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Stability

The stability of a system can be thought as a continuity in its
dynamic behaviour. If a small perturbation arises in the system
inputs or initial conditions, a stable system will present small
modifications in its perturbed response.

In an unstable

Unstable

Stable

x(0)

x(0)

x(t)

x(t)
system, any perturbation,
no matter how small, will
make states or outputs grow
unbounded or until the system
disintegrates or saturates.

Stability is a basic requirement
of dynamic systems that per-
form operations or process sig-
nals; the first objective in con-
trol design.
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The Tacoma Narrows Bridge Failure

On November 7, 1940, at approximately 11:00 AM, the first
Tacoma Narrows suspension bridge collapsed due to
wind-induced vibrations. Situated on the Tacoma Narrows in
Puget Sound, near the city of Tacoma, Washington, the bridge
had only been open for traffic a few months.

The Tacoma Narrows Bridge Failure is a formidable example of a
system that was built with a structural instability.
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Input Output Stability of LTI Systems

Recall that the response of a LTI system is composed of

response to initial conditions + response to inputs

The concept of Input-Output Stability refers to stability of the
response to inputs only, assuming zero initial conditions.

BIBO Stability. A system is BIBO (bounded-input bounded-output)
stable if every bounded input produces a bounded output.

Theorem (BIBO Stability and Impulse Response). A SISO system is
BIBO stable if and only if its impulse response g(t) is absolutely
integrable in the interval [0, ∞). That is, if

∫∞

0

|g(τ)|dτ ≤ M

for some finite constant M ≥ 0.
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Input Output Stability of LTI Systems

Theorem (BIBO Stability and Steady State Response). If a system
with transfer (matrix) function G(s) is BIBO stable, then as t → ∞

1. The output excited by u(t) = a, for t ≥ 0, approaches

G(0)a.

2. The output excited by u(t) = sin(ω0t), for t ≥ 0, approaches

|G(jω0)| sin(ω0t + ]G(jω0)),

This is a basic result: specifies the response of a BIBO system to
constant and sinusoidal signals once the transients have
extinguished. Filtering of signals is based essentially on this
theorem.
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Input Output Stability of LTI Systems

Example. Take the transfer function G(s) = s+1

s2+15s+26
. It has

poles at s = −13 and s = −2, so it is BIBO stable.

The Bode diagram plots the gains and phases of G(jω).
Bode Diagram
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Input Output Stability of LTI Systems

Theorem (BIBO Stability). A LTI system with proper rational transfer
matrix G(s) = [Gij(s)] is BIBO stable if and only if every pole of
every entry Gij(s) of G(s) has negative real part.

BIBO stability of state equations. When the system is represented by
state equations

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

the BIBO stability will depend on the eigenvalues of the matrix A, since
every pole of G(s) is an eigenvalue of A. Indeed

G(s) = C(sI − A)
−1

B + D =
C adj(sI − A)B

det(sI − A)
+ D,

thus if all eigenvalues of A have negative real part, all the poles of G(s)

will have negative real part, and the system will be BIBO stable.
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Input Output Stability of LTI Systems

Note that not every eigenvalue of A is a pole of G(s), since
there may be pole-zero cancellations while computing G(s).
Thus, a state equation may be BIBO stable even when some
eigenvalues of A do not have negative real part.

Example. Although the system

ẋ(t) =





−1 10

0 1



 x(t) +





−2

0



 u(t)

y(t) =
[

−2 3

]

x(t) − 2u(t)

has one eigenvalue with positive real part λ = 1, it is BIBO stable, since its
transfer function

G(s) = C(sI − A)
−1

B + D =
2(1 − s)

(s + 1)

has a single pole at s = −1.
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Internal Stability of LTI Systems

The concept of Internal Stability refers to stability of the system
response to initial conditions only, assuming zero inputs.

In other words, we now study the stability of the response of the
state equation

ẋ(t) = Ax(t), with x(0) = x0.

Because the solution of this equation is given by

x(t) = eAtx0,

stability is determined by the eigenvalues of A, as we discussed
when we studied the state response to initial conditions. Loosely
speaking, if the eigenvalues of A have all negative real part, the
system response will decay to 0 as t → ∞.

We make the definition of internal stability more precise.
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Internal Stability of LTI Systems

Lyapunov Stability. The system ẋ(t) = Ax(t) is Lyapunov stable,
or marginally stable, or simply stable, if every finite initial state x0

excites a bounded response x(t).

Asymptotic Stability. The system ẋ(t) = Ax(t) is asymptotically
stable if every finite initial state x0 excites a bounded response
x(t) that approaches 0 as t → ∞.

Instability. The system ẋ(t) = Ax(t) is unstable if it is not stable.

Lyapunov Stability Asymptotic Stability Instability
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Internal Stability of LTI Systems

Theorem (Internal Stability). The equation ẋ(t) = Ax(t) is

1. Lyapunov stable if and only if all the eigenvalues of A have
zero or negative real parts, and those with zero real part are
associated with a Jordan block of order 1.

2. Asymptotically stable if and only if all eigenvalues of A have
negative real parts.

Example. Consider

ẋ(t) =

[

0 0 0

0 0 0

0 0 −1

]

x(t).

The matrix A has eigenvalues λ0 = 0 with multiplicity 2, and
λ1 = −1 with multiplicity 1. The eigenvalue λ1 = 0 is associated to
Jordan blocks of order 1, so the equation is Lyapunov stable.
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Internal Stability of LTI Systems

Example. Now consider the equation

ẋ(t) =

[

0 1
0 0

0
0

0 0 −1

]

x(t).

The matrix A has the same eigenvalues and same multiplicities of
the previous example. Now, however, the repeated eigenvalue
λ1 = 0 is associated to a Jordan block of order 2, so the equation
is unstable.

Indeed, we know that the solution of this equation is given by

x(t) = exp
([

0 1 0
0 0 0
0 0 −1

]

t
)

x(0) =
[

1 t 0
0 1 0
0 0 e−t

]

[

x1(0)

x2(0)

x3(0)

]

=

[

x1(0)+tx2(0)

x2(0)

e−tx3(0)

]

,

from which we see that x1(t) grows unbounded if x2(0) 6= 0.
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Internal Stability of LTI Systems

A block diagram interpretation of the difference between the
two systems

ẋ(t) =





0 0

0 0



 x(t) and ẋ(t) =





0 1

0 0



 x(t)

the system on the left represents two decoupled integrators

b b

b b- -

x1(t) x2(t)

x2(0)x1(0)

∫ ∫

the system on the right represents two coupled integrators

b b

b- -

x1(t) x2(t)

x2(0)x1(0)

∫ ∫
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Internal Stability of LTI Systems

As discussed earlier, every pole of the transfer matrix

G(s) = C(sI − A)−1B + D

is an eigenvalue of A. Thus,

asymptotic stability ⇒ BIBO stability

However, not all eigenvalues of A are necessarily poles of G(s),
hence

asymptotic stability : BIBO stability
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Discrete-Time Systems

The concepts of BIBO stability and internal stability carry over to
discrete-time systems. We summarise the main results.

Theorem (Discrete-time BIBO stability and impulse response). A
discrete-time system with impulse response matrix g[k] = [gij[k]] is
BIBO stable if and only if every entry gij[k] is absolutely summable,
i.e., if

∞∑

k=0

|g[k]| ≤ M for some finite constant M ≥ 0.

Theorem (Discrete-Time BIBO stability). A LTI discrete-time system
with proper rational transfer function G(z) = [Gij(z)] is BIBO stable
if and only if every pole of every entry Gij(z) has magnitude less
than 1.
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Discrete-Time Systems

Theorem (discrete-time internal stability). The system

x[k + 1] = Ax[k]

is

1. Lyapunov stable if and only if all the eigenvalues of A have
magnitude no greater than 1, and those eigenvalues with
magnitude equal to 1 are associated to Jordan block of order
1.

2. Asymptotically stable if and only if all the eigenvalues of A

have magnitude less than 1.
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Summary

A system is BIBO stable if every bounded input excites a
bounded output.

BIBO stability is associated with the response of the system
with zero initial state. A transfer matrix G(s) is BIBO stable iff all
its poles have negative real part.

Asymptotic stability is associated with the response of the
system with zero input. A system ẋ = Ax is asymptotically
stable iff all the eigenvalues of A have negative real part.

A system ẋ = Ax is marginally stable, or Lyapunov stable, iff all
the eigenvalues of A have nonpositive real part, and those
eigenvalues with zero real part are “decoupled” (associated
with Jordan blocks of order 1).
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stable iff all the eigenvalues of A have negative real part.
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