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Canonical Decompositions

The Canonical Decompositions of state equations will establish
the relationship between Controllability, Observability , and a
transfer matrix and its minimal realisations.

Consider the state equation

ẋ = Ax + Bu

y = Cx + Du
where

A ∈ R
n×n, B ∈ R

n×p,

C ∈ R
p×n, D ∈ R

q×p.
(SE)

Let x̄ = Px, where P is nonsingular, P ∈ R
n×n. Then we know that

the state equation

˙̄x = Āx̄ + B̄u

y = C̄x̄ + D̄u
where

Ā = PAP−1, B̄ = PB,

C̄ = CP−1, D̄ = D,

is algebraically equivalent to (SE).
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Canonical Decompositions

Theorem (Controllable/Uncontrollable Decomposition). Consider the
n-dimensional state equation (SE) and suppose that

rank C = rank
[
B AB · · · An−1B

]
= n1 < n

(i.e., the system is not controllable). Let the n × n matrix of change of
coordinates P be defined as

P
−1

=
[
q1 q2 · · · qn1

· · · qn

]

where the first n1 columns are any n1 independent columns in C, and
the remaining are arbitrarily chosen so that P is nonsingular. Then the
equivalence transformation x̄ = Px transforms (SE) to




˙̄xC

˙̄x
C̃


 =


ĀC Ā12

0 Ā
C̃





x̄C

x̄
C̃


 +


B̄C

0


 u

y =
[
C̄C C̄

C̃

]
x̄ + Du
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Canonical Decompositions

The states in the new coordinates are
decomposed into

x̄C : n1 controllable states

x̄
C̃

: n − n1 uncontrollable states

u y
C

C̃

Uncontrollable

Controllable

The reduced order state equation of the controllable states

˙̄xC = ĀCx̄C + B̄Cu

ȳ = C̄Cx̄ + Du

is controllable and has the same transfer function as the original state
equation (SE).

The MATLAB function ctrbf transforms a state equation into its control-

lable/uncontrollable canonical form.
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Canonical Decompositions

Theorem (Observable/Unobservable Decomposition). Consider the
n-dimensional state equation (SE) and suppose that

rank O = rank
[

C
CA
···

CAn−1

]
= n2 < n (i.e., the system is not observable).

Let the n × n matrix of change of coordinates P be defined as

P =




p1
p2
···

pn2
···

pn




where the first n2 columns are any n2 independent columns in O, and
the remaining are arbitrarily chosen so that P is nonsingular. Then the
equivalence transformation x̄ = Px transforms (SE) to




˙̄xO

˙̄x
Õ


 =


 ĀO 0

Ā21 Ā
Õ





x̄O

x̄
Õ


 +


B̄O

B̄
Õ


 u

y =
[
C̄O 0

]
x̄ + Du
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Canonical Decompositions

The states in the new coordinates are
decomposed into

x̄O : n2 observable states

x̄
Õ

: n − n2 unobservable states

u y
O

Õ

Unobservable

Observable

The reduced order state equation of the observable states

˙̄xO = ĀOx̄O + B̄Ou

ȳ = C̄Ox̄ + Du

is observable and has the same transfer function as the original state
equation (SE).

The MATLAB function obsvf transforms a state equation into its observ-

able/unobservable canonical form.
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Canonical Decompositions
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Õ

Unobservable

Observable

The reduced order state equation of the observable states
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Kalman Decomposition

The Kalman decomposition combines the
Controllable/Uncontrollable and Observable/Unobservable
decompositions.

u y

C̃Õ

CO

C̃O

Uncontrollable

Unobservable

CÕ

Every state-space equation can be
transformed, by equivalence transfor-
mation, into a canonical form that splits
the states into

Controllable and observable states

Controllable but unobservable
states

Uncontrollable but observable
states

Uncontrollable and unobservable
states
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Kalman Decomposition

The Kalman decomposition brings the system to the form



˙̄xCO

˙̄x
CÕ

˙̄x
C̃O

˙̄x
C̃Õ




=




ĀCO 0 Ā13 0

Ā21 Ā
CÕ

Ā23 Ā24

0 0 Ā
C̃O

0

0 0 Ā43 Ā
C̃Õ







x̄CO

x̄
CÕ

x̄
C̃O

x̄
C̃Õ




︸ ︷︷ ︸
x̄

+




B̄CO

B̄
CÕ

0

0




u

y =
[
C̄CO 0 C̄

C̃O
0

]
x̄ + Du

A minimal realisation of the system is obtained by using only the
controllable and observable states from the Kalman
decomposition.

˙̄xCO = ĀCOx̄CO + B̄COu

ȳ = C̄COx̄ + Du

Lecture 15: Observability – p.9/14



The University of Newcastle

Kalman Decomposition

The Kalman decomposition brings the system to the form



˙̄xCO

˙̄x
CÕ
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Kalman Decomposition

Example. Consider the system in Modal Canonical Form

ẋ =

[
λ1 1 0 0
0 λ1 0 0
0 0 λ2 0
0 0 0 λ3

]
x +

[
1
0
0
2

]
u

y = [ 1 0 1 1 ] x

From the example seen in the Tutorial, Controllability and
Observability in Modal Form equations, we see that

the first λ1 is controllable and observable

λ2 is not controllable, although observable

λ3 is controllable and observable

Thus a minimal realisation of this system is given by

˙̄x =
[

λ1 0
0 λ3

]
x̄ +

[
1
2

]
u

y = [ 1 1 ] x̄
with transfer function G(s) =

1

s − λ1

+
2

s − λ3
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Canonical Decompositions

Example (Controllable/Uncontrollable decomposition).
Consider the third order system

ẋ =
[

1 1 0
0 1 0
0 1 1

]
x +

[
0 1
1 0
0 1

]
u

y = [ 1 1 1 ] x

Compute the rank of the controllability matrix,

rank C = rank [ B AB A2B ] = rank
[

0 1 1 1 2 1
1 0 1 0 1 0
0 1 1 1 2 1

]
= 2 < 3,

thus the system is not controllable. Take the change of
coordinates formed by the first two columns of C and an
arbitrary third one independent of the first two,

P−1 = Q ,

[
0 1 1
1 0 0
0 1 0

]
.
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Canonical Decompositions

Example (continuation). By doing x̂ = Px we obtain the equivalent
equations

˙̂x =




1 0

... 0

1 1

... 0
... ... ... ...

0 0

... 1




x +

[
1 0
0 1
... ...
0 0

]
u

y =

[
1 2

... 1

]
x

and the reduced controllable system

˙̂x = [ 1 0
1 1 ] x + [ 1 0

0 1 ] u

y = [ 1 2 ] x

which has the same transfer matrix than the original system

G(s) =
[

s+1

s2−2s+1

2
s−1

]
.
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Discrete-Time Systems

For controllability and observability of a discrete-time equation

x[k + 1] = Ax[k] + Bu[k]

y[k] = Cx[k] + Du[k]

we can use the same Controllability and Observability matrices
rank tests that we have for continuous-time systems,

rank C = rank [ B AB ··· An−1B ] = n ⇔ Controllability

rank O = rank
[

C
CA
···

CAn−1

]
= n ⇔ Observability

Canonical decompositions are analogous.
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Summary

When a system is not controllable or not observable, there
might be a part of the system that still is controllable and
observable.

The controllability and observability matrices can be used to
split (by a change of coordinates) a state equation into its
controllable/uncontrollable parts and
observable/unobservable parts.

The controllable and observable part of a state equation
yields minimal realisation .

Thus, we conclude that for a state equation

minimal realisation ⇔ controllable and observable
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