

e(t)e−η0tdt =
L(η0)

η0P(η0)
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Structural Limitations - Open Loop Poles and
Zeros (More General Effects)

Lemma. (cont.)

(ii) For a positive unit step reference and for z0 in the right half plane, we

have
∞∫

0

y(t)e−z0tdt = 0

(iii) For a negative unit step input disturbance, we have

∞∫

0

e(t)e−z0tdt = 0

∞∫

0

e(t)e−η0tdt =
L(η0)

η0P(η0)

The above integral constraints show that (irrespective of how the

closed loop control system is designed) the closed loop performance

is constrained in various ways.
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Structural Limitations - Open Loop Poles and
Zeros (More General Effects)

A real stable (LHP) zero to the right of all closed loop poles produces

overshoot in the step response.
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Structural Limitations - Open Loop Poles and
Zeros (More General Effects)

A real stable (LHP) zero to the right of all closed loop poles produces

overshoot in the step response.

A real unstable (RHP) zero always produces undershoot in the step

response. The amount of undershoot grows as the zero approaches

the origin.
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Structural Limitations - Open Loop Poles and
Zeros (More General Effects)

A real stable (LHP) zero to the right of all closed loop poles produces

overshoot in the step response.

A real unstable (RHP) zero always produces undershoot in the step

response. The amount of undershoot grows as the zero approaches

the origin.

Any real open loop pole to the right of all closed loop poles will

produce overshoot in a one d.o.f. control architecture.
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Structural Limitations - Open Loop Poles and
Zeros (More General Effects)

Conclusion

To avoid poor closed loop transient performance:

1. The bandwidth should in practice be set less than the smallest

non minimum phase zero.

2. It is advisable to set the closed loop bandwidth greater than the

real part of any unstable pole.
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Structural Limitations - Open Loop Poles and
Zeros (More General Effects)

Example: Effect of different locations of poles and zeros in the loop

performance.

Consider a nominal plant model given by

Go(s) =
s − zp

s(s − pp)
.

The closed loop poles were assigned to {−1,−1,−1}. Then, the general

controller structure is given by

C(s) = Kc
s − zc

s − pc
.

Five different cases are considered.
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Structural Limitations - Open Loop Poles and
Zeros (More General Effects)

Example: (cont.)

Case 1 Case 2 Case 3 Case 4 Case 5

pp = −0.2 pp = −0.5 pp = −0.5 pp = 0.2 pp = 0.5

zp = −0.5 zp = −0.1 zp = 0.5 zp = 0.5 zp = 0.2

Kc 1.47 20.63 −3.75 −18.8 32.5

pc −1.33 18.13 −6.25 −22.0 29.0

zc −1.36 −0.48 −0.53 −0.11 0.15
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Structural Limitations - Open Loop Poles and
Zeros (More General Effects)

Example: (cont.) The different designs were tested with a unit step

reference and, in every case, the plant output was observed.
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Structural Limitations - Open Loop Poles and
Zeros (More General Effects)

From these results we can make the following observations:

Case 1 (Small stable pole) A small amount of overshoot is evident.
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Structural Limitations - Open Loop Poles and
Zeros (More General Effects)

From these results we can make the following observations:

Case 1 (Small stable pole) A small amount of overshoot is evident.

Case 2 (Very small stable zero) Here we see a large amount of overshoot.
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Structural Limitations - Open Loop Poles and
Zeros (More General Effects)

From these results we can make the following observations:

Case 1 (Small stable pole) A small amount of overshoot is evident.

Case 2 (Very small stable zero) Here we see a large amount of overshoot.

Case 3 (Unstable zero, stable pole) Here we see a significant amount of

undershoot due to the right half plane zero. We also observe a small

amount of overshoot which is due to the stable pole at −0.5.
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Structural Limitations - Open Loop Poles and
Zeros (More General Effects)

From these results we can make the following observations:

Case 1 (Small stable pole) A small amount of overshoot is evident.

Case 2 (Very small stable zero) Here we see a large amount of overshoot.

Case 3 (Unstable zero, stable pole) Here we see a significant amount of

undershoot due to the right half plane zero. We also observe a small

amount of overshoot which is due to the stable pole at −0.5.

Case 4 (Unstable zero, small unstable pole) We first observe significant

undershoot due to the RHP zero. We also observe a significant

overshoot due to the unstable pole.
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Structural Limitations - Open Loop Poles and
Zeros (More General Effects)

From these results we can make the following observations:

Case 1 (Small stable pole) A small amount of overshoot is evident.

Case 2 (Very small stable zero) Here we see a large amount of overshoot.

Case 3 (Unstable zero, stable pole) Here we see a significant amount of

undershoot due to the right half plane zero. We also observe a small

amount of overshoot which is due to the stable pole at −0.5.

Case 4 (Unstable zero, small unstable pole) We first observe significant

undershoot due to the RHP zero. We also observe a significant

overshoot due to the unstable pole.

Case 5 (Small unstable zero, large unstable pole) Here the undershoot is

produced by the RHP zero and the overshoot by RHP pole. In this

case the overshoot is significantly larger than in Case 4, due to the fact

that the unstable pole is further into the RHP.
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Structural Limitations

We have discussed structural limitations under the headings of:
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We have discussed structural limitations under the headings of:

delays
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Structural Limitations

We have discussed structural limitations under the headings of:

delays

open loop plant poles
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Structural Limitations

We have discussed structural limitations under the headings of:

delays

open loop plant poles

open loop plant zeros
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Structural Limitations

We have discussed structural limitations under the headings of:

delays

open loop plant poles

open loop plant zeros

The limitations arising from these effects are fundamental WITHIN

THE GIVEN ARCHITECTURE!
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Structural Limitations

We have discussed structural limitations under the headings of:

delays

open loop plant poles

open loop plant zeros

The limitations arising from these effects are fundamental WITHIN

THE GIVEN ARCHITECTURE!

This suggests that the one to overcome these limitations is to consider

changing the basic architecture of the problem.
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Structural Limitations

We have discussed structural limitations under the headings of:

delays

open loop plant poles

open loop plant zeros

The limitations arising from these effects are fundamental WITHIN

THE GIVEN ARCHITECTURE!

This suggests that the one to overcome these limitations is to consider

changing the basic architecture of the problem.

We only examined the effects with respect to a one d.o.f. architecture.
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Structural Limitations

It is sometimes helpful to exploit a second d.o.f. when dealing with

reference changes.
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Structural Limitations

It is sometimes helpful to exploit a second d.o.f. when dealing with

reference changes.

For example, open loop poles in the RHP usually induce slow stable

zeros in the controller which lead to the overshoot in response to a

step input.
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Structural Limitations

It is sometimes helpful to exploit a second d.o.f. when dealing with

reference changes.

For example, open loop poles in the RHP usually induce slow stable

zeros in the controller which lead to the overshoot in response to a

step input.

With a two d.o.f. controller it is possible to cancel these zeros outside

the loop.

Lecture 6: Design Limitations in Control – p. 41/42



The University of Newcastle

Structural Limitations

It is sometimes helpful to exploit a second d.o.f. when dealing with

reference changes.

For example, open loop poles in the RHP usually induce slow stable

zeros in the controller which lead to the overshoot in response to a

step input.

With a two d.o.f. controller it is possible to cancel these zeros outside

the loop.

Note that they remain a difficulty inside the loop and thus contribute to

design trade-offs regarding robustness, disturbance rejection, etc.
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Structural Limitations - Example

Effect of Two Degree of Freedom Architecture on Closed Loop

Response with PI Control.

Consider the feedback control of plant with a PI controller:

Go(s) =
1
s

; C(s) =
2s + 1

s
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Structural Limitations - Example

Effect of Two Degree of Freedom Architecture on Closed Loop

Response with PI Control.

Consider the feedback control of plant with a PI controller:

Go(s) =
1
s

; C(s) =
2s + 1

s

Closed loop poles are (−1;−1) and the controller has a zero at (−0.5).
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Structural Limitations - Example

Effect of Two Degree of Freedom Architecture on Closed Loop

Response with PI Control.

Consider the feedback control of plant with a PI controller:

Go(s) =
1
s

; C(s) =
2s + 1

s

Closed loop poles are (−1;−1) and the controller has a zero at (−0.5).

If we prefilter the reference by H(s) = 1
2s+1 , then no overshoot occurs

in response to a step change in the reference signal.
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