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Overview of Control via State Space

The linear systems theory that we’ve been discussing is the basis
for linear control design theory in state space, which we will
discuss from this lecture on.

Linear state space control theory involves modifying the
behaviour of an m-input, p-output, n-state system

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t),
(OL)

which we call the plant, or open loop state equation, by
application of a control law of the form

u(t) = Nr(t) − Kx(t), (U)

in which r(t) is the new (reference) input signal. The matrix K is
the state feedback gain and N the feedforward gain .
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Overview of Control via State Space

Substitution of (U) into (OL) gives the closed-loop state equation

ẋ(t) = (A − BK)x(t) + BNr(t)

y(t) = Cx(t).
(CL)

Obviously, the closed-loop system is also LTI.
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State feedback with feedforward precompensation

This type of control is said to be static, because u only depends
on the present values of the state x and the reference r. Note
that it requires that all states of the system be measured.
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Overview of Control via State Space

When not all the states of the system are measurable, we
resource to their estimation by means of an observer, or state
estimator, which reconstructs the state from measurements of
the inputs u(t) and outputs y(t).

g g aa - - -

�
6

--
6

� �
�

- - y

x̂
K

A

∫ẋ x
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Output feedback by estimated state feedback

The combination of state feedback and state estimation yields a
dynamic output feedback controller.
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Overview of Control via State Space

In this part of the course we will see

techniques for the design of the state feedback gain K to
achieve

pole placement (stabilisation)

regulation and robust tracking

techniques for the design of observers

Our basic aim in this part of the course is

To learn how to design a linear control system by dynamic out-
put feedback (state feedback + observer) to satisfy the desired
closed-loop system specifications in stability and performance.

We start with SISO systems, and then move on to MIMO. Over the
end of the course, we will discuss some optimal designs.
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State Feedback Design

We start by considering SISO systems, and the state feedback
control scheme with feedforward precompensation. For
simplicity, let’s assume for the moment that N = 1.
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An essential system property in state feedback is Controllability,
and our first important observation is that Controllability is
invariant with respect to state feedback.

Theorem (Invariance of Controllability with State Feedback). For any K ∈

R
1×n, the pair (A − BK, B) is controllable if and only if the pair (A, B) is

controllable.
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State Feedback Design

It is interesting to note that, on the other hand, Observability is
not invariant with respect to feedback.

Example (Loss of Observability after feedback). The system

ẋ(t) =


1 2

3 1


 x(t) +


0

1


 u(t)

y(t) =
[
1 2

]
x(t)

is controllable and observable, since its controllability and observability
matrices

C =
[
B AB

]
=


0 2

1 1


 , and O =


 C

CA


 =


1 2

7 4




are nonsingular.
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State Feedback Design

Example (Continuation). The state feedback control

u(t) = r(t) −
[
3 1

]
x(t)

yields the closed loop state equations

ẋ(t) =


1 2

0 0


 x(t) +


0

1


 u(t)

y(t) =
[
1 2

]
x(t).

The controllability matrix for the closed loop state equation is CK = [ 0 2
1 0 ],

which, as expected, is nonsingular, and verifies that the closed-loop
system is controllable.

However, the observability matrix is O = [ 1 2
1 2 ], which is singular, and thus

the closed-loop system with this state feedback is not observable.

Observability is not invariant with respect to feedback.
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State Feedback Design
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State Feedback Design
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ẋ(t) =


1 2

0 0


 x(t) +


0

1


 u(t)

y(t) =
[
1 2

]
x(t).

The controllability matrix for the closed loop state equation is CK = [ 0 2
1 0 ],

which, as expected, is nonsingular, and verifies that the closed-loop
system is controllable.

However, the observability matrix is O = [ 1 2
1 2 ], which is singular, and thus

the closed-loop system with this state feedback is not observable.

Observability is not invariant with respect to feedback.

Lecture 17: State Feedback – p.9/23



The University of Newcastle

State Feedback Design

The following example illustrates what can we achieve with state
feedback.
Example (Eigenvalue assignment by state feedback). The plant

ẋ(t) = [ 1 3
3 1 ] x(t) + [ 1

0 ] u(t)

has a matrix A with the characteristic polynomial

∆(s) = (s − 1)
2

− 9 = s
2

− 2s − 8 = (s − 4)(s + 2),

i.e., eigenvalues at s = 4 and s = −2. The system is unstable.

The state feedback u = r − [k1 k2]x gives the closed-loop system

ẋ = (A − BK)x + Br

=
(
[ 1 3

3 1 ] −
[

k1 k2

0 0

])
x + [ 1

0 ] r

=
[

1−k1 3−k2

3 1

]
x + [ 1

0 ] r.
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State Feedback Design

Example (Continuation). The “new” evolution matrix AK = A − BK

has characteristic polynomial

∆K(s) = (s − 1 + k1)(s − 1) − 3(3 − k2)

= s
2

+ (k1 − 2)s + (3k2 − k1 − 8).

Clearly, the roots of ∆K(s), or equivalently, the eigenvalues of the
closed-loop system can be arbitrarily assigned by a suitable choice of
k1 and k2.

For instance, for both eigenvalues to be placed at −1 ± j2, the desired
characteristic polynomial is (s + 1 − j2)(s + 1 + j2) = s2 + 2s + 5. By
equating k1 − 1 = 2 and 3k2 − k1 − 8 = 5 we get k1 = 4 and k2 = 17/3.

Thus, the feedback gain

K = [ 4 17/3 ]

will shift the eigenvalues of the system from 4, −2 to −1 ± j2.
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State Feedback Design

The example shows that
state feedback allows us to place the eigenvalues of the closed-
loop system at any position, and that the state feedback gain
can be computed by direct substitution.

However,

The method of the example is not practical for systems of
higher dimensions.

It’s not clear what role did controllability play in this
eigenvalue assignment.
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State Feedback Design

To formulate a general result we need to use the Controller
Canonical Form (CCF) discussed in Lecture 12. Recall that if
C = [ B AB ... An−1B ] is full row rank, then we can always make a
change of coordinates under which the state matrices have the
form

Ā = PAP−1 =




−α1 −α2 ··· −αn−1 −αn

1 0 ··· 0 0
0 1 ··· 0 0

...
...

. . .
...

...
0 0 ··· 1 0


 , B̄ = PB =




1
0
0

...
0




C̄ = CP−1 = [ β1 β2 ... βn−1 βn ] .

These matrices arise from the change of coordinates x̄ = Px

where

P−1 = CC̄
−1 with

C = [ B AB ... An−1B ]

C̄ = [ B̄ ĀB̄ ... Ān−1B̄ ]
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State Feedback Design

Theorem (Eigenvalue assignment by state feedback). if the state
equation

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t),

is controllable, then the state feedback control law

u = r − Kx , where K ∈ R
1×n,

assigns the eigenvalues of the closed-loop state equation

ẋ(t) = (A − BK)x(t) + Br(t)

y(t) = Cx(t),

to any desired, arbitrary locations, provided that complex eigen-
values are assigned in conjugate pairs.
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State Feedback Design

Proof: If the system is controllable, we can take it to its CCF by the
change of coordinates x̄ = Px, which yields Ā = P−1AP and B̄ = BP. It is
not difficult to verify that

C̄ , [B̄, ĀB̄, . . . , Ā
n−1

B̄] = P[B, AB, . . . , A
n−1

B] = PC,

and thus P−1 = CC̄
−1.

On substituting x̄ = Px in the state feedback law

u = r − Kx = r − KP
−1

x̄ , r − K̄x̄,

Since Ā − B̄K̄ = P(A − BK)P−1, we see that A − BK and Ā − B̄K̄ are
similar, and thus have the same eigenvalues.

Now, say that λ1, λ2, . . . , λn are the desired closed-loop eigenvalue
locations. We can then generate the desired characteristic polynomial

∆K(s) = (s − λ1)(s − λ2) . . . (s − λn)

= s
n

+ ᾱ1s
n−1

+ · · · + ᾱn.
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State Feedback Design

If we choose

K̄ = [(ᾱ1 − α1), (ᾱ2 − α2), . . . , (ᾱn − αn)],

the closed-loop state equation becomes (in the x̄ coordinates)

˙̄x(t) = (Ā − B̄K̄)x̄(t) + B̄r(t)

=







−α1 −α2 ··· −αn−1 −αn

1 0 ··· 0 0
0 1 ··· 0 0

...
...

. . .
...

...
0 0 ··· 1 0


 −




(ᾱ1−α1) (ᾱ2−α2) ... (ᾱn−αn)

0 0 ... 0
0 0 ... 0

...
... ...

...
0 0 ... 0





 x̄(t) + B̄r(t)

=




−ᾱ1 −ᾱ2 ··· −ᾱn−1 −ᾱn

1 0 ··· 0 0
0 1 ··· 0 0

...
...

. . .
...

...
0 0 ··· 1 0


 x̄(t) +




1
0
0

...
0


 r(t).

Because the closed-loop evolution matrix (Ā − B̄K̄) is still in companion

form, we see from the last expression that its characteristic polynomial is

the desired one ∆K(s). Finally, from K̄ = KP−1, we get that K = K̄P.
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State Feedback Design

The matrix C̄ can be easily build from the coefficients α1, α2, . . . , αn of
the characteristic polynomial of A or Ā as

C̄ =




1 α1 α2 ... αn−2 αn−1

0 1 α1 ... αn−3 αn−2

0 0 1 ... αn−4 αn−3

...
...

...
. . .

...
...

0 0 0 ... 1 α1

0 0 0 ... 0 1




−1

(note the inverse!)

In closed-loop, once the eigenvalue assignment is performed, the
system transfer function from r to y is given by

G(s) =
β1sn−1 + β2sn−2 + · · · + βn

sn + ᾱ1sn−1 + ᾱ2sn−2 + · · · + αn

·

The transfer function has poles at the new, desired locations. However,
the zeros of the system are the same as in the open-loop system.

State feedback can arbitrarily assign the system poles (eigenvalues), but
has no effect on the system zeros.
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State Feedback Design
Procedure for pole placement by state feedback (Bass-Gura Formula)

1. Obtain the coefficients of the open loop characteristic polynomial
∆(s) = sn + α1sn−1 + · · · + αn.

2. Form the controllability matrices C = [ B AB ··· An−1B ] and

C̄ =




1 α1 α2 ... αn−2 αn−1

0 1 α1 ... αn−3 αn−2

0 0 1 ... αn−4 αn−3

...
...

...
. . .

...
...

0 0 0 ... 1 α1

0 0 0 ... 0 1




−1

(note the inverse!)

3. Select the coefficients of the desired closed-loop characteristic
polynomial ∆K(s) = sn + ᾱ1sn−1 + · · · + ᾱn and build the state-
feedback gain in x̄ coordinates,

K̄ = [ (ᾱ1−α1) (ᾱ2−α2) ··· (ᾱn−αn) ]

4. Compute the state-feedback gain in the original x coordinates

K = K̄C̄C
−1
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State Feedback Stabilisation

We have seen that if a state equation is controllable, then we
can assign its eigenvalues arbitrarily by state feedback. But,
what happens when the state equation is not controllable?

We know that we can take any state equation to the
Controllable/Uncontrollable Canonical Form




˙̄xC

˙̄x
C̃


 =


ĀC Ā12

0 Ā
C̃




︸ ︷︷ ︸

Ā


x̄C

x̄
C̃


 +


B̄C

0


 u

Because the evolution matrix Ā is block-triangular, its
eigenvalues are the union of the eigenvalues of the diagonal
blocks: ĀC and Ā

C̃
.
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State Feedback Stabilisation

The state feedback law

u = r − Kx

= r − K̄x̄

= r − [ K̄C K̄
C̃

]
[

˙̄xC

˙̄x
C̃

]

yields the closed-loop system



˙̄xC

˙̄x
C̃


 =


ĀC − B̄CK̄C Ā12 − B̄CK̄

C̃

0 Ā
C̃





x̄C

x̄
C̃


 +


B̄C

0


 r.

We see that the eigenvalues of Ā
C̃

are not affected by the state
feedback, so they remain unchanged.

The value of K̄
C̃

is irrelevant — the uncontrollable states cannot
be affected.

Lecture 17: State Feedback – p.20/23



The University of Newcastle

State Feedback Stabilisation

The state feedback law

u = r − Kx

= r − K̄x̄

= r − [ K̄C K̄
C̃

]
[

˙̄xC

˙̄x
C̃

]

yields the closed-loop system



˙̄xC

˙̄x
C̃


 =


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C̃





x̄C

x̄
C̃


 +


B̄C

0


 r.

We see that the eigenvalues of Ā
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State Feedback Stabilisation

g

b g

g

b
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Ā
C̃

∫
Ā12

ĀC

∫

B̄C

r

−

u

K̄C

K̄
C̃

˙̄xC x̄C˙̄x
C̃

x̄
C̃

?

?

State feedback in Controllable/Uncontrollable coordinates

We conclude that the condition of Controllability is not only
sufficient, but also necessary to place all eigenvalues of
A − BK in desired locations.
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State Feedback Stabilisation

A notion of interest in control that is weaker than that of
Controllability is that of Stabilisability.

Stabilisability. The system

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t),

is said to be stabilisable if all its uncontrollable states are asymp-
totically stable.

This condition is equivalent to asking that the matrix Ā
C̃

be
Hurwitz.

Lecture 17: State Feedback – p.22/23



The University of Newcastle

Summary

We have presented an overview of the process of control
design via state space methods. It involves the design of

A state feedback gain K

A state estimator (observer)

We have shown that, if the system is controllable, it is possible
to arbitrarily assign the eigenvalues of the closed-loop state
equation by a suitable choice of K.

If the system is not controllable, then we can apply state
feedback of the controllable states only — uncontrollable
states cannot be affected.

A system is thus stabilisable if those states that are not
controllable are already stable.
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