ELEC4410

Control Systems Design
Lecture 16: Controllability and Observability Canonical Decompositions

Julio H. Braslavsky
julio@ee.newcastle.edu.au

School of Electrical Engineering and Computer Science The University of Newcastle

Outline

- Canonical Decompositions
- Kalman Decomposition and Minimal Realisation
- Discrete-Time Systems

Canonical Decompositions

The Canonical Decompositions of state equations will establish the relationship between Controllability, Observability, and a transfer matrix and its minimal realisations.

Consider the state equation

$$
\begin{align*}
& \dot{x}=\mathbf{A} x+\mathbf{B u} \quad A \in \mathbb{R}^{\mathbf{n} \times n}, \mathbf{B} \in \mathbb{R}^{\mathbf{n} \times p}, \\
& \mathbf{y}=\mathbf{C x}+\mathbf{D u} \quad \text { where } \quad \mathbf{C} \in \mathbb{R}^{\mathbf{p} \times \mathfrak{n}}, \mathbf{D} \in \mathbb{R}^{\boldsymbol{q} \times \boldsymbol{p}} . \tag{SE}
\end{align*}
$$

Let $\bar{x}=\mathbf{P} x$, where \mathbf{P} is nonsingular, $\mathbf{P} \in \mathbb{R}^{\mathbf{n} \times \boldsymbol{n}}$. Then we know that the state equation

$$
\begin{array}{ll}
\dot{\bar{x}}=\bar{A} \bar{x}+\overline{\mathbf{B}} \mathbf{u} & \text { where }=\mathbf{P A P}^{-1}, \overline{\mathbf{B}}=\mathbf{P B}, \\
\mathbf{y}=\overline{\mathbf{C}} \overline{\bar{x}}+\overline{\mathrm{D}} \mathbf{u} & \\
\overline{\mathbf{C}}=\mathbf{C P}^{-1}, \overline{\mathrm{D}}=\mathbf{D},
\end{array}
$$

is algebraically equivalent to (SE).

Canonical Decompositions

Theorem (Controllable/Uncontrollable Decomposition). Consider the n-dimensional state equation (SE) and suppose that

$$
\operatorname{rank} \mathcal{C}=\operatorname{rank}\left[\begin{array}{llll}
\mathrm{B} & \mathrm{AB} & \cdots & A^{\mathfrak{n}-1} B
\end{array}\right]=\mathfrak{n}_{1}<\mathfrak{n}
$$

(i.e., the system is not controllable). Let the $\mathfrak{n} \times \mathfrak{n}$ matrix of change of coordinates \mathbf{P} be defined as

$$
\mathbf{P}^{-1}=\left[\begin{array}{llllll}
\mathbf{q}_{1} & \mathbf{q}_{2} & \cdots & \mathbf{q}_{n_{1}} & \cdots & \mathbf{q}_{n}
\end{array}\right]
$$

where the first \mathfrak{n}_{1} columns are any \mathfrak{n}_{1} independent columns in \mathcal{C}, and the remaining are arbitrarily chosen so that \mathbf{P} is nonsingular. Then the equivalence transformation $\bar{x}=\mathbf{P} x$ transforms (SE) to

$$
\begin{aligned}
& {\left[\begin{array}{c}
\dot{\bar{x}}_{\mathcal{C}} \\
\dot{\bar{x}}_{\widetilde{\mathcal{C}}}
\end{array}\right]=\left[\begin{array}{cc}
\overline{\mathcal{A}}_{\mathcal{C}} & \overline{\mathcal{A}}_{12} \\
0 & \overline{\bar{A}}_{\widetilde{\mathcal{C}}}
\end{array}\right]\left[\begin{array}{l}
\bar{x}_{\mathcal{C}} \\
\bar{x}_{\widetilde{\mathcal{C}}}
\end{array}\right]+\left[\begin{array}{c}
\overline{\mathbf{B}}_{\mathcal{C}} \\
0
\end{array}\right] \mathbf{u}} \\
& \mathbf{y}=\left[\begin{array}{ll}
\overline{\mathbf{C}}_{\mathfrak{e}} & \overline{\mathbf{C}}_{\widetilde{\mathfrak{C}}}
\end{array}\right] \overline{\boldsymbol{x}}+\mathbf{D u}
\end{aligned}
$$

Canonical Decompositions

The states in the new coordinates are decomposed into
$\bar{x}_{\mathfrak{e}}: \quad \mathbf{n}_{1}$ controllable states
$\bar{x}_{\tilde{e}}: \quad \mathfrak{n}-\mathfrak{n}_{1}$ uncontrollable states

Canonical Decompositions

The states in the new coordinates are decomposed into
$\bar{x}_{\mathcal{E}}: \quad n_{1}$ controllable states
$\bar{x}_{\tilde{e}}: n-n_{1}$ uncontrollable states

The reduced order state equation of the controllable states

$$
\begin{aligned}
\dot{\bar{x}}_{\mathfrak{e}} & =\overline{\overline{\mathcal{A}}}_{\mathfrak{e}} \overline{\mathrm{x}}_{\mathcal{L}}+\overline{\mathbf{B}}_{\mathfrak{e}} \\
\overline{\mathbf{y}} & =\overline{\mathbf{C}}_{\mathfrak{e}} \overline{\bar{x}}+\mathbf{D u}
\end{aligned}
$$

is controllable and has the same transfer function as the original state equation (SE).

The MATLAB function ctrbf transforms a state equation into its controllable/uncontrollable canonical form.

Canonical Decompositions

Theorem (Observable/Unobservable Decomposition). Consider the n-dimensional state equation (SE) and suppose that

$$
\operatorname{rank} \mathcal{O}=\operatorname{rank}\left[\begin{array}{c}
c \\
c A \\
\underset{c^{n}}{ }{ }^{n-1}
\end{array}\right]=\mathbf{n}_{2}<\mathbf{n} \quad \text { (i.e., the system is not observable). }
$$

Let the $\mathfrak{n} \times \mathfrak{n}$ matrix of change of coordinates \mathbf{P} be defined as

$$
\mathbf{P}=\left[\begin{array}{c}
\mathbf{p}_{1} \\
p_{2} \\
\mathfrak{m}_{2} \\
\mathbf{p}_{n_{2}} \\
\ldots \boldsymbol{p}_{n}
\end{array}\right]
$$

where the first $\mathbf{n}_{\mathbf{2}}$ columns are any $\boldsymbol{n}_{\mathbf{2}}$ independent columns in \mathcal{O}, and the remaining are arbitrarily chosen so that \mathbf{P} is nonsingular. Then the equivalence transformation $\bar{x}=\mathbf{P} x$ transforms (SE) to

$$
\begin{aligned}
{\left[\begin{array}{c}
\dot{\bar{x}}_{\mathcal{O}} \\
\dot{\bar{\chi}}_{\tilde{\mathcal{O}}}
\end{array}\right] } & =\left[\begin{array}{cc}
\overline{\mathcal{A}}_{\mathcal{O}} & 0 \\
\overline{\mathcal{A}}_{21} & \overline{\mathcal{A}}_{\tilde{\mathcal{O}}}
\end{array}\right]\left[\begin{array}{l}
\bar{x}_{\mathcal{O}} \\
\bar{x}_{\tilde{\mathcal{O}}}
\end{array}\right]+\left[\begin{array}{c}
\overline{\mathbf{B}}_{\mathcal{O}} \\
\overline{\mathbf{B}}_{\tilde{\mathcal{O}}}
\end{array}\right] \mathbf{u} \\
\mathbf{y} & =\left[\begin{array}{ll}
\overline{\mathbf{C}}_{\mathcal{O}} & 0
\end{array}\right] \overline{\mathrm{x}}+\mathbf{D u}
\end{aligned}
$$

Canonical Decompositions

The states in the new coordinates are decomposed into

```
\mp@subsup{\overline{x}}{\mathcal{O}}{}:\quad\mp@subsup{n}{2}{}\mathrm{ Observable states}
```

$\bar{x}_{\tilde{\mathcal{O}}}: \quad \mathfrak{n}-\mathfrak{n}_{2}$ unobservable states

Canonical Decompositions

The states in the new coordinates are decomposed into

$$
\begin{array}{ll}
\bar{x}_{\mathcal{O}}: & \mathbf{n}_{2} \text { observable states } \\
\overline{\mathbf{x}}_{\tilde{\mathcal{O}}}: & \mathbf{n}-\mathbf{n}_{2} \text { unobservable states }
\end{array}
$$

The reduced order state equation of the observable states

$$
\begin{aligned}
\dot{\bar{x}}_{\mathcal{O}} & =\overline{\boldsymbol{A}}_{\mathcal{O}} \bar{x}_{\mathcal{O}}+\overline{\mathbf{B}}_{\mathcal{O}} \mathbf{u} \\
\overline{\mathbf{y}} & =\overline{\mathbf{C}}_{\mathcal{O}} \overline{\mathrm{x}}+\mathbf{D u}
\end{aligned}
$$

is observable and has the same transfer function as the original state equation (SE).

The MATLAB function obsvf transforms a state equation into its observable/unobservable canonical form.

Kalman Decomposition

The Kalman decomposition combines the
Controllable/Uncontrollable and Observable/Unobservable decompositions.

Every state-space equation can be transformed, by equivalence transformation, into a canonical form that splits the states into

- Controllable and observable states

Kalman Decomposition

The Kalman decomposition combines the
Controllable/Uncontrollable and Observable/Unobservable decompositions.

Every state-space equation can be transformed, by equivalence transformation, into a canonical form that splits the states into

- Controllable and observable states
- Controllable but unobservable states

Kalman Decomposition

The Kalman decomposition combines the
Controllable/Uncontrollable and Observable/Unobservable decompositions.

Every state-space equation can be transformed, by equivalence transformation, into a canonical form that splits the states into

- Controllable and observable states
- Controllable but unobservable states
- Uncontrollable but observable states

Kalman Decomposition

The Kalman decomposition combines the
Controllable/Uncontrollable and Observable/Unobservable decompositions.

Every state-space equation can be transformed, by equivalence transformation, into a canonical form that splits the states into

- Controllable and observable states
- Controllable but unobservable states
- Uncontrollable but observable states
- Uncontrollable and unobservable states

Kalman Decomposition

The Kalman decomposition brings the system to the form

$$
\begin{aligned}
& \boldsymbol{y}=\left[\begin{array}{llll}
\overline{\mathrm{C}}_{\mathfrak{C} \mathcal{O}} & 0 & \overline{\mathbf{C}}_{\tilde{\mathcal{C}} \mathcal{O}} & 0
\end{array}\right] \overline{\mathrm{x}}+\mathrm{Du}
\end{aligned}
$$

Kalman Decomposition

The Kalman decomposition brings the system to the form

$$
\begin{aligned}
& \boldsymbol{y}=\left[\begin{array}{llll}
\overline{\mathbf{C}}_{\mathfrak{C} \mathcal{O}} & 0 & \overline{\mathbf{C}}_{\tilde{\mathfrak{C}} \mathcal{O}} & 0
\end{array}\right] \overline{\mathrm{x}}+\mathrm{Du}
\end{aligned}
$$

A minimal realisation of the system is obtained by using only the controllable and observable states from the Kalman decomposition.

$$
\begin{aligned}
\dot{\bar{x}}_{\mathcal{C O}} & =\overline{\mathbf{A}}_{\mathcal{C O}} \bar{x}_{\mathcal{C O}}+\overline{\mathbf{B}}_{\mathfrak{C O}} \mathbf{u} \\
\overline{\mathbf{y}} & =\overline{\mathbf{C}}_{\mathfrak{C O}} \overline{\bar{x}}+\mathrm{Du}
\end{aligned}
$$

Kalman Decomposition

Example. Consider the system in Modal Canonical Form

$$
\begin{aligned}
& \dot{x}=\left[\begin{array}{cccc}
\lambda_{1} & 1 & 0 & 0 \\
0 & \lambda_{1} & 0 & 0 \\
0 & 0 & \lambda_{2} & 0 \\
0 & 0 & 0 & \lambda_{3}
\end{array}\right] x+\left[\begin{array}{l}
1 \\
0 \\
0 \\
2
\end{array}\right] u \\
& \mathbf{y}=\left[\begin{array}{llll}
1 & 0 & 1 & 1
\end{array}\right] x
\end{aligned}
$$

From the example seen in the Tutorial, Controllability and
Observability in Modal Form equations, we see that

- the first λ_{1} is controllable and observable
- λ_{2} is not controllable, although observable
- λ_{3} is controllable and observable

Thus a minimal realisation of this system is given by

$$
\begin{aligned}
& \dot{\bar{x}}=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{3}
\end{array}\right] \bar{x}+\left[\begin{array}{l}
1 \\
2
\end{array}\right] \mathbf{u} \quad \text { with transfer function } \quad \mathbf{G}(\mathbf{s})=\frac{1}{s-\lambda_{1}}+\frac{2}{s-\lambda_{3}} \\
& \mathbf{y}=\left[\begin{array}{lll}
1 & 1
\end{array}\right] \bar{x}
\end{aligned}
$$

Canonical Decompositions

Example (Controllable/Uncontrollable decomposition).

Consider the third order system

$$
\begin{aligned}
\dot{x} & =\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right] x+\left[\begin{array}{ll}
0 & 1 \\
1 & 0 \\
0 & 1
\end{array}\right] \mathbf{u} \\
\mathbf{y} & =\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right] x
\end{aligned}
$$

Compute the rank of the controllability matrix,

$$
\operatorname{rank} \mathcal{C}=\operatorname{rank}\left[\begin{array}{lll}
\boldsymbol{B} & A B & A^{2} \\
B
\end{array}\right]=\operatorname{rank}\left[\begin{array}{llllll}
0 & 1 & 1 & 1 & 2 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 2 & 1
\end{array}\right]=2<3,
$$

thus the system is not controllable. Take the change of coordinates formed by the first two columns of \mathcal{C} and an arbitrary third one independent of the first two,

$$
\mathbf{P}^{-1}=\mathbf{Q} \triangleq\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] .
$$

Canonical Decompositions

Example (continuation). By doing $\hat{\boldsymbol{x}}=\mathbf{P} \boldsymbol{x}$ we obtain the equivalent equations

$$
\begin{aligned}
& \dot{\hat{x}}=\left[\begin{array}{cccc}
1 & 0 & \vdots & 0 \\
1 & 1 & \vdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & \vdots & 1
\end{array}\right] \boldsymbol{x}+\left[\begin{array}{cc}
1 & 0 \\
0 & 1 \\
\hdashline 0 & \dddot{0}
\end{array}\right] \mathbf{u} \\
& \mathbf{y}=\left[\begin{array}{llll}
1 & 2 & \vdots & 1
\end{array}\right] \boldsymbol{x}
\end{aligned}
$$

and the reduced controllable system

$$
\begin{aligned}
& \dot{\hat{x}}=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right] \boldsymbol{x}+\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \mathbf{u} \\
& \boldsymbol{y}=\left[\begin{array}{ll}
1 & 2
\end{array}\right] \boldsymbol{x}
\end{aligned}
$$

which has the same transfer matrix than the original system

$$
\mathbf{G}(\mathbf{s})=\left[\begin{array}{ll}
\frac{s+1}{s^{2}-2 \mathbf{s}+1} & \frac{2}{s-1}
\end{array}\right] .
$$

Discrete-Time Systems

For controllability and observability of a discrete-time equation

$$
\begin{aligned}
x[k+1] & =\mathbf{A x}[\mathrm{k}]+\mathbf{B u}[\mathrm{k}] \\
\mathrm{y}[\mathrm{k}] & =\mathbf{C x}[\mathrm{k}]+\mathrm{Du}[\mathrm{k}]
\end{aligned}
$$

we can use the same Controllability and Observability matrices rank tests that we have for continuous-time systems,

$$
\begin{aligned}
& \operatorname{rank} \boldsymbol{\mathcal { C }}=\operatorname{rank}\left[\begin{array}{lll}
\text { в } & \text { в } & \cdots \\
\boldsymbol{A}^{\boldsymbol{n}-1} & \text { в }]=\boldsymbol{n} \quad \Leftrightarrow \quad \text { Controllability }
\end{array}\right.
\end{aligned}
$$

Canonical decompositions are analogous.

Summary

- When a system is not controllable or not observable, there might be a part of the system that still is controllable and observable.

Summary

- When a system is not controllable or not observable, there might be a part of the system that still is controllable and observable.
- The controllability and observability matrices can be used to split (by a change of coordinates) a state equation into its controllable/uncontrollable parts and observable/unobservable parts.

Summary

- When a system is not controllable or not observable, there might be a part of the system that still is controllable and observable.
- The controllability and observability matrices can be used to split (by a change of coordinates) a state equation into its controllable/uncontrollable parts and observable/unobservable parts.
- The controllable and observable part of a state equation yields minimal realisation.

Summary

- When a system is not controllable or not observable, there might be a part of the system that still is controllable and observable.
- The controllability and observability matrices can be used to split (by a change of coordinates) a state equation into its controllable/uncontrollable parts and observable/unobservable parts.
- The controllable and observable part of a state equation yields minimal realisation.

Thus, we conclude that for a state equation
minimal realisation \Leftrightarrow controllable and observable

