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Observability

The concept of observability is dual to that of controllability, and
deals with the possibility of estimating the state of the system
from the knowledge of its inputs and outputs.

Consider the LTI system

ẋ = Ax + Bu, A ∈ R
n×n, B ∈ R

n×q

y = Cx + Du, C ∈ R
p×n, D ∈ R

p×q
(SE)

Observability: The state equation (SE), or the pair (A, C), is said
to be observable if for any unknown initial state x(0), there exists
a finite time t1 > 0 such that the knowledge of the input u(t) and
the output y(t) over [0, t1] suffices to determine uniquely the initial
state x(0). Otherwise, the equation is said to be unobservable.
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Observability

Example (Unobservable systems). The network shown in the
figure below has two state variables: the current x1 through the
inductor and the voltage x2 across the capacitor. The input u is
a current source.

−

x2 = y

+
2Ω

1H x1

u

1F

1Ω

If u = 0, x2(0) = 0 and x1(0) = a 6= 0, then the output is identically
zero. Any x(0) = [ a

0 ] and u(t) ≡ 0 yield the same output
y(t) ≡ 0.

Thus there is no way to uniquely determine the initial state [ a
0 ]

and the system is unobservable.
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Observability

We have shown that the response of the state equation system is
given by

y(t) = CeAtx(0) + C

∫t

0

eA(t−τ)BU(τ)dτ + Du(t)

In studying observability we assume u and y known; the initial
state x(0) is the only unknown.

From the previous equation,

CeAtx(0) = ȳ(t), (1)

where

ȳ(t) = y(t) − C

∫t

0

eA(t−τ)BU(τ)dτ − Du(t)

is a known function. Thus the observability problem reduces to
finding x(0) as the unique solution of (1).
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where
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Observability

For a fixed time t, CeAt is a p × n real, constant matrix, and ȳ(t)

a constant p × 1 vector.

Thus, in general, because p < n (there are less outputs than
states) we cannot find a unique vector x(0) from

CeAtx(0) = ȳ(t) , for a given fixed t.

To determine x(0) uniquely we need to use the knowledge of
y(t) and u(t) over a nonzero time interval.
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Observability Gramian
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Observability Gramian

Theorem (Gramian Observability Test). The state equation (SE) is
observable if and only if the n × n matrix

Wo(t) =

∫t

0

eAT τCT CeAτdτ (WO)

is nonsingular for any t > 0.

Note that observability only depends on the matrices A and C.
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Observability Gramian

If the matrix A is Hurwitz (all eigenvalues have negative real
part), then Wo(t) converges for t → ∞, and we simply denote it
by Wo,

Wo =

∫∞

0

eAT τCT CeAτdτ,

which is called the Observability Gramian of (A, C).

The Observability Gramian can be computed by solving the
linear matrix Lyapunov equation

WoA + AT Wo = −CT C.

In MATLAB the functions Ob = obsv(A,C) and Wo = gram(A’,C’)’

respectively compute the observability matrix O and Gramian
Wo. By checking the rank of O or Wo, we can determine if a
pair (A, C) is observable.
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Duality Controllability-Observability
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Duality Controllability-Observability

Theorem (Duality). The pair (A, B) is controllable if and only if the
pair (AT , CT ) is observable.

Proof. The pair (A, B) is controllable if and only if

Wc(t) =

∫t

0

eAτBBT eAT τdτ

is nonsingular for any t.

On the other hand, the pair (AT , BT ) is observable if and only if,
by replacing A by AT and C by BT in (WO),

Wo(t) =

∫t

0

eAτBBT eAT τdτ

is nonsingular for any t; the two conditions are thus identical.
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Duality Controllability-Observability

The Duality between controllability and observability establishes
that we can test the observability of a pair (A, C) by using the
controllability tests that we already know on the pair (AT , CT ).

Example. Consider the system

ẋ(t) =
[

−2 −2 0
0 0 1
0 −3 −4

]

x(t) +
[

1 0
0 1
1 1

]

u(t)

y(t) = [ 1 0 1 ] x(t)

By duality, we can check the observability of this system as the
controllability of (AT , CT ); for instance, via the matrix

C = [ CT AT CT AT 2
CT ] =

[

1 −2 4
0 −5 16
1 −4 11

]

which has rank 3, thus (A, C) is observable.
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Test for Observability
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Observability Tests

Theorem (Observability Tests). The following statements are
equivalent.

1. The n-dimensional pair (A, C), A ∈ R
n×n, C ∈ R

p×n, is ob-
servable.

2. The Observability Matrix

O =







C
CA

CA2

...
CAn−1






, O ∈ R

np×n,

has rank n (full column rank).

3. The n × n matrix Wo(t) =
∫t

0
eAτBBT eAT τdτ is non singular for

all t > 0.
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Observation via Differentiation
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Observation via Differentiation

It is possible to solve the observability problem by repeatedly
differentiating ȳ(t) at t = 0.

From ȳ(t) = CeAtx(0), since y(0) = Cx(0),
˙̄y(0) = CAx(0), . . . , ȳn−1(0) = CAn−1x(0), we have

[

C
CA
···

CAn−1

]

x(0) =

[

ȳ(0)

˙̄y(0)
···

ȳn−1(0)

]

i.e., Ox(0) = ~y(0) .

If the system is observable, then O is full column rank, and we
know there exist a unique solution of Ox(0) = ~y(0) given by

x(0) =
[

O
T
O

]−1
O

T
~y(0).

Note that we still need to know ȳ(t) on a neighbourhood of t = 0

to be able to determine ~y(0).
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Observation via Differentiation

Is it practical to implement observation via differentiation?
Although theoretically we could obtain x(0) by differentiation, in
practice it is not recommended, since

measurements of y(t) almost always include high frequency
noise

differentiation of high frequency noise “amplifies” its
magnitude, increasing errors in the computation of x(0)

on the other hand, integration “averages” high frequency
noise, diminishing its effects in the computation of x(0).

It is much more convenient to implement observation by using
integration, e.g., via the formula

x(0) = W−1
o (t1)

∫t1

0

eAT τCT ȳ(τ)dτ.
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Examples
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Observability Examples

Example (Earth satellite).
A linearised state equation for a satellite in circular
orbit is given by

ẋ(t) =









0 1 0 0

3ω2

0
0 0 2r0ω0

0 0 0 1

0 −
2ω0

r0
0 0









x(t) +







0 0

1 0

0 0

0 1

r0






u(t)

y(t) =





1 0 0 0

0 0 1 0



 x(t) =





r(t)

θ(t)





u1(t)

θ(t)

u2(t)

r(t)

where the first output is the (incremental) radial distance r(t) and the
second the (incremental) angle θ(t).

The position of the satellite can be adjusted by means of the thrust
forces u1(t) and u2(t). The nominal radius is r0 and the nominal
angular velocity ω0.
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Observability Examples

Example (continuation).

Suppose that only radial distance measurements

y1(t) =
[

1 0 0 0

]

x(t) = C1x(t)

are available on a specified time interval. The observability matrix in
this case is





C1

AC1

A2C1

A3C1



 =

[

1 0 0 0
0 1 0 0

3ω3

0
0 0 2r0ω0

0 −ω2

0
0 0

]

which has rank 3.

Therefore, radial measurement does not suffice to compute the
complete orbit state.

On the other hand, measurement of angle,

y1(t) =
[

0 0 1 0

]

x(t) = C2x(t)

does suffice, as can be readily verified.
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Observability Examples

Example (Controllability and Observability of an RLC circuit). The
RLC circuit below is modelled by the state equations





ẋ1(t)

ẋ2(t)



 =





− 2
RC

1
C

− 1
L

0









x1(t)

x2(t)



 +





1
RC

1
L



 u(t)

y(t) =
[

−1 0

]





x1(t)

x2(t)



 + u(t)

R

C +

−

RL
Vxu

−

+

x1+ −

x2
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Observability Examples

Example (RLC circuit continuation). We test controllability by
checking the rank of the Controllability Matrix,

C =
[

B AB

]

=





1
RC

− 2
R2C2 + 1

LC

1
L

− 1
RLC

.





The rank of this matrix can be checked with the determinant,

det C =
1

R2LC2
−

1

L2C

The determinant is zero (and thus the system uncontrollable) if

1

R2LC2
−

1

L2C
= 0 ⇔ R =

√

L

C
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Observability Examples

Example (RLC circuit continuation). On the other hand, the
Observability Matrix is

O =





C

CA



 =





−1 0

2
RC

− 1
C





which is obviously full rank.

Hence the system is always observable, but becomes
uncontrollable whenever R =

√

L/C.
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Observability Examples

Example (RLC circuit continuation). Let’s see what happens to
the system transfer function when controllability is lost.

The calculation, using the known formula
G(s) = C(sI − A)−1B + D gives

G(s) =
[

−1 0

]





s + 2
RC

− 1
C

1
L

s





−1 



1
RC

1
L



 + 1

=
s

(

s + 1
RC

)

s2 + 2
RC

s + 1
LC
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Observability Examples

Example (RLC circuit continuation). The poles of the circuit transfer
function are

s1,2 = −
1

RC
±

√

1

R2C2
−

1

LC
.

Both roots have negative real part, and thus conclude that the system is
asymptotically stable and BIBO stable for any value of R, L and C.

In particular, for R =
√

L/C (the value for which the system becomes
uncontrollable), we have

s1,2 = −
1

RC
±

√

1

LC
−

1

LC
= −

1

RC
,

that is, the system has repeated roots, and

G(s) =
s

(

s + 1
RC

)

(

s + 1
RC

)2
=

s
(

s + 1
RC

) .

A pole-zero cancellation reduces the system to first order.
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Summary

Observability is a fundamental system property which
determines whether it is possible to determine the state of
the system from the knowledge of its inputs and outputs.

If a system is observable, it is possible to find x(0) from
measurements of u(t) and y(t) over a time interval
t ∈ [0, t1], t1 > 0.

Observability depends o the matrices A and C of the state
equation of the system. The pair (A, C) is observable if and
only if

rank O = rank
[

C
CA
...

CAn−1

]

= n

As for Controllability, Observability is invariant with respect to
change of coordinates (algebraic equivalence
transformations).
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