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The University of Newcastle

Brief Review on Linear Algebra

Eigenvalues and Eigenvectors of a Matrix. They play a key role

in the study of LTI systems and state equations.

A number λ ∈ C is an eigenvalue of a matrix A ∈ R
n×n if there

exists a nonzero vector v ∈ R
n such that

Av = λv.

The vector v is a (right) eigenvector of A associated with the

eigenvalue λ.
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Eigenvalues and Eigenvectors of a Matrix. They play a key role

in the study of LTI systems and state equations.

A number λ ∈ C is an eigenvalue of a matrix A ∈ R
n×n if there

exists a nonzero vector v ∈ R
n such that

Av = λv.

The vector v is a (right) eigenvector of A associated with the

eigenvalue λ.

Eigenvalues are found by solving the algebraic equation

(λI − A)v = 0.

This equation has nonzero solutions if the matrix (λI − A) is

singular (its determinant is zero).
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Brief Review on Linear Algebra

Characteristic Polynomial of a Matrix

The characteristic polynomial of a matrix A is

∆(λ) = det(λI − A)

= λn + α1λn−1 + α2λn−2 + · · · + αn.

It is a monic polynomial (its leading coefficient is 1) of degree n

with n real coefficients.
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Characteristic Polynomial of a Matrix

The characteristic polynomial of a matrix A is

∆(λ) = det(λI − A)

= λn + α1λn−1 + α2λn−2 + · · · + αn.

It is a monic polynomial (its leading coefficient is 1) of degree n

with n real coefficients.

Because for every root of ∆(λ) the matrix (sI − A) is singular, we

conclude that every root of ∆(λ) is an eigenvalue of A. Because

a polynomial of degree n has n roots, a square matrix A has n

eigenvalues (although not all necessarily different).
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Characteristic Polynomial of a Matrix

The characteristic polynomial of a matrix A is

∆(λ) = det(λI − A)

= λn + α1λn−1 + α2λn−2 + · · · + αn.

It is a monic polynomial (its leading coefficient is 1) of degree n

with n real coefficients.

Because for every root of ∆(λ) the matrix (sI − A) is singular, we

conclude that every root of ∆(λ) is an eigenvalue of A. Because

a polynomial of degree n has n roots, a square matrix A has n

eigenvalues (although not all necessarily different).

In MATLAB eigenvalues are computed with the function r=eig(A);

and the characteristic polynomial can be computed with the

function poly(A).
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Brief Review on Linear Algebra

Companion Form Matrices. To obtain the characteristic

polynomial we need to expand det(λI − A). However, for some

matrices the characteristic polynomial is evident.

One group of such matrices is that of companion form matrices















−α1 −α2 −α3 −α4

1 0 0 0

0 1 0 0

0 0 1 0















, and















0 0 0 −α4

1 0 0 −α3

0 1 0 −α2

0 0 1 −α1















(and their transposes). They have the characteristic polynomial

∆(λ) = λ4 + α1λ3 + α2λ2 + α3λ + α4.

In MATLAB the command compan(P) forms a companion matrix

with characteristic polynomial P.
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Diagonal and Jordan Form Matrices. Another case in which

the characteristic polynomial is easily obtained is that in which

the matrix is in diagonal form. For example,





















λ1 0 0 · · · 0

0 λ2 0 · · · 0

0 0 λ3 · · · 0

...
...

...
. . .

...

0 0 0 · · · λn





















has the characteristic polynomial

∆(λ) = (λ − λ1) × (λ − λ2) × · · · × (λ − λn)
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Brief Review on Linear Algebra

If a matrix A is diagonalisable, it can always be taken to a

diagonal form, Ā say, by a similarity transformation Ā = Q−1AQ.

However, a matrix is not always diagonalisable. It depends on

two cases

1. eigenvalues of A are all distinct

2. eigenvalues of A are not all distinct

We next analyse each case.
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Brief Review on Linear Algebra

Eigenvalues of A are all distinct. In this case the set of

associated eigenvectors, say {v1, v2, . . . , vn}, are linearly

independent. This means that the matrix

Q =
[

v1 v2 · · · vn

]

is nonsingular.
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Eigenvalues of A are all distinct. In this case the set of

associated eigenvectors, say {v1, v2, . . . , vn}, are linearly

independent. This means that the matrix

Q =
[

v1 v2 · · · vn

]

is nonsingular. Then, from the definition of eigenvalues,

AQ = A
[

v1 v2 · · · vn

]

=
[

Av1 Av2 · · · Avn

]

=
[

λ1v1 λ2v2 · · · λnvn

]

= QĀ ⇔ Ā = Q−1AQ.
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Eigenvalues of A are all distinct. In this case the set of

associated eigenvectors, say {v1, v2, . . . , vn}, are linearly

independent. This means that the matrix

Q =
[

v1 v2 · · · vn

]

is nonsingular. Then, from the definition of eigenvalues,

AQ = A
[

v1 v2 · · · vn

]

=
[

Av1 Av2 · · · Avn

]

=
[

λ1v1 λ2v2 · · · λnvn

]

= QĀ ⇔ Ā = Q−1AQ.

Hence Q, the matrix of the eigenvectors of A, is the similarity

transformation that takes A to a diagonal form.

Every matrix with all distinct eigenvalues is diagonalisable
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Brief Review on Linear Algebra

Eigenvalues of A are not all distinct. An eigenvalue with

multiplicity 2 or higher is called a repeated eigenvalue. An

eigenvalue with multiplicity 1 is a simple eigenvalue.

When an eigenvalue appears repeated, say r times, it may not

have r linearly independent eigenvectors. When there are less

independent eigenvectors than eigenvalues, the matrix cannot

have a diagonal representation.
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Brief Review on Linear Algebra

Eigenvalues of A are not all distinct. An eigenvalue with

multiplicity 2 or higher is called a repeated eigenvalue. An

eigenvalue with multiplicity 1 is a simple eigenvalue.

When an eigenvalue appears repeated, say r times, it may not

have r linearly independent eigenvectors. When there are less

independent eigenvectors than eigenvalues, the matrix cannot

have a diagonal representation.

An example of a non-diagonalisable matrix is

J =
[

λ 1 0
0 λ 1
0 0 λ

]

,

which has the eigenvalue λ repeated 3 times, but only one

independent eigenvector associated. The matrix J is a Jordan

block of order 3 associated with the eigenvalue λ.
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Brief Review on Linear Algebra

For an eigenvalue λ repeated r times, there are r + 1 possible

Jordan block configurations. For example, for r = 4 we have
[

λ 1 0 0
0 λ 1 0
0 0 λ 1
0 0 0 λ

]

one independent

eigenvector

one Jordan block of order 4

[

λ 0 0 0
0 λ 1 0
0 0 λ 1
0 0 0 λ

]

two independent

eigenvectors

one Jordan block of order 1,

one Jordan block of order 3
[

λ 1 0 0
0 λ 0 0
0 0 λ 1
0 0 0 λ

]

two independent

eigenvectors

two Jordan blocks of order 2

[

λ 0 0 0
0 λ 0 0
0 0 λ 1
0 0 0 λ

]

three independent

eigenvectors

two Jordan blocks of order 1,

ones Jordan block of order 2
[

λ 0 0 0
0 λ 0 0
0 0 λ 0
0 0 0 λ

]

four independent

eigenvectors

four Jordan blocks of order 1
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Brief Review on Linear Algebra

A matrix with repeated eigenvalues and a deficient number of

associated eigenvectors cannot be diagonalised. However, it

can always be taken to a block-diagonal and triangular form

called the Jordan form.
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A matrix with repeated eigenvalues and a deficient number of

associated eigenvectors cannot be diagonalised. However, it

can always be taken to a block-diagonal and triangular form

called the Jordan form. For example,

































λ1 1 0

0 λ1 1

0 0 λ1

0 0

0 0

0 0

0

0

0

0 0 0

0 0 0

λ1 1

0 λ1

0

0

0 0 0 0 0 λ2

































This matrix has two distinct

eigenvalues, λ1 and λ2; λ1 is

repeated five times, while λ2

appears only once.

There are two Jordan blocks

associated with λ1; one of or-

der 3 and one of order 2.
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A matrix with repeated eigenvalues and a deficient number of

associated eigenvectors cannot be diagonalised. However, it

can always be taken to a block-diagonal and triangular form

called the Jordan form. For example,

































λ1 1 0

0 λ1 1

0 0 λ1

0 0

0 0

0 0

0

0

0

0 0 0

0 0 0

λ1 1

0 λ1

0

0

0 0 0 0 0 λ2

































This matrix has two distinct

eigenvalues, λ1 and λ2; λ1 is

repeated five times, while λ2

appears only once.

There are two Jordan blocks

associated with λ1; one of or-

der 3 and one of order 2.

For any square matrix A, there is always a nonsingular matrix Q such that

Ā = Q
−1

AQ, where Ā is in Jordan form.

Lecture 12: State Space Equivalence and Realisations – p. 11/43



The University of Newcastle

Brief Review on Linear Algebra

Complex eigenvalues. The Jordan form applies also for a

matrix with complex eigenvalues, but then it stops being a real

matrix, e.g.,

Ā =















σ + jω 1 0 0

0 σ + jω 0 0

0 0 σ − jω 1

0 0 0 σ − jω
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Complex eigenvalues. The Jordan form applies also for a

matrix with complex eigenvalues, but then it stops being a real

matrix, e.g.,

Ā =















σ + jω 1 0 0

0 σ + jω 0 0

0 0 σ − jω 1

0 0 0 σ − jω















Yet, it is still possible obtain a real matrix, the real Jordan form,

which is still block-diagonal, although not anymore triangular.

Ā =















σ ω 1 0

−ω σ 0 1

0 0 σ ω

0 0 −ω σ















=





Bσ,ω I

0 Bσ,ω
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From the Jordan form of a matrix we can obtain important

properties of its eigenvalues; two useful ones are

trace{A} =

n∑

i=1

λi , det{A} =

n∏

i=1

λi .

In MATLAB, E=eig(A) yields the vector E containing the

eigenvalues of the square matrix A;

[Q,D]=eig(A) produces a diagonal matrix D of eigenvalues and a

full matrix Q whose columns are the corresponding eigenvectors

so that A*Q = Q*E.

J=jordan(A) computes the Jordan Canonical/Normal Form J of

the matrix A. The matrix must be known exactly, so its elements

must be integers or ratios of small integers.
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Equivalent State Equations

The state space description of a given system is not unique.

Given a state space representation, a simple change of

coordinates will take us to a different state space representation

of the same system.
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Equivalent State Equations

The state space description of a given system is not unique.

Given a state space representation, a simple change of

coordinates will take us to a different state space representation

of the same system.

Example. Consider the RLC electric circuit of the figure where

R = 1Ω, L = 1H and C = 1F. We take as output the voltage y

across C.

If we choose as state

−

+

L

u

x2

CR

x̄2
x̄1

x1

x2 = y

+

−

variables x1 , the current

through the inductor L,

and x2 , the voltage across

the capacitor C, we get

the state space description





ẋ1

ẋ2



 =





0 −1

1 −1









x1

x2



 +





1

0



 u, y =
[

0 1

]





x1

x2
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Example (continuation). On the other hand,

if we

−

+

L

u

x2

+

−

x2 = y

x1

CR

x̄2
x̄1

choose as state variables

the loop currents

x̄1 and x̄2 we get the

state space description





˙̄x1

˙̄x2



 =





−1 1

−1 0









x̄1

x̄2



 +





1

1



 u, y =
[

1 −1

]





x̄1

x̄2
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Example (continuation). On the other hand,

if we

−

+

L

u

x2

+

−

x2 = y

x1

CR

x̄2
x̄1

choose as state variables

the loop currents

x̄1 and x̄2 we get the

state space description





˙̄x1

˙̄x2



 =





−1 1

−1 0









x̄1

x̄2



 +





1

1



 u, y =
[

1 −1

]





x̄1

x̄2





Both state equation descriptions represent the same circuit, so

they must be closely related. In fact, we can verify that





x̄1

x̄2



 =





1 0

1 −1





︸ ︷︷ ︸
P





x1

x2



 i.e., x̄ = Px or x = P−1x̄.
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Equivalent State Equations

Algebraic Equivalence (AE): Let P ∈ R
n×n be a nonsingular matrix, and

let x̄ = Px. Then the state equation

˙̄x(t) = Āx̄(t) + B̄u(t)

y(t) = C̄x̄(t) + D̄u(t).
where

Ā = PAP
−1

, B̄ = PB ,

C̄ = CP
−1

, D̄ = D ,

is said to be (algebraically) equivalent to the state equation

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t).

and x̄ = Px is called an equivalence transformation.
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Equivalent State Equations

Algebraic Equivalence (AE): Let P ∈ R
n×n be a nonsingular matrix, and

let x̄ = Px. Then the state equation

˙̄x(t) = Āx̄(t) + B̄u(t)

y(t) = C̄x̄(t) + D̄u(t).
where

Ā = PAP
−1

, B̄ = PB ,

C̄ = CP
−1

, D̄ = D ,

is said to be (algebraically) equivalent to the state equation

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t).

and x̄ = Px is called an equivalence transformation.

From Linear Algebra, we know that the matrices A and Ā are

similar, and have the same eigenvalues. The MATLAB function

[Ab,Bb,Cb,Db] = ss2ss(A,B,C,D,P) performs equivalence

transformations between state space representations.
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Equivalent State Equations

Two AE (algebraically equivalent) state representations have the

same transfer function, since

Ḡ(s) = C̄(sI − Ā)−1B̄ + D̄
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Equivalent State Equations

Two AE (algebraically equivalent) state representations have the

same transfer function, since

Ḡ(s) = C̄(sI − Ā)−1B̄ + D̄

= CP−1
(

sI − PAP−1
)−1

PB + D
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Equivalent State Equations

Two AE (algebraically equivalent) state representations have the

same transfer function, since

Ḡ(s) = C̄(sI − Ā)−1B̄ + D̄

= CP−1
(

sI − PAP−1
)−1

PB + D

= C
(

sP−1P − P−1PAP−1P
)−1

B + D
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Equivalent State Equations

Two AE (algebraically equivalent) state representations have the

same transfer function, since

Ḡ(s) = C̄(sI − Ā)−1B̄ + D̄

= CP−1
(

sI − PAP−1
)−1

PB + D

= C
(

sP−1P − P−1PAP−1P
)−1

B + D

= C(sI − A)−1B + D = G(s).
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Equivalent State Equations

Two AE (algebraically equivalent) state representations have the

same transfer function, since

Ḡ(s) = C̄(sI − Ā)−1B̄ + D̄

= CP−1
(

sI − PAP−1
)−1

PB + D

= C
(

sP−1P − P−1PAP−1P
)−1

B + D

= C(sI − A)−1B + D = G(s).

Sometimes, however, systems not necessarily AE may have the

same transfer function.

Example. Consider the state equation

ẋ(t) = −3x(t) + u(t)

y(t) = 3x(t)
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Equivalent State Equations

Two AE (algebraically equivalent) state representations have the

same transfer function, since

Ḡ(s) = C̄(sI − Ā)−1B̄ + D̄

= CP−1
(

sI − PAP−1
)−1

PB + D

= C
(

sP−1P − P−1PAP−1P
)−1

B + D

= C(sI − A)−1B + D = G(s).

Sometimes, however, systems not necessarily AE may have the

same transfer function.

Example. Consider the state equation

ẋ(t) = −3x(t) + u(t)

y(t) = 3x(t)
Its transfer function is G(s) =

3

s + 3
.
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Equivalent State Equations

Example (continuation). On the other hand, consider





ż1(t)

ż2(t)



 =





−3 0

−4 1









z1(t)

z2(t)



 +





1

1



 u(t)

y(t) =
[

3 0

]





z1(t)

z2(t)
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Equivalent State Equations

Example (continuation). On the other hand, consider





ż1(t)

ż2(t)



 =





−3 0

−4 1









z1(t)

z2(t)



 +





1

1



 u(t)

y(t) =
[

3 0

]





z1(t)

z2(t)





Its transfer function is

G(s) =
[

3 0

]

×





s + 3 0

4 s − 1





−1 



1

1





=
1

(s + 3)(s − 1)

[

3 0

]

×





s − 1 0

−4 s + 3









1

1



 =
3

s + 3

The same as for the previous system, and they do not even have

the same dimensions!
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Equivalent State Equations

We see that

Algebraic Equivalence ⇛

6⇚ Same Transfer Function
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Equivalent State Equations

We see that

Algebraic Equivalence ⇛

6⇚ Same Transfer Function

A concept more general than that of AE is the following.

Zero-State Equivalence (ZSE): Two LTI state equations {A, B, C, D}

and {Ā, B̄, C̄, D̄} are zero-state equivalent if they have the same

transfer (matrix) function.

Clearly, AE always implies ZSE, but the reverse does not hold.

The concepts of equivalence of state equations, AE and ZSE, are

exactly the same for discrete-time LTI systems.
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Canonical Forms

Although for a system has an infinite number of state space

representations, there are some particular forms of these state

equations which present useful characteristics. These are known

as canonical forms. We will discuss two of them:

the Modal Canonical Form

the Controller Canonical Form
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Canonical Forms

Modal Canonical Form. A state equation in which the matrix A

is in Jordan form. It is called modal because the eigenvalues (the

modes of the system) are explicit in it.

To obtain the modal canonical form from an arbitrary state

equation {A, B, C, D} we have to use as equivalence

transformation the matrix P = Q−1, where Q is the similarity

transformation that yields the Jordan form Ā of the matrix A.
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Canonical Forms

Modal Canonical Form. A state equation in which the matrix A

is in Jordan form. It is called modal because the eigenvalues (the

modes of the system) are explicit in it.

To obtain the modal canonical form from an arbitrary state

equation {A, B, C, D} we have to use as equivalence

transformation the matrix P = Q−1, where Q is the similarity

transformation that yields the Jordan form Ā of the matrix A.

Example. Consider state equation ẋ = Ax + Bu, y = Cx + Du, with

A =
[

0 0 2
−2 2 2
0 −1 2

]

, B =
[

0
1
1

]

, C =
[

1 1 −1
0 1 0

]

, D = [ 0
0 ] .

The eigenvalues of A are λ1 = 1 + j, λ2 = 1 − j, and λ3 = 2, respectively

with eigenvectors

v1 =
[

1
1
1

]

− j
[

1
1
0

]

, v2 =
[

1
1
1

]

+ j
[

1
1
0

]

, v3 =
[

1
0
1

]

.
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Canonical Forms

Example (continuation). The equivalence transformation

Q =
[

1 −1 1
1 −1 0
1 0 1

]

takes A to the real Jordan form

Ā = Q−1AQ =









1 1 0

−1 1 0

0 0 2









.

The transformed matrices B̄, C̄, D̄ are

B̄ = Q−1B =









2

1

−1









, C̄ = CQ =





1 −2 0

1 −1 0



 , D̄ = D =





0

0





The state equation given by {Ā, B̄, C̄, D̄} is in modal canonical

form.

Lecture 12: State Space Equivalence and Realisations – p. 24/43



The University of Newcastle

Canonical Forms

Controller Canonical Form. A state equation in which the matrix

A is in companion form with the coefficients of its characteristic

polynomial on the first row.

This canonical form will be useful to explain state feedback

control design. In the SISO case the matrices have the form

Ā =





















−α1 −α2 · · · −αn−1 −αn

1 0 · · · 0 0

0 1 · · · 0 0

...
...

. . .
...

...

0 0 · · · 1 0





















, B̄ =





















1

0

0

...

0





















C̄ =
[

β1 β2 . . . βn−1 βn

]

, D̄ = γ.

The matrices C̄ and D̄ have no special structure.
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Canonical Forms

Let {A, B, C, D} be a generic SISO state equation representation

(of order 4, for simplicity), in which the characteristic polynomial

of A is ∆(λ) = λ4 + α1λ3 + α2λ2
2 + α3λ + α4. To obtain the

Controller Canonical Form of this system we introduce the

matrices

C =
[

B AB A2B A3B

]

and R =

[

1 α1 α2 α3

0 1 α1 α2

0 0 1 α1

0 0 0 1

]
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Canonical Forms

Let {A, B, C, D} be a generic SISO state equation representation

(of order 4, for simplicity), in which the characteristic polynomial

of A is ∆(λ) = λ4 + α1λ3 + α2λ2
2 + α3λ + α4. To obtain the

Controller Canonical Form of this system we introduce the

matrices

C =
[

B AB A2B A3B

]

and R =

[

1 α1 α2 α3

0 1 α1 α2

0 0 1 α1

0 0 0 1

]

Then, under the assumption that C is nonsingular the

equivalence transformation

P = (CR)−1

yields the matrices Ā = PAP−1, B̄ = PB, C̄ = CP−1, D̄ = D in

Controller Canonical Form.

The matrix C is called the Controllability Matrix.
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Canonical Forms

The Controller Canonical Form provides a direct method of

obtaining a state equation from a transfer matrix (a realisation).

Indeed, it is not difficult to check that

Ā =







−α1 −α2 ··· −αn−1 −αn

1 0 ··· 0 0
0 1 ··· 0 0

...
...

. . .
...

...
0 0 ··· 1 0






, B̄ =







1
0
0

...
0







C̄ = [ β1 β2 ... βn−1 βn ] , D̄ = γ

yields the transfer function

G(s) =
β1sn−1 + β2sn−2 + · · · + βn

sn + α1sn−1 + α2sn−2 + · · · + αn

+ γ.
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Canonical Forms

The Controller Canonical Form provides a direct method of

obtaining a state equation from a transfer matrix (a realisation).

Indeed, it is not difficult to check that

Ā =







−α1 −α2 ··· −αn−1 −αn

1 0 ··· 0 0
0 1 ··· 0 0

...
...

. . .
...

...
0 0 ··· 1 0






, B̄ =







1
0
0

...
0







C̄ = [ β1 β2 ... βn−1 βn ] , D̄ = γ

yields the transfer function

G(s) =
β1sn−1 + β2sn−2 + · · · + βn

sn + α1sn−1 + α2sn−2 + · · · + αn

+ γ.

Hence, for a given transfer function G(s), we can directly obtain

a state equation representation from the coefficients of its

numerator, denominator, and high frequency gain.
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Canonical Forms

Given a SISO state equation {A, B, C, D}, the following MATLAB

code computes its Controller Canonical Form

1 G = ss(A,B,C,D); % system in original coordinates

2 pol=poly(G.a); % get characteristic polynomial

3 n=length(G.a); % get system order

4 CC=ctrb(G.a,G.b);% get controllability matrix

5 R=toeplitz(eye(n,1),pol(1:n-1)); % built R

6 P=inv(CC*R); % built equiv. transformation P

7 Gbar=ss2ss(G,P); % transform to CCF

Neither the Controller Canonical Form or the Modal Canonical

Form are recommended for numerical computations for large

order systems, since they are generally ill-conditioned.

Nevertheless, these canonical forms have great value to analyse

and understand state equation system theory.
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Realisations

So far, we know that a LTI system can be represented by the

external description given by its transfer (matrix) function

Y(s) = G(s)U(s).
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Realisations

So far, we know that a LTI system can be represented by the

external description given by its transfer (matrix) function

Y(s) = G(s)U(s).

If the system is also finite dimensional (lumped) it can also be

represented by the internal description given by state

equations

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t).
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Realisations

So far, we know that a LTI system can be represented by the

external description given by its transfer (matrix) function

Y(s) = G(s)U(s).

If the system is also finite dimensional (lumped) it can also be

represented by the internal description given by state

equations

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t).

If the state equations of the system are known, then the

transfer matrix can be computed from the system matrices as

G(s) = C(sI − A)−1B + D,

and this computed transfer matrix is unique.
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Realisations

The realisation problem is the converse to obtaining G(s) from

A, B, C, D. That is, it is the problem of obtaining the system state

equations from its transfer matrix.

³¶
?

µ 6́

G(s) {A, B, C, D}

Transfer Matrix Computation

Realisation
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Realisations

The realisation problem is the converse to obtaining G(s) from

A, B, C, D. That is, it is the problem of obtaining the system state

equations from its transfer matrix.

³¶
?

µ 6́

G(s) {A, B, C, D}

Transfer Matrix Computation

Realisation

A transfer matrix G(s) is said to be realisable if there exists a

finite-dimensional state equation, or simply a quadruple

{A, B, C, D} such that

G(s) = C(sI − A)−1B + D.

The quadruple {A, B, C, D} is then called a realisation of G(s).
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Realisations

Although for a given quadruple {A, B, C, D} the transfer

matrix G(s) = C(sI − A)−1B + D is unique, a given transfer

matrix G(s) does not have a unique realisation {A, B, C, D}.
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Realisations

Although for a given quadruple {A, B, C, D} the transfer

matrix G(s) = C(sI − A)−1B + D is unique, a given transfer

matrix G(s) does not have a unique realisation {A, B, C, D}.

Different realisations present different properties (e.g., good

numerical condition, minimal order, etc.) which might be

convenient depending on their application.
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Realisations

Although for a given quadruple {A, B, C, D} the transfer

matrix G(s) = C(sI − A)−1B + D is unique, a given transfer

matrix G(s) does not have a unique realisation {A, B, C, D}.

Different realisations present different properties (e.g., good

numerical condition, minimal order, etc.) which might be

convenient depending on their application.

Theorem (Realisability). A transfer matrix G(s) is realisable if and

only if G(s) is a proper rational transfer matrix.

Recall that a rational (i.e., quotient of polynomials) transfer

function is proper if the degree of its numerator is not greater

than that of its denominator. A transfer matrix is proper if all its

elements are proper transfer functions.
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Realisations

For a SISO system we know a direct method to obtain a

state equation in the Controller Canonical Form:
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Realisations

For a SISO system we know a direct method to obtain a

state equation in the Controller Canonical Form:

A is obtained from the coefficients of the characteristic

polynomial, α1, α2, . . . , αn, from the denominator of G(s)
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Realisations

For a SISO system we know a direct method to obtain a

state equation in the Controller Canonical Form:

A is obtained from the coefficients of the characteristic

polynomial, α1, α2, . . . , αn, from the denominator of G(s)

B is trivial
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Realisations

For a SISO system we know a direct method to obtain a

state equation in the Controller Canonical Form:

A is obtained from the coefficients of the characteristic

polynomial, α1, α2, . . . , αn, from the denominator of G(s)

B is trivial

D = lims→∞ G(s), the direct feedthrough, a.k.a.

high-frequency gain; needs to be obtained before C
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Realisations

For a SISO system we know a direct method to obtain a

state equation in the Controller Canonical Form:

A is obtained from the coefficients of the characteristic

polynomial, α1, α2, . . . , αn, from the denominator of G(s)

B is trivial

D = lims→∞ G(s), the direct feedthrough, a.k.a.

high-frequency gain; needs to be obtained before C

C is obtained from the coefficients β1, β2, . . . , βn of the

numerator of G(s) − D.
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Realisations

For a SISO system we know a direct method to obtain a

state equation in the Controller Canonical Form:

A is obtained from the coefficients of the characteristic

polynomial, α1, α2, . . . , αn, from the denominator of G(s)

B is trivial

D = lims→∞ G(s), the direct feedthrough, a.k.a.

high-frequency gain; needs to be obtained before C

C is obtained from the coefficients β1, β2, . . . , βn of the

numerator of G(s) − D.

For a SIMO system , say p outputs, we can use the same

direct method; the only alterations are in C and D,

D =





γ1
γ2

...
γp



 = lim
s→∞







G1(s)

G2(s)

...
Gp(s)






, C =





β11 β12 ... β1n

β21 β22 ... β2n

...
... ...

...
βp1 βp2 ... βpn
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Realisations

For a MIMO system , say p outputs and q inputs, we can still

use the direct method, by considering the system as the

superposition of several SIMO systems,







y1(s)

y2(s)

...
yp(s)






=







G11(s) G12(s) ··· G1m(s)

G21(s) G22(s) ··· G2m(s)

...
... ···

...
Gp1(s) Gp2(s) ··· Gpq(s)













u1(s)

u2(s)

...
uq(s)







= [ GC1(s) GC2(s) ··· GCq(s) ]







u1(s)

u2(s)

...
up(s)







= GC1(s)u1(s) + GC2(s)u2(s) + · · · + GCq(s)uq
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Realisations

A MIMO system as the superposition of several SIMO systems:

d i d

d

d

?

6
- - -

-

-

b
b

bb
-

-
-
-ui

y1
y2...
yp

GCi(s)
GC1(s)

GC2(s)

GCq(s)

...
. . .

...

y =





y1
y2

...
yp





uq

u1

u2
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Realisations

A MIMO system as the superposition of several SIMO systems:

d i d

d

d

?

6
- - -

-

-

b
b

bb
-

-
-
-ui

y1
y2...
yp

GCi(s)
GC1(s)

GC2(s)

GCq(s)

...
. . .

...

y =





y1
y2

...
yp





uq

u1

u2

If Ai, Bi, Ci, Di is the realisation of column GCi(s), i = 1, . . . , m,

of G(s), then a realisation of the superposition is







ẋ1

ẋ2

...
ẋq






=





A1 0 ··· 0
0 A2 ··· 0

...
...

. . .
...

0 0 ··· Aq









x1
x2

...
xq



 +





B1 0 ··· 0
0 B2 ··· 0

...
...

. . .
...

0 0 ··· Bq









u1
u2

...
uq





y = [ C1 C2 ··· Cq ]





x1
x2

...
xq



 + [ D1 D2 ··· Dq ]





u1
u2

...
uq
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Realisations

Example. Consider the 2 × 2 transfer matrix

G(s) =





4s−10
2s+1

3
s+2

1
(2s+1)(s+2)

s+1
(s+2)2



 .

We first separate the direct gain D and the strictly proper part

Ǧ(s)

G(s) =





2 0

0 0



 +





−12
2s+1

3
s+2

1
(2s+1)(s+2)

s+1
(s+2)2





=





2 0

0 0





︸ ︷︷ ︸
G(∞)=D

+

[

[

−6(s+2)

1/2

]

s2+ 5
2

s+1

[

3(s+2)

(s+1)

]

(s+2)2

]

︸ ︷︷ ︸
Ǧ(s) strictly proper part

Note per-column

common

denominator
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Realisations

Example (continuation). We realise the strictly proper part Ǧ(s)

by columns. A realisation for the first column of Ǧ(s) is

[

[

−6(s+2)

1/2

]

s2+ 5
2

s+1

]

⇄

ẋ1 =
[

− 5
2

−1

1 0

]

x1 +
[

1
0

]

u1

yC1 =
[

−6 −12

0 1
2

]

x1

And a realisation for the second column of Ǧ(s) is

[
[

3(s+2)

(s+1)

]

s2+4s+4

]

⇄

ẋ2 =
[

−4 −4
1 0

]

x2 +
[

1
0

]

u2

yC1 =
[

3 6
1 1

]

x2

Finally, we superpose the column realisations to get that of G(s)

[

ẋ1

ẋ2

]

=

[

− 5
2

−1 0 0

1 0 0 0
0 0 −4 −4
0 0 1 0

]

[ x1
x2

] +

[

1 0
0 0
0 1
0 0

]

[ u1
u2

]

[ y1
y2

] =
[

−6 −12 3 6

0 1
2

1 1

]

[ x1
x2

] +
[

2 0
0 0

]

[ u1
u2

]
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Realisations

We summarise the procedure used in the example as it is useful

to find a realisation of any (even non-square) transfer matrix.

CCF Realisation Procedure. Start with a given transfer matrix G(s)

1. Compute the high-frequency gain matrix D = lims→∞ G(s).

2. Obtain the strictly proper part of G(s) i.e., Ǧ(s) = G(s) − D.

3. If the system has more than one input (G(s) is p × q, with

q > 1) split Ǧ(s) in columns Ǧ = [ ǦC1 ǦC2 ... ǦCq ], obtaining

per-column common denominators.

4. Obtain a CCF realisation {Ai, Bi, Ci} of each ǦCi for i = 1 : q.

5. Form the realisation of G(s) as

A = blockdiag[A1, A2, . . . , Aq], C = [ C1 C2 ... Cq ] ,

B = blockdiag[B1, B2, . . . , Bq], D
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Realisations

Notice that this direct method to obtain a state equation

realisation of a transfer matrix does not necessarily give a

realisation with as many eigenvalues of A as poles in G(s).

Generally, we will obtain more eigenvalues than poles in

G(s).
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Realisations

Notice that this direct method to obtain a state equation

realisation of a transfer matrix does not necessarily give a

realisation with as many eigenvalues of A as poles in G(s).

Generally, we will obtain more eigenvalues than poles in

G(s).

For any given transfer matrix G(s) there always exist

realisations of minimal order, in which, if G(s) has n poles,

say, the matrix A is the realisation is n × n, i.e., it has n

eigenvalues. These realisations are called minimal.
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Realisations

Notice that this direct method to obtain a state equation

realisation of a transfer matrix does not necessarily give a

realisation with as many eigenvalues of A as poles in G(s).

Generally, we will obtain more eigenvalues than poles in

G(s).

For any given transfer matrix G(s) there always exist

realisations of minimal order, in which, if G(s) has n poles,

say, the matrix A is the realisation is n × n, i.e., it has n

eigenvalues. These realisations are called minimal.

A nonminimal realisation can still produce the same transfer

function G(s) because there will be pole-zero cancellations

in C(sI − A)−1B + D that make the “excess” eigenvalues

disappear in the resulting transfer matrix.
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Realisations

The MATLAB function to obtain a minimal realisation is

Gmr=minreal(G), or [Am,Bm,Cm,Dm]=minreal(A,B,C,D).

For the example, the following MATLAB code

1 A=[-5/2,-1 0 0;1 0 0 0;0 0 -4 -4;0 0 1 0];

2 B=[1 0;0 0;0 1;0 0];

3 C=[-6 -12 3 6;0 1/2 1 1];

4 D=[2 0;0 0];

5

6 G=ss(A,B,C,D);

7 Gmr=minreal(G);

yields the minimal realisation

A =
[

−0.4198 −0.3802 −0.3654
0.642 −3.842 −3.523

−0.321 0.921 −0.2383

]

, B =
[

0.4 0.08889
−0.4 0.9111
0.2 0.04444

]

C =
[

−13.33 4.333 5.333
0.5 1 1

]

, D =
[

2 0
0 0

]
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Realisations

A minimal realisation is intrinsically related to the controllability

and observability properties of a state equation, as we will see

later.
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Realisations in Discrete-Time Systems

Discrete-time state equations. The realisation issues for

discrete-time state equations are exactly the same as for

continuous-time state equations, since the relation between

state matrices and transfer function is the same,

G(z) = C(zI − A)−1B + D

m
x[k + 1] = Ax[k] + Bu[k]

y[k] = Cx[k] + Du[k]
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Summary

We reviewed some basic concepts of Linear Algebra

required for the course: eigenvalues and eigenvectors,

diagonal and Jordan form, etc.
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Summary

We reviewed some basic concepts of Linear Algebra

required for the course: eigenvalues and eigenvectors,

diagonal and Jordan form, etc.

We presented the concept of algebraic equivalence and

zero state equivalence between state equations.
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Summary

We reviewed some basic concepts of Linear Algebra

required for the course: eigenvalues and eigenvectors,

diagonal and Jordan form, etc.

We presented the concept of algebraic equivalence and

zero state equivalence between state equations.

We studied two important canonical forms of state

equations: the Modal Canonical Form and the Controller

Canonical Form, which will be used in future lectures.
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Summary

We reviewed some basic concepts of Linear Algebra

required for the course: eigenvalues and eigenvectors,

diagonal and Jordan form, etc.

We presented the concept of algebraic equivalence and

zero state equivalence between state equations.

We studied two important canonical forms of state

equations: the Modal Canonical Form and the Controller

Canonical Form, which will be used in future lectures.

We discussed the problem of realisation of a transfer matrix,

and presented a (not necessarily minimal) procedure to

obtain a realisation of an arbitrary proper transfer matrix G(s)

using the CCF.
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